Properties

Label 2214.2.i.b.901.12
Level $2214$
Weight $2$
Character 2214.901
Analytic conductor $17.679$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2214,2,Mod(901,2214)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2214.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2214, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2214 = 2 \cdot 3^{3} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2214.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6788790075\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 738)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.12
Character \(\chi\) \(=\) 2214.901
Dual form 2214.2.i.b.1639.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.0761831 - 0.131953i) q^{5} +(-1.94692 + 1.12405i) q^{7} -1.00000 q^{8} +0.152366 q^{10} +(3.89096 - 2.24645i) q^{11} +(1.91844 + 1.10761i) q^{13} +(-1.94692 - 1.12405i) q^{14} +(-0.500000 - 0.866025i) q^{16} -3.10897i q^{17} +0.0605013i q^{19} +(0.0761831 + 0.131953i) q^{20} +(3.89096 + 2.24645i) q^{22} +(-0.0253272 + 0.0438680i) q^{23} +(2.48839 + 4.31002i) q^{25} +2.21523i q^{26} -2.24811i q^{28} +(4.83752 - 2.79295i) q^{29} +(0.00164427 - 0.00284796i) q^{31} +(0.500000 - 0.866025i) q^{32} +(2.69245 - 1.55449i) q^{34} +0.342536i q^{35} -0.348118 q^{37} +(-0.0523957 + 0.0302507i) q^{38} +(-0.0761831 + 0.131953i) q^{40} +(1.40311 + 6.24750i) q^{41} +(1.74162 + 3.01657i) q^{43} +4.49290i q^{44} -0.0506544 q^{46} +(8.96301 - 5.17479i) q^{47} +(-0.973004 + 1.68529i) q^{49} +(-2.48839 + 4.31002i) q^{50} +(-1.91844 + 1.10761i) q^{52} +0.876641i q^{53} -0.684565i q^{55} +(1.94692 - 1.12405i) q^{56} +(4.83752 + 2.79295i) q^{58} +(-2.14362 + 3.71286i) q^{59} +(2.86354 + 4.95981i) q^{61} +0.00328854 q^{62} +1.00000 q^{64} +(0.292306 - 0.168763i) q^{65} +(-1.29700 - 0.748824i) q^{67} +(2.69245 + 1.55449i) q^{68} +(-0.296645 + 0.171268i) q^{70} +1.94028i q^{71} +5.01815 q^{73} +(-0.174059 - 0.301479i) q^{74} +(-0.0523957 - 0.0302507i) q^{76} +(-5.05026 + 8.74731i) q^{77} +(-0.914489 + 0.527980i) q^{79} -0.152366 q^{80} +(-4.70894 + 4.33888i) q^{82} +(3.14751 + 5.45166i) q^{83} +(-0.410238 - 0.236851i) q^{85} +(-1.74162 + 3.01657i) q^{86} +(-3.89096 + 2.24645i) q^{88} -0.00331954i q^{89} -4.98007 q^{91} +(-0.0253272 - 0.0438680i) q^{92} +(8.96301 + 5.17479i) q^{94} +(0.00798333 + 0.00460918i) q^{95} +(3.02338 - 1.74555i) q^{97} -1.94601 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{2} - 18 q^{4} - 4 q^{5} - 36 q^{8} - 8 q^{10} - 18 q^{16} - 4 q^{20} + 4 q^{23} - 26 q^{25} + 8 q^{31} + 18 q^{32} - 60 q^{37} + 4 q^{40} + 6 q^{41} + 6 q^{43} + 8 q^{46} + 38 q^{49} + 26 q^{50}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2214\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.0761831 0.131953i 0.0340701 0.0590111i −0.848488 0.529215i \(-0.822486\pi\)
0.882558 + 0.470204i \(0.155820\pi\)
\(6\) 0 0
\(7\) −1.94692 + 1.12405i −0.735866 + 0.424853i −0.820564 0.571554i \(-0.806341\pi\)
0.0846982 + 0.996407i \(0.473007\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.152366 0.0481824
\(11\) 3.89096 2.24645i 1.17317 0.677330i 0.218745 0.975782i \(-0.429804\pi\)
0.954425 + 0.298452i \(0.0964704\pi\)
\(12\) 0 0
\(13\) 1.91844 + 1.10761i 0.532081 + 0.307197i 0.741863 0.670551i \(-0.233942\pi\)
−0.209783 + 0.977748i \(0.567276\pi\)
\(14\) −1.94692 1.12405i −0.520336 0.300416i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.10897i 0.754037i −0.926206 0.377018i \(-0.876949\pi\)
0.926206 0.377018i \(-0.123051\pi\)
\(18\) 0 0
\(19\) 0.0605013i 0.0138800i 0.999976 + 0.00693998i \(0.00220908\pi\)
−0.999976 + 0.00693998i \(0.997791\pi\)
\(20\) 0.0761831 + 0.131953i 0.0170351 + 0.0295056i
\(21\) 0 0
\(22\) 3.89096 + 2.24645i 0.829556 + 0.478944i
\(23\) −0.0253272 + 0.0438680i −0.00528109 + 0.00914711i −0.868654 0.495419i \(-0.835014\pi\)
0.863373 + 0.504567i \(0.168348\pi\)
\(24\) 0 0
\(25\) 2.48839 + 4.31002i 0.497678 + 0.862004i
\(26\) 2.21523i 0.434442i
\(27\) 0 0
\(28\) 2.24811i 0.424853i
\(29\) 4.83752 2.79295i 0.898306 0.518637i 0.0216557 0.999765i \(-0.493106\pi\)
0.876650 + 0.481128i \(0.159773\pi\)
\(30\) 0 0
\(31\) 0.00164427 0.00284796i 0.000295319 0.000511508i −0.865878 0.500256i \(-0.833239\pi\)
0.866173 + 0.499744i \(0.166573\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 2.69245 1.55449i 0.461751 0.266592i
\(35\) 0.342536i 0.0578991i
\(36\) 0 0
\(37\) −0.348118 −0.0572302 −0.0286151 0.999591i \(-0.509110\pi\)
−0.0286151 + 0.999591i \(0.509110\pi\)
\(38\) −0.0523957 + 0.0302507i −0.00849970 + 0.00490731i
\(39\) 0 0
\(40\) −0.0761831 + 0.131953i −0.0120456 + 0.0208636i
\(41\) 1.40311 + 6.24750i 0.219129 + 0.975696i
\(42\) 0 0
\(43\) 1.74162 + 3.01657i 0.265594 + 0.460023i 0.967719 0.252031i \(-0.0810985\pi\)
−0.702125 + 0.712054i \(0.747765\pi\)
\(44\) 4.49290i 0.677330i
\(45\) 0 0
\(46\) −0.0506544 −0.00746858
\(47\) 8.96301 5.17479i 1.30739 0.754821i 0.325729 0.945463i \(-0.394390\pi\)
0.981660 + 0.190642i \(0.0610569\pi\)
\(48\) 0 0
\(49\) −0.973004 + 1.68529i −0.139001 + 0.240756i
\(50\) −2.48839 + 4.31002i −0.351912 + 0.609529i
\(51\) 0 0
\(52\) −1.91844 + 1.10761i −0.266040 + 0.153598i
\(53\) 0.876641i 0.120416i 0.998186 + 0.0602080i \(0.0191764\pi\)
−0.998186 + 0.0602080i \(0.980824\pi\)
\(54\) 0 0
\(55\) 0.684565i 0.0923068i
\(56\) 1.94692 1.12405i 0.260168 0.150208i
\(57\) 0 0
\(58\) 4.83752 + 2.79295i 0.635198 + 0.366732i
\(59\) −2.14362 + 3.71286i −0.279075 + 0.483373i −0.971155 0.238448i \(-0.923361\pi\)
0.692080 + 0.721821i \(0.256695\pi\)
\(60\) 0 0
\(61\) 2.86354 + 4.95981i 0.366639 + 0.635038i 0.989038 0.147663i \(-0.0471750\pi\)
−0.622398 + 0.782701i \(0.713842\pi\)
\(62\) 0.00328854 0.000417645
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.292306 0.168763i 0.0362561 0.0209325i
\(66\) 0 0
\(67\) −1.29700 0.748824i −0.158454 0.0914835i 0.418676 0.908136i \(-0.362494\pi\)
−0.577130 + 0.816652i \(0.695828\pi\)
\(68\) 2.69245 + 1.55449i 0.326507 + 0.188509i
\(69\) 0 0
\(70\) −0.296645 + 0.171268i −0.0354558 + 0.0204704i
\(71\) 1.94028i 0.230269i 0.993350 + 0.115134i \(0.0367298\pi\)
−0.993350 + 0.115134i \(0.963270\pi\)
\(72\) 0 0
\(73\) 5.01815 0.587330 0.293665 0.955908i \(-0.405125\pi\)
0.293665 + 0.955908i \(0.405125\pi\)
\(74\) −0.174059 0.301479i −0.0202339 0.0350462i
\(75\) 0 0
\(76\) −0.0523957 0.0302507i −0.00601020 0.00346999i
\(77\) −5.05026 + 8.74731i −0.575531 + 0.996848i
\(78\) 0 0
\(79\) −0.914489 + 0.527980i −0.102888 + 0.0594024i −0.550561 0.834795i \(-0.685586\pi\)
0.447673 + 0.894197i \(0.352253\pi\)
\(80\) −0.152366 −0.0170351
\(81\) 0 0
\(82\) −4.70894 + 4.33888i −0.520015 + 0.479149i
\(83\) 3.14751 + 5.45166i 0.345485 + 0.598397i 0.985442 0.170014i \(-0.0543812\pi\)
−0.639957 + 0.768411i \(0.721048\pi\)
\(84\) 0 0
\(85\) −0.410238 0.236851i −0.0444966 0.0256901i
\(86\) −1.74162 + 3.01657i −0.187804 + 0.325285i
\(87\) 0 0
\(88\) −3.89096 + 2.24645i −0.414778 + 0.239472i
\(89\) 0.00331954i 0.000351871i −1.00000 0.000175935i \(-0.999944\pi\)
1.00000 0.000175935i \(-5.60020e-5\pi\)
\(90\) 0 0
\(91\) −4.98007 −0.522054
\(92\) −0.0253272 0.0438680i −0.00264054 0.00457356i
\(93\) 0 0
\(94\) 8.96301 + 5.17479i 0.924463 + 0.533739i
\(95\) 0.00798333 + 0.00460918i 0.000819072 + 0.000472892i
\(96\) 0 0
\(97\) 3.02338 1.74555i 0.306978 0.177234i −0.338595 0.940932i \(-0.609952\pi\)
0.645573 + 0.763698i \(0.276618\pi\)
\(98\) −1.94601 −0.196577
\(99\) 0 0
\(100\) −4.97678 −0.497678
\(101\) −1.42966 + 0.825415i −0.142257 + 0.0821319i −0.569439 0.822034i \(-0.692840\pi\)
0.427182 + 0.904165i \(0.359506\pi\)
\(102\) 0 0
\(103\) −4.52054 + 7.82980i −0.445422 + 0.771493i −0.998082 0.0619136i \(-0.980280\pi\)
0.552660 + 0.833407i \(0.313613\pi\)
\(104\) −1.91844 1.10761i −0.188119 0.108610i
\(105\) 0 0
\(106\) −0.759193 + 0.438321i −0.0737394 + 0.0425735i
\(107\) 18.3510 1.77406 0.887030 0.461711i \(-0.152764\pi\)
0.887030 + 0.461711i \(0.152764\pi\)
\(108\) 0 0
\(109\) 11.5501i 1.10630i 0.833081 + 0.553151i \(0.186575\pi\)
−0.833081 + 0.553151i \(0.813425\pi\)
\(110\) 0.592851 0.342283i 0.0565261 0.0326354i
\(111\) 0 0
\(112\) 1.94692 + 1.12405i 0.183967 + 0.106213i
\(113\) −7.94827 + 13.7668i −0.747710 + 1.29507i 0.201208 + 0.979549i \(0.435513\pi\)
−0.948918 + 0.315523i \(0.897820\pi\)
\(114\) 0 0
\(115\) 0.00385901 + 0.00668400i 0.000359854 + 0.000623286i
\(116\) 5.58589i 0.518637i
\(117\) 0 0
\(118\) −4.28724 −0.394672
\(119\) 3.49465 + 6.05292i 0.320354 + 0.554870i
\(120\) 0 0
\(121\) 4.59306 7.95542i 0.417551 0.723220i
\(122\) −2.86354 + 4.95981i −0.259253 + 0.449040i
\(123\) 0 0
\(124\) 0.00164427 + 0.00284796i 0.000147660 + 0.000255754i
\(125\) 1.52012 0.135964
\(126\) 0 0
\(127\) −17.4982 −1.55271 −0.776356 0.630295i \(-0.782934\pi\)
−0.776356 + 0.630295i \(0.782934\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0.292306 + 0.168763i 0.0256369 + 0.0148015i
\(131\) 8.70047 15.0696i 0.760163 1.31664i −0.182603 0.983187i \(-0.558452\pi\)
0.942766 0.333455i \(-0.108214\pi\)
\(132\) 0 0
\(133\) −0.0680068 0.117791i −0.00589694 0.0102138i
\(134\) 1.49765i 0.129377i
\(135\) 0 0
\(136\) 3.10897i 0.266592i
\(137\) 12.0713 6.96940i 1.03132 0.595436i 0.113961 0.993485i \(-0.463646\pi\)
0.917364 + 0.398050i \(0.130313\pi\)
\(138\) 0 0
\(139\) 2.48118 4.29753i 0.210451 0.364512i −0.741405 0.671058i \(-0.765840\pi\)
0.951856 + 0.306546i \(0.0991734\pi\)
\(140\) −0.296645 0.171268i −0.0250710 0.0144748i
\(141\) 0 0
\(142\) −1.68033 + 0.970139i −0.141010 + 0.0814122i
\(143\) 9.95279 0.832294
\(144\) 0 0
\(145\) 0.851101i 0.0706801i
\(146\) 2.50908 + 4.34585i 0.207653 + 0.359665i
\(147\) 0 0
\(148\) 0.174059 0.301479i 0.0143076 0.0247814i
\(149\) 8.57976 + 4.95353i 0.702882 + 0.405809i 0.808420 0.588606i \(-0.200323\pi\)
−0.105538 + 0.994415i \(0.533657\pi\)
\(150\) 0 0
\(151\) 6.77557 3.91188i 0.551388 0.318344i −0.198294 0.980143i \(-0.563540\pi\)
0.749682 + 0.661799i \(0.230207\pi\)
\(152\) 0.0605013i 0.00490731i
\(153\) 0 0
\(154\) −10.1005 −0.813923
\(155\) −0.000250531 0 0.000433932i −2.01231e−5 0 3.48543e-5i
\(156\) 0 0
\(157\) 13.7927 + 7.96323i 1.10078 + 0.635535i 0.936426 0.350866i \(-0.114113\pi\)
0.164354 + 0.986402i \(0.447446\pi\)
\(158\) −0.914489 0.527980i −0.0727528 0.0420039i
\(159\) 0 0
\(160\) −0.0761831 0.131953i −0.00602280 0.0104318i
\(161\) 0.113877i 0.00897473i
\(162\) 0 0
\(163\) −4.13724 −0.324054 −0.162027 0.986786i \(-0.551803\pi\)
−0.162027 + 0.986786i \(0.551803\pi\)
\(164\) −6.11205 1.90862i −0.477271 0.149038i
\(165\) 0 0
\(166\) −3.14751 + 5.45166i −0.244295 + 0.423130i
\(167\) 0.0737849 + 0.0425997i 0.00570965 + 0.00329647i 0.502852 0.864372i \(-0.332284\pi\)
−0.497142 + 0.867669i \(0.665617\pi\)
\(168\) 0 0
\(169\) −4.04638 7.00854i −0.311260 0.539118i
\(170\) 0.473702i 0.0363313i
\(171\) 0 0
\(172\) −3.48324 −0.265594
\(173\) −9.30221 16.1119i −0.707234 1.22497i −0.965879 0.258993i \(-0.916609\pi\)
0.258645 0.965972i \(-0.416724\pi\)
\(174\) 0 0
\(175\) −9.68940 5.59418i −0.732450 0.422880i
\(176\) −3.89096 2.24645i −0.293292 0.169332i
\(177\) 0 0
\(178\) 0.00287481 0.00165977i 0.000215476 0.000124405i
\(179\) 11.0168i 0.823435i 0.911311 + 0.411718i \(0.135071\pi\)
−0.911311 + 0.411718i \(0.864929\pi\)
\(180\) 0 0
\(181\) 2.81886i 0.209524i −0.994497 0.104762i \(-0.966592\pi\)
0.994497 0.104762i \(-0.0334081\pi\)
\(182\) −2.49004 4.31287i −0.184574 0.319691i
\(183\) 0 0
\(184\) 0.0253272 0.0438680i 0.00186715 0.00323399i
\(185\) −0.0265207 + 0.0459352i −0.00194984 + 0.00337722i
\(186\) 0 0
\(187\) −6.98415 12.0969i −0.510731 0.884613i
\(188\) 10.3496i 0.754821i
\(189\) 0 0
\(190\) 0.00921835i 0.000668770i
\(191\) 15.8790 9.16777i 1.14897 0.663356i 0.200332 0.979728i \(-0.435798\pi\)
0.948635 + 0.316372i \(0.102465\pi\)
\(192\) 0 0
\(193\) −19.3630 11.1792i −1.39378 0.804697i −0.400045 0.916496i \(-0.631005\pi\)
−0.993731 + 0.111799i \(0.964339\pi\)
\(194\) 3.02338 + 1.74555i 0.217066 + 0.125323i
\(195\) 0 0
\(196\) −0.973004 1.68529i −0.0695003 0.120378i
\(197\) 1.75385 0.124957 0.0624783 0.998046i \(-0.480100\pi\)
0.0624783 + 0.998046i \(0.480100\pi\)
\(198\) 0 0
\(199\) 10.1027i 0.716158i −0.933691 0.358079i \(-0.883432\pi\)
0.933691 0.358079i \(-0.116568\pi\)
\(200\) −2.48839 4.31002i −0.175956 0.304765i
\(201\) 0 0
\(202\) −1.42966 0.825415i −0.100591 0.0580760i
\(203\) −6.27885 + 10.8753i −0.440689 + 0.763295i
\(204\) 0 0
\(205\) 0.931270 + 0.290809i 0.0650427 + 0.0203110i
\(206\) −9.04108 −0.629922
\(207\) 0 0
\(208\) 2.21523i 0.153598i
\(209\) 0.135913 + 0.235408i 0.00940131 + 0.0162835i
\(210\) 0 0
\(211\) −0.747210 0.431402i −0.0514401 0.0296989i 0.474059 0.880493i \(-0.342788\pi\)
−0.525499 + 0.850794i \(0.676122\pi\)
\(212\) −0.759193 0.438321i −0.0521416 0.0301040i
\(213\) 0 0
\(214\) 9.17551 + 15.8925i 0.627225 + 1.08639i
\(215\) 0.530727 0.0361953
\(216\) 0 0
\(217\) 0.00739299i 0.000501869i
\(218\) −10.0027 + 5.77507i −0.677469 + 0.391137i
\(219\) 0 0
\(220\) 0.592851 + 0.342283i 0.0399700 + 0.0230767i
\(221\) 3.44354 5.96439i 0.231638 0.401208i
\(222\) 0 0
\(223\) −11.3675 19.6891i −0.761225 1.31848i −0.942219 0.334996i \(-0.891265\pi\)
0.180994 0.983484i \(-0.442068\pi\)
\(224\) 2.24811i 0.150208i
\(225\) 0 0
\(226\) −15.8965 −1.05742
\(227\) −8.80325 + 5.08256i −0.584292 + 0.337341i −0.762837 0.646590i \(-0.776194\pi\)
0.178545 + 0.983932i \(0.442861\pi\)
\(228\) 0 0
\(229\) 13.9895 + 8.07682i 0.924449 + 0.533731i 0.885052 0.465493i \(-0.154123\pi\)
0.0393975 + 0.999224i \(0.487456\pi\)
\(230\) −0.00385901 + 0.00668400i −0.000254455 + 0.000440730i
\(231\) 0 0
\(232\) −4.83752 + 2.79295i −0.317599 + 0.183366i
\(233\) 2.68759i 0.176070i 0.996117 + 0.0880351i \(0.0280588\pi\)
−0.996117 + 0.0880351i \(0.971941\pi\)
\(234\) 0 0
\(235\) 1.57693i 0.102867i
\(236\) −2.14362 3.71286i −0.139538 0.241686i
\(237\) 0 0
\(238\) −3.49465 + 6.05292i −0.226525 + 0.392352i
\(239\) −23.5174 13.5778i −1.52121 0.878274i −0.999686 0.0250396i \(-0.992029\pi\)
−0.521528 0.853234i \(-0.674638\pi\)
\(240\) 0 0
\(241\) 12.1315 + 21.0123i 0.781457 + 1.35352i 0.931093 + 0.364783i \(0.118857\pi\)
−0.149635 + 0.988741i \(0.547810\pi\)
\(242\) 9.18613 0.590507
\(243\) 0 0
\(244\) −5.72709 −0.366639
\(245\) 0.148253 + 0.256782i 0.00947153 + 0.0164052i
\(246\) 0 0
\(247\) −0.0670121 + 0.116068i −0.00426388 + 0.00738526i
\(248\) −0.00164427 + 0.00284796i −0.000104411 + 0.000180845i
\(249\) 0 0
\(250\) 0.760062 + 1.31647i 0.0480705 + 0.0832606i
\(251\) 26.5027 1.67284 0.836418 0.548092i \(-0.184646\pi\)
0.836418 + 0.548092i \(0.184646\pi\)
\(252\) 0 0
\(253\) 0.227585i 0.0143081i
\(254\) −8.74909 15.1539i −0.548967 0.950838i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 2.08716 + 1.20502i 0.130193 + 0.0751672i 0.563682 0.825992i \(-0.309384\pi\)
−0.433489 + 0.901159i \(0.642718\pi\)
\(258\) 0 0
\(259\) 0.677757 0.391303i 0.0421138 0.0243144i
\(260\) 0.337526i 0.0209325i
\(261\) 0 0
\(262\) 17.4009 1.07503
\(263\) −7.28003 + 4.20313i −0.448906 + 0.259176i −0.707368 0.706845i \(-0.750118\pi\)
0.258462 + 0.966021i \(0.416784\pi\)
\(264\) 0 0
\(265\) 0.115675 + 0.0667852i 0.00710588 + 0.00410258i
\(266\) 0.0680068 0.117791i 0.00416976 0.00722224i
\(267\) 0 0
\(268\) 1.29700 0.748824i 0.0792270 0.0457417i
\(269\) 7.61355 0.464206 0.232103 0.972691i \(-0.425439\pi\)
0.232103 + 0.972691i \(0.425439\pi\)
\(270\) 0 0
\(271\) 12.9827 0.788643 0.394321 0.918973i \(-0.370980\pi\)
0.394321 + 0.918973i \(0.370980\pi\)
\(272\) −2.69245 + 1.55449i −0.163254 + 0.0942546i
\(273\) 0 0
\(274\) 12.0713 + 6.96940i 0.729257 + 0.421037i
\(275\) 19.3645 + 11.1801i 1.16772 + 0.674185i
\(276\) 0 0
\(277\) −5.19938 9.00560i −0.312401 0.541094i 0.666481 0.745522i \(-0.267800\pi\)
−0.978882 + 0.204428i \(0.934466\pi\)
\(278\) 4.96236 0.297623
\(279\) 0 0
\(280\) 0.342536i 0.0204704i
\(281\) −0.455533 + 0.263002i −0.0271748 + 0.0156894i −0.513526 0.858074i \(-0.671661\pi\)
0.486351 + 0.873763i \(0.338328\pi\)
\(282\) 0 0
\(283\) −0.117657 + 0.203788i −0.00699397 + 0.0121139i −0.869501 0.493931i \(-0.835560\pi\)
0.862507 + 0.506045i \(0.168893\pi\)
\(284\) −1.68033 0.970139i −0.0997092 0.0575671i
\(285\) 0 0
\(286\) 4.97640 + 8.61937i 0.294260 + 0.509674i
\(287\) −9.75428 10.5862i −0.575777 0.624884i
\(288\) 0 0
\(289\) 7.33429 0.431429
\(290\) 0.737075 0.425550i 0.0432825 0.0249892i
\(291\) 0 0
\(292\) −2.50908 + 4.34585i −0.146833 + 0.254321i
\(293\) −26.9416 15.5548i −1.57395 0.908719i −0.995678 0.0928735i \(-0.970395\pi\)
−0.578270 0.815846i \(-0.696272\pi\)
\(294\) 0 0
\(295\) 0.326615 + 0.565714i 0.0190163 + 0.0329371i
\(296\) 0.348118 0.0202339
\(297\) 0 0
\(298\) 9.90706i 0.573900i
\(299\) −0.0971776 + 0.0561055i −0.00561993 + 0.00324467i
\(300\) 0 0
\(301\) −6.78158 3.91535i −0.390884 0.225677i
\(302\) 6.77557 + 3.91188i 0.389890 + 0.225103i
\(303\) 0 0
\(304\) 0.0523957 0.0302507i 0.00300510 0.00173499i
\(305\) 0.872615 0.0499658
\(306\) 0 0
\(307\) 22.9910 1.31216 0.656082 0.754689i \(-0.272212\pi\)
0.656082 + 0.754689i \(0.272212\pi\)
\(308\) −5.05026 8.74731i −0.287765 0.498424i
\(309\) 0 0
\(310\) 0.000250531 0 0.000433932i 1.42292e−5 0 2.46457e-5i
\(311\) −19.4064 11.2043i −1.10043 0.635336i −0.164099 0.986444i \(-0.552472\pi\)
−0.936335 + 0.351108i \(0.885805\pi\)
\(312\) 0 0
\(313\) −18.2668 + 10.5463i −1.03250 + 0.596113i −0.917699 0.397276i \(-0.869956\pi\)
−0.114799 + 0.993389i \(0.536622\pi\)
\(314\) 15.9265i 0.898782i
\(315\) 0 0
\(316\) 1.05596i 0.0594024i
\(317\) −4.43915 + 2.56295i −0.249328 + 0.143949i −0.619456 0.785031i \(-0.712647\pi\)
0.370129 + 0.928980i \(0.379314\pi\)
\(318\) 0 0
\(319\) 12.5484 21.7345i 0.702577 1.21690i
\(320\) 0.0761831 0.131953i 0.00425876 0.00737639i
\(321\) 0 0
\(322\) 0.0986200 0.0569383i 0.00549588 0.00317305i
\(323\) 0.188097 0.0104660
\(324\) 0 0
\(325\) 11.0247i 0.611541i
\(326\) −2.06862 3.58296i −0.114570 0.198442i
\(327\) 0 0
\(328\) −1.40311 6.24750i −0.0774739 0.344961i
\(329\) −11.6335 + 20.1498i −0.641375 + 1.11089i
\(330\) 0 0
\(331\) −19.3235 + 11.1564i −1.06212 + 0.613213i −0.926017 0.377482i \(-0.876790\pi\)
−0.136099 + 0.990695i \(0.543457\pi\)
\(332\) −6.29503 −0.345485
\(333\) 0 0
\(334\) 0.0851994i 0.00466191i
\(335\) −0.197619 + 0.114095i −0.0107971 + 0.00623370i
\(336\) 0 0
\(337\) −5.65749 + 9.79906i −0.308183 + 0.533789i −0.977965 0.208769i \(-0.933054\pi\)
0.669782 + 0.742558i \(0.266388\pi\)
\(338\) 4.04638 7.00854i 0.220094 0.381214i
\(339\) 0 0
\(340\) 0.410238 0.236851i 0.0222483 0.0128451i
\(341\) 0.0147751i 0.000800115i
\(342\) 0 0
\(343\) 20.1116i 1.08592i
\(344\) −1.74162 3.01657i −0.0939018 0.162643i
\(345\) 0 0
\(346\) 9.30221 16.1119i 0.500090 0.866181i
\(347\) −8.32356 4.80561i −0.446832 0.257979i 0.259659 0.965700i \(-0.416390\pi\)
−0.706491 + 0.707722i \(0.749723\pi\)
\(348\) 0 0
\(349\) 10.4020 + 18.0167i 0.556804 + 0.964414i 0.997761 + 0.0668850i \(0.0213061\pi\)
−0.440956 + 0.897529i \(0.645361\pi\)
\(350\) 11.1884i 0.598043i
\(351\) 0 0
\(352\) 4.49290i 0.239472i
\(353\) 10.2974 + 17.8356i 0.548076 + 0.949296i 0.998406 + 0.0564335i \(0.0179729\pi\)
−0.450330 + 0.892862i \(0.648694\pi\)
\(354\) 0 0
\(355\) 0.256025 + 0.147816i 0.0135884 + 0.00784527i
\(356\) 0.00287481 + 0.00165977i 0.000152364 + 8.79677e-5i
\(357\) 0 0
\(358\) −9.54084 + 5.50841i −0.504249 + 0.291128i
\(359\) −34.3488 −1.81286 −0.906430 0.422357i \(-0.861203\pi\)
−0.906430 + 0.422357i \(0.861203\pi\)
\(360\) 0 0
\(361\) 18.9963 0.999807
\(362\) 2.44120 1.40943i 0.128307 0.0740779i
\(363\) 0 0
\(364\) 2.49004 4.31287i 0.130513 0.226056i
\(365\) 0.382298 0.662160i 0.0200104 0.0346590i
\(366\) 0 0
\(367\) −18.5511 32.1314i −0.968359 1.67725i −0.700306 0.713843i \(-0.746953\pi\)
−0.268053 0.963404i \(-0.586380\pi\)
\(368\) 0.0506544 0.00264054
\(369\) 0 0
\(370\) −0.0530414 −0.00275749
\(371\) −0.985392 1.70675i −0.0511590 0.0886100i
\(372\) 0 0
\(373\) −14.4749 + 25.0713i −0.749483 + 1.29814i 0.198588 + 0.980083i \(0.436365\pi\)
−0.948071 + 0.318060i \(0.896969\pi\)
\(374\) 6.98415 12.0969i 0.361142 0.625516i
\(375\) 0 0
\(376\) −8.96301 + 5.17479i −0.462232 + 0.266870i
\(377\) 12.3740 0.637295
\(378\) 0 0
\(379\) 15.9088 0.817181 0.408591 0.912718i \(-0.366020\pi\)
0.408591 + 0.912718i \(0.366020\pi\)
\(380\) −0.00798333 + 0.00460918i −0.000409536 + 0.000236446i
\(381\) 0 0
\(382\) 15.8790 + 9.16777i 0.812442 + 0.469064i
\(383\) −30.4846 17.6003i −1.55769 0.899333i −0.997477 0.0709852i \(-0.977386\pi\)
−0.560214 0.828348i \(-0.689281\pi\)
\(384\) 0 0
\(385\) 0.769489 + 1.33279i 0.0392168 + 0.0679254i
\(386\) 22.3584i 1.13801i
\(387\) 0 0
\(388\) 3.49110i 0.177234i
\(389\) −7.23140 12.5251i −0.366646 0.635050i 0.622393 0.782705i \(-0.286161\pi\)
−0.989039 + 0.147655i \(0.952827\pi\)
\(390\) 0 0
\(391\) 0.136384 + 0.0787416i 0.00689726 + 0.00398213i
\(392\) 0.973004 1.68529i 0.0491441 0.0851201i
\(393\) 0 0
\(394\) 0.876924 + 1.51888i 0.0441788 + 0.0765199i
\(395\) 0.160893i 0.00809539i
\(396\) 0 0
\(397\) 20.6165i 1.03471i −0.855770 0.517356i \(-0.826916\pi\)
0.855770 0.517356i \(-0.173084\pi\)
\(398\) 8.74915 5.05133i 0.438555 0.253200i
\(399\) 0 0
\(400\) 2.48839 4.31002i 0.124420 0.215501i
\(401\) 1.07622 1.86407i 0.0537438 0.0930870i −0.837902 0.545821i \(-0.816218\pi\)
0.891646 + 0.452734i \(0.149551\pi\)
\(402\) 0 0
\(403\) 0.00630888 0.00364243i 0.000314267 0.000181442i
\(404\) 1.65083i 0.0821319i
\(405\) 0 0
\(406\) −12.5577 −0.623228
\(407\) −1.35451 + 0.782029i −0.0671408 + 0.0387637i
\(408\) 0 0
\(409\) 7.42636 12.8628i 0.367210 0.636026i −0.621918 0.783082i \(-0.713646\pi\)
0.989128 + 0.147056i \(0.0469798\pi\)
\(410\) 0.213787 + 0.951908i 0.0105582 + 0.0470114i
\(411\) 0 0
\(412\) −4.52054 7.82980i −0.222711 0.385747i
\(413\) 9.63818i 0.474264i
\(414\) 0 0
\(415\) 0.959149 0.0470828
\(416\) 1.91844 1.10761i 0.0940594 0.0543052i
\(417\) 0 0
\(418\) −0.135913 + 0.235408i −0.00664773 + 0.0115142i
\(419\) 16.6809 28.8921i 0.814913 1.41147i −0.0944767 0.995527i \(-0.530118\pi\)
0.909390 0.415944i \(-0.136549\pi\)
\(420\) 0 0
\(421\) 5.14435 2.97009i 0.250720 0.144753i −0.369374 0.929281i \(-0.620428\pi\)
0.620094 + 0.784527i \(0.287094\pi\)
\(422\) 0.862804i 0.0420006i
\(423\) 0 0
\(424\) 0.876641i 0.0425735i
\(425\) 13.3997 7.73634i 0.649983 0.375268i
\(426\) 0 0
\(427\) −11.1502 6.43756i −0.539595 0.311535i
\(428\) −9.17551 + 15.8925i −0.443515 + 0.768191i
\(429\) 0 0
\(430\) 0.265364 + 0.459623i 0.0127970 + 0.0221650i
\(431\) −1.21900 −0.0587171 −0.0293585 0.999569i \(-0.509346\pi\)
−0.0293585 + 0.999569i \(0.509346\pi\)
\(432\) 0 0
\(433\) −19.0267 −0.914365 −0.457182 0.889373i \(-0.651141\pi\)
−0.457182 + 0.889373i \(0.651141\pi\)
\(434\) −0.00640252 + 0.00369649i −0.000307331 + 0.000177437i
\(435\) 0 0
\(436\) −10.0027 5.77507i −0.479043 0.276576i
\(437\) −0.00265407 0.00153233i −0.000126962 7.33013e-5i
\(438\) 0 0
\(439\) 25.0111 14.4402i 1.19372 0.689192i 0.234568 0.972100i \(-0.424632\pi\)
0.959147 + 0.282908i \(0.0912991\pi\)
\(440\) 0.684565i 0.0326354i
\(441\) 0 0
\(442\) 6.88708 0.327585
\(443\) −9.41162 16.3014i −0.447160 0.774503i 0.551040 0.834479i \(-0.314231\pi\)
−0.998200 + 0.0599755i \(0.980898\pi\)
\(444\) 0 0
\(445\) −0.000438023 0 0.000252893i −2.07643e−5 0 1.19883e-5i
\(446\) 11.3675 19.6891i 0.538267 0.932306i
\(447\) 0 0
\(448\) −1.94692 + 1.12405i −0.0919833 + 0.0531066i
\(449\) −31.1337 −1.46929 −0.734645 0.678452i \(-0.762651\pi\)
−0.734645 + 0.678452i \(0.762651\pi\)
\(450\) 0 0
\(451\) 19.4941 + 21.1568i 0.917944 + 0.996234i
\(452\) −7.94827 13.7668i −0.373855 0.647536i
\(453\) 0 0
\(454\) −8.80325 5.08256i −0.413157 0.238536i
\(455\) −0.379397 + 0.657135i −0.0177864 + 0.0308070i
\(456\) 0 0
\(457\) 25.2256 14.5640i 1.18000 0.681276i 0.223988 0.974592i \(-0.428092\pi\)
0.956015 + 0.293316i \(0.0947589\pi\)
\(458\) 16.1536i 0.754810i
\(459\) 0 0
\(460\) −0.00771802 −0.000359854
\(461\) −11.9827 20.7547i −0.558091 0.966641i −0.997656 0.0684307i \(-0.978201\pi\)
0.439565 0.898211i \(-0.355133\pi\)
\(462\) 0 0
\(463\) −7.25914 4.19107i −0.337361 0.194775i 0.321744 0.946827i \(-0.395731\pi\)
−0.659104 + 0.752051i \(0.729064\pi\)
\(464\) −4.83752 2.79295i −0.224576 0.129659i
\(465\) 0 0
\(466\) −2.32752 + 1.34380i −0.107820 + 0.0622502i
\(467\) 23.9715 1.10927 0.554635 0.832094i \(-0.312858\pi\)
0.554635 + 0.832094i \(0.312858\pi\)
\(468\) 0 0
\(469\) 3.36688 0.155468
\(470\) 1.36566 0.788463i 0.0629931 0.0363691i
\(471\) 0 0
\(472\) 2.14362 3.71286i 0.0986681 0.170898i
\(473\) 13.5531 + 7.82491i 0.623174 + 0.359790i
\(474\) 0 0
\(475\) −0.260762 + 0.150551i −0.0119646 + 0.00690776i
\(476\) −6.98931 −0.320354
\(477\) 0 0
\(478\) 27.1556i 1.24207i
\(479\) 10.1348 5.85131i 0.463069 0.267353i −0.250265 0.968177i \(-0.580518\pi\)
0.713334 + 0.700824i \(0.247184\pi\)
\(480\) 0 0
\(481\) −0.667845 0.385580i −0.0304511 0.0175810i
\(482\) −12.1315 + 21.0123i −0.552574 + 0.957086i
\(483\) 0 0
\(484\) 4.59306 + 7.95542i 0.208776 + 0.361610i
\(485\) 0.531925i 0.0241535i
\(486\) 0 0
\(487\) 22.9890 1.04173 0.520865 0.853639i \(-0.325610\pi\)
0.520865 + 0.853639i \(0.325610\pi\)
\(488\) −2.86354 4.95981i −0.129627 0.224520i
\(489\) 0 0
\(490\) −0.148253 + 0.256782i −0.00669738 + 0.0116002i
\(491\) 4.35559 7.54411i 0.196565 0.340461i −0.750847 0.660476i \(-0.770355\pi\)
0.947412 + 0.320015i \(0.103688\pi\)
\(492\) 0 0
\(493\) −8.68319 15.0397i −0.391071 0.677356i
\(494\) −0.134024 −0.00603004
\(495\) 0 0
\(496\) −0.00328854 −0.000147660
\(497\) −2.18098 3.77756i −0.0978302 0.169447i
\(498\) 0 0
\(499\) −24.1741 13.9569i −1.08218 0.624798i −0.150698 0.988580i \(-0.548152\pi\)
−0.931484 + 0.363781i \(0.881486\pi\)
\(500\) −0.760062 + 1.31647i −0.0339910 + 0.0588742i
\(501\) 0 0
\(502\) 13.2514 + 22.9520i 0.591437 + 1.02440i
\(503\) 10.0849i 0.449666i 0.974397 + 0.224833i \(0.0721836\pi\)
−0.974397 + 0.224833i \(0.927816\pi\)
\(504\) 0 0
\(505\) 0.251531i 0.0111930i
\(506\) −0.197094 + 0.113793i −0.00876192 + 0.00505869i
\(507\) 0 0
\(508\) 8.74909 15.1539i 0.388178 0.672344i
\(509\) 10.5634 + 6.09879i 0.468215 + 0.270324i 0.715492 0.698621i \(-0.246202\pi\)
−0.247277 + 0.968945i \(0.579536\pi\)
\(510\) 0 0
\(511\) −9.76993 + 5.64067i −0.432196 + 0.249529i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 2.41004i 0.106302i
\(515\) 0.688777 + 1.19300i 0.0303511 + 0.0525697i
\(516\) 0 0
\(517\) 23.2498 40.2699i 1.02253 1.77107i
\(518\) 0.677757 + 0.391303i 0.0297790 + 0.0171929i
\(519\) 0 0
\(520\) −0.292306 + 0.168763i −0.0128185 + 0.00740074i
\(521\) 18.7938i 0.823370i 0.911326 + 0.411685i \(0.135060\pi\)
−0.911326 + 0.411685i \(0.864940\pi\)
\(522\) 0 0
\(523\) −20.8411 −0.911316 −0.455658 0.890155i \(-0.650596\pi\)
−0.455658 + 0.890155i \(0.650596\pi\)
\(524\) 8.70047 + 15.0696i 0.380082 + 0.658321i
\(525\) 0 0
\(526\) −7.28003 4.20313i −0.317424 0.183265i
\(527\) −0.00885422 0.00511199i −0.000385696 0.000222682i
\(528\) 0 0
\(529\) 11.4987 + 19.9164i 0.499944 + 0.865929i
\(530\) 0.133570i 0.00580193i
\(531\) 0 0
\(532\) 0.136014 0.00589694
\(533\) −4.22803 + 13.5396i −0.183136 + 0.586465i
\(534\) 0 0
\(535\) 1.39804 2.42147i 0.0604424 0.104689i
\(536\) 1.29700 + 0.748824i 0.0560220 + 0.0323443i
\(537\) 0 0
\(538\) 3.80678 + 6.59353i 0.164122 + 0.284267i
\(539\) 8.74322i 0.376597i
\(540\) 0 0
\(541\) 2.31546 0.0995496 0.0497748 0.998760i \(-0.484150\pi\)
0.0497748 + 0.998760i \(0.484150\pi\)
\(542\) 6.49135 + 11.2433i 0.278827 + 0.482943i
\(543\) 0 0
\(544\) −2.69245 1.55449i −0.115438 0.0666481i
\(545\) 1.52407 + 0.879925i 0.0652842 + 0.0376918i
\(546\) 0 0
\(547\) 31.2092 18.0186i 1.33441 0.770421i 0.348437 0.937332i \(-0.386713\pi\)
0.985972 + 0.166911i \(0.0533792\pi\)
\(548\) 13.9388i 0.595436i
\(549\) 0 0
\(550\) 22.3602i 0.953441i
\(551\) 0.168977 + 0.292677i 0.00719866 + 0.0124684i
\(552\) 0 0
\(553\) 1.18696 2.05587i 0.0504746 0.0874245i
\(554\) 5.19938 9.00560i 0.220901 0.382611i
\(555\) 0 0
\(556\) 2.48118 + 4.29753i 0.105225 + 0.182256i
\(557\) 5.07788i 0.215157i 0.994197 + 0.107578i \(0.0343096\pi\)
−0.994197 + 0.107578i \(0.965690\pi\)
\(558\) 0 0
\(559\) 7.71616i 0.326359i
\(560\) 0.296645 0.171268i 0.0125355 0.00723739i
\(561\) 0 0
\(562\) −0.455533 0.263002i −0.0192155 0.0110941i
\(563\) 1.13978 + 0.658050i 0.0480358 + 0.0277335i 0.523826 0.851826i \(-0.324504\pi\)
−0.475790 + 0.879559i \(0.657838\pi\)
\(564\) 0 0
\(565\) 1.21105 + 2.09759i 0.0509491 + 0.0882465i
\(566\) −0.235314 −0.00989097
\(567\) 0 0
\(568\) 1.94028i 0.0814122i
\(569\) −10.4013 18.0157i −0.436047 0.755256i 0.561333 0.827590i \(-0.310289\pi\)
−0.997380 + 0.0723342i \(0.976955\pi\)
\(570\) 0 0
\(571\) −33.5087 19.3463i −1.40230 0.809616i −0.407669 0.913130i \(-0.633658\pi\)
−0.994628 + 0.103514i \(0.966991\pi\)
\(572\) −4.97640 + 8.61937i −0.208074 + 0.360394i
\(573\) 0 0
\(574\) 4.29079 13.7406i 0.179094 0.573520i
\(575\) −0.252096 −0.0105131
\(576\) 0 0
\(577\) 10.4317i 0.434279i −0.976141 0.217139i \(-0.930327\pi\)
0.976141 0.217139i \(-0.0696726\pi\)
\(578\) 3.66714 + 6.35168i 0.152533 + 0.264195i
\(579\) 0 0
\(580\) 0.737075 + 0.425550i 0.0306054 + 0.0176700i
\(581\) −12.2559 7.07595i −0.508461 0.293560i
\(582\) 0 0
\(583\) 1.96933 + 3.41098i 0.0815613 + 0.141268i
\(584\) −5.01815 −0.207653
\(585\) 0 0
\(586\) 31.1095i 1.28512i
\(587\) −30.2978 + 17.4925i −1.25052 + 0.721991i −0.971214 0.238210i \(-0.923439\pi\)
−0.279311 + 0.960201i \(0.590106\pi\)
\(588\) 0 0
\(589\) 0.000172305 0 9.94805e-5i 7.09971e−6 0 4.09902e-6i
\(590\) −0.326615 + 0.565714i −0.0134465 + 0.0232901i
\(591\) 0 0
\(592\) 0.174059 + 0.301479i 0.00715378 + 0.0123907i
\(593\) 22.5454i 0.925829i 0.886403 + 0.462914i \(0.153196\pi\)
−0.886403 + 0.462914i \(0.846804\pi\)
\(594\) 0 0
\(595\) 1.06493 0.0436580
\(596\) −8.57976 + 4.95353i −0.351441 + 0.202904i
\(597\) 0 0
\(598\) −0.0971776 0.0561055i −0.00397389 0.00229433i
\(599\) −13.5814 + 23.5236i −0.554920 + 0.961150i 0.442990 + 0.896527i \(0.353918\pi\)
−0.997910 + 0.0646232i \(0.979415\pi\)
\(600\) 0 0
\(601\) 28.8178 16.6379i 1.17550 0.678676i 0.220531 0.975380i \(-0.429221\pi\)
0.954969 + 0.296704i \(0.0958876\pi\)
\(602\) 7.83069i 0.319155i
\(603\) 0 0
\(604\) 7.82375i 0.318344i
\(605\) −0.699827 1.21214i −0.0284520 0.0492804i
\(606\) 0 0
\(607\) −11.6925 + 20.2520i −0.474583 + 0.822002i −0.999576 0.0291043i \(-0.990735\pi\)
0.524993 + 0.851106i \(0.324068\pi\)
\(608\) 0.0523957 + 0.0302507i 0.00212493 + 0.00122683i
\(609\) 0 0
\(610\) 0.436307 + 0.755706i 0.0176656 + 0.0305977i
\(611\) 22.9267 0.927515
\(612\) 0 0
\(613\) −2.50447 −0.101155 −0.0505774 0.998720i \(-0.516106\pi\)
−0.0505774 + 0.998720i \(0.516106\pi\)
\(614\) 11.4955 + 19.9108i 0.463920 + 0.803533i
\(615\) 0 0
\(616\) 5.05026 8.74731i 0.203481 0.352439i
\(617\) −4.37348 + 7.57509i −0.176070 + 0.304962i −0.940531 0.339708i \(-0.889672\pi\)
0.764461 + 0.644670i \(0.223005\pi\)
\(618\) 0 0
\(619\) −6.04371 10.4680i −0.242917 0.420745i 0.718627 0.695396i \(-0.244771\pi\)
−0.961544 + 0.274651i \(0.911438\pi\)
\(620\) 0.000501062 0 2.01231e−5 0
\(621\) 0 0
\(622\) 22.4086i 0.898501i
\(623\) 0.00373134 + 0.00646288i 0.000149493 + 0.000258930i
\(624\) 0 0
\(625\) −12.3262 + 21.3495i −0.493046 + 0.853981i
\(626\) −18.2668 10.5463i −0.730086 0.421515i
\(627\) 0 0
\(628\) −13.7927 + 7.96323i −0.550390 + 0.317768i
\(629\) 1.08229i 0.0431537i
\(630\) 0 0
\(631\) 35.0019 1.39341 0.696703 0.717360i \(-0.254650\pi\)
0.696703 + 0.717360i \(0.254650\pi\)
\(632\) 0.914489 0.527980i 0.0363764 0.0210019i
\(633\) 0 0
\(634\) −4.43915 2.56295i −0.176301 0.101788i
\(635\) −1.33306 + 2.30894i −0.0529011 + 0.0916273i
\(636\) 0 0
\(637\) −3.73331 + 2.15543i −0.147919 + 0.0854011i
\(638\) 25.0968 0.993594
\(639\) 0 0
\(640\) 0.152366 0.00602280
\(641\) 17.8871 10.3271i 0.706496 0.407896i −0.103266 0.994654i \(-0.532929\pi\)
0.809762 + 0.586758i \(0.199596\pi\)
\(642\) 0 0
\(643\) −6.59943 3.81018i −0.260256 0.150259i 0.364195 0.931323i \(-0.381344\pi\)
−0.624451 + 0.781064i \(0.714677\pi\)
\(644\) 0.0986200 + 0.0569383i 0.00388617 + 0.00224368i
\(645\) 0 0
\(646\) 0.0940485 + 0.162897i 0.00370029 + 0.00640909i
\(647\) 19.1667 0.753519 0.376760 0.926311i \(-0.377038\pi\)
0.376760 + 0.926311i \(0.377038\pi\)
\(648\) 0 0
\(649\) 19.2621i 0.756105i
\(650\) −9.54768 + 5.51236i −0.374491 + 0.216212i
\(651\) 0 0
\(652\) 2.06862 3.58296i 0.0810135 0.140320i
\(653\) 3.52182 + 2.03333i 0.137820 + 0.0795702i 0.567324 0.823494i \(-0.307979\pi\)
−0.429505 + 0.903065i \(0.641312\pi\)
\(654\) 0 0
\(655\) −1.32566 2.29610i −0.0517977 0.0897162i
\(656\) 4.70894 4.33888i 0.183853 0.169405i
\(657\) 0 0
\(658\) −23.2670 −0.907042
\(659\) −2.48203 + 1.43300i −0.0966863 + 0.0558218i −0.547564 0.836764i \(-0.684445\pi\)
0.450877 + 0.892586i \(0.351111\pi\)
\(660\) 0 0
\(661\) −20.8742 + 36.1552i −0.811912 + 1.40627i 0.0996118 + 0.995026i \(0.468240\pi\)
−0.911524 + 0.411247i \(0.865093\pi\)
\(662\) −19.3235 11.1564i −0.751030 0.433607i
\(663\) 0 0
\(664\) −3.14751 5.45166i −0.122147 0.211565i
\(665\) −0.0207239 −0.000803637
\(666\) 0 0
\(667\) 0.282950i 0.0109559i
\(668\) −0.0737849 + 0.0425997i −0.00285482 + 0.00164823i
\(669\) 0 0
\(670\) −0.197619 0.114095i −0.00763469 0.00440789i
\(671\) 22.2839 + 12.8656i 0.860260 + 0.496671i
\(672\) 0 0
\(673\) −4.77694 + 2.75797i −0.184138 + 0.106312i −0.589235 0.807962i \(-0.700571\pi\)
0.405098 + 0.914273i \(0.367238\pi\)
\(674\) −11.3150 −0.435837
\(675\) 0 0
\(676\) 8.09276 0.311260
\(677\) −4.69237 8.12742i −0.180342 0.312362i 0.761655 0.647983i \(-0.224387\pi\)
−0.941997 + 0.335621i \(0.891054\pi\)
\(678\) 0 0
\(679\) −3.92419 + 6.79689i −0.150596 + 0.260841i
\(680\) 0.410238 + 0.236851i 0.0157319 + 0.00908282i
\(681\) 0 0
\(682\) 0.0127956 0.00738753i 0.000489968 0.000282883i
\(683\) 23.2267i 0.888745i 0.895842 + 0.444372i \(0.146573\pi\)
−0.895842 + 0.444372i \(0.853427\pi\)
\(684\) 0 0
\(685\) 2.12380i 0.0811462i
\(686\) 17.4172 10.0558i 0.664990 0.383932i
\(687\) 0 0
\(688\) 1.74162 3.01657i 0.0663986 0.115006i
\(689\) −0.970980 + 1.68179i −0.0369914 + 0.0640710i
\(690\) 0 0
\(691\) −11.8142 + 6.82090i −0.449431 + 0.259479i −0.707590 0.706623i \(-0.750218\pi\)
0.258159 + 0.966103i \(0.416884\pi\)
\(692\) 18.6044 0.707234
\(693\) 0 0
\(694\) 9.61122i 0.364837i
\(695\) −0.378048 0.654798i −0.0143402 0.0248379i
\(696\) 0 0
\(697\) 19.4233 4.36223i 0.735710 0.165231i
\(698\) −10.4020 + 18.0167i −0.393720 + 0.681943i
\(699\) 0 0
\(700\) 9.68940 5.59418i 0.366225 0.211440i
\(701\) 7.54613 0.285013 0.142507 0.989794i \(-0.454484\pi\)
0.142507 + 0.989794i \(0.454484\pi\)
\(702\) 0 0
\(703\) 0.0210616i 0.000794353i
\(704\) 3.89096 2.24645i 0.146646 0.0846662i
\(705\) 0 0
\(706\) −10.2974 + 17.8356i −0.387548 + 0.671253i
\(707\) 1.85562 3.21403i 0.0697879 0.120876i
\(708\) 0 0
\(709\) 23.4317 13.5283i 0.879997 0.508067i 0.00933984 0.999956i \(-0.497027\pi\)
0.870658 + 0.491890i \(0.163694\pi\)
\(710\) 0.295633i 0.0110949i
\(711\) 0 0
\(712\) 0.00331954i 0.000124405i
\(713\) 8.32895e−5 0 0.000144262i 3.11922e−6 0 5.40264e-6i
\(714\) 0 0
\(715\) 0.758234 1.31330i 0.0283564 0.0491146i
\(716\) −9.54084 5.50841i −0.356558 0.205859i
\(717\) 0 0
\(718\) −17.1744 29.7469i −0.640943 1.11015i
\(719\) 21.8641i 0.815395i −0.913117 0.407698i \(-0.866332\pi\)
0.913117 0.407698i \(-0.133668\pi\)
\(720\) 0 0
\(721\) 20.3253i 0.756955i
\(722\) 9.49817 + 16.4513i 0.353485 + 0.612254i
\(723\) 0 0
\(724\) 2.44120 + 1.40943i 0.0907266 + 0.0523810i
\(725\) 24.0753 + 13.8999i 0.894135 + 0.516229i
\(726\) 0 0
\(727\) −37.3725 + 21.5770i −1.38607 + 0.800247i −0.992869 0.119207i \(-0.961965\pi\)
−0.393198 + 0.919454i \(0.628631\pi\)
\(728\) 4.98007 0.184574
\(729\) 0 0
\(730\) 0.764596 0.0282990
\(731\) 9.37844 5.41464i 0.346874 0.200268i
\(732\) 0 0
\(733\) 1.20158 2.08120i 0.0443815 0.0768710i −0.842981 0.537943i \(-0.819202\pi\)
0.887363 + 0.461072i \(0.152535\pi\)
\(734\) 18.5511 32.1314i 0.684733 1.18599i
\(735\) 0 0
\(736\) 0.0253272 + 0.0438680i 0.000933573 + 0.00161700i
\(737\) −6.72878 −0.247858
\(738\) 0 0
\(739\) −5.19796 −0.191210 −0.0956050 0.995419i \(-0.530479\pi\)
−0.0956050 + 0.995419i \(0.530479\pi\)
\(740\) −0.0265207 0.0459352i −0.000974920 0.00168861i
\(741\) 0 0
\(742\) 0.985392 1.70675i 0.0361749 0.0626567i
\(743\) 10.6340 18.4187i 0.390125 0.675716i −0.602341 0.798239i \(-0.705765\pi\)
0.992466 + 0.122523i \(0.0390985\pi\)
\(744\) 0 0
\(745\) 1.30727 0.754750i 0.0478945 0.0276519i
\(746\) −28.9498 −1.05993
\(747\) 0 0
\(748\) 13.9683 0.510731
\(749\) −35.7280 + 20.6275i −1.30547 + 0.753714i
\(750\) 0 0
\(751\) 11.9325 + 6.88921i 0.435422 + 0.251391i 0.701654 0.712518i \(-0.252445\pi\)
−0.266232 + 0.963909i \(0.585779\pi\)
\(752\) −8.96301 5.17479i −0.326847 0.188705i
\(753\) 0 0
\(754\) 6.18701 + 10.7162i 0.225318 + 0.390262i
\(755\) 1.19207i 0.0433841i
\(756\) 0 0
\(757\) 28.8018i 1.04682i 0.852081 + 0.523410i \(0.175341\pi\)
−0.852081 + 0.523410i \(0.824659\pi\)
\(758\) 7.95441 + 13.7774i 0.288917 + 0.500419i
\(759\) 0 0
\(760\) −0.00798333 0.00460918i −0.000289586 0.000167192i
\(761\) 16.8740 29.2266i 0.611681 1.05946i −0.379276 0.925284i \(-0.623827\pi\)
0.990957 0.134179i \(-0.0428398\pi\)
\(762\) 0 0
\(763\) −12.9830 22.4872i −0.470015 0.814091i
\(764\) 18.3355i 0.663356i
\(765\) 0 0
\(766\) 35.2006i 1.27185i
\(767\) −8.22483 + 4.74861i −0.296981 + 0.171462i
\(768\) 0 0
\(769\) 6.64402 11.5078i 0.239589 0.414981i −0.721007 0.692928i \(-0.756321\pi\)
0.960596 + 0.277947i \(0.0896539\pi\)
\(770\) −0.769489 + 1.33279i −0.0277304 + 0.0480305i
\(771\) 0 0
\(772\) 19.3630 11.1792i 0.696888 0.402348i
\(773\) 33.2399i 1.19556i −0.801661 0.597779i \(-0.796050\pi\)
0.801661 0.597779i \(-0.203950\pi\)
\(774\) 0 0
\(775\) 0.0163663 0.000587896
\(776\) −3.02338 + 1.74555i −0.108533 + 0.0626616i
\(777\) 0 0
\(778\) 7.23140 12.5251i 0.259258 0.449048i
\(779\) −0.377982 + 0.0848901i −0.0135426 + 0.00304150i
\(780\) 0 0
\(781\) 4.35873 + 7.54955i 0.155968 + 0.270144i
\(782\) 0.157483i 0.00563159i
\(783\) 0 0
\(784\) 1.94601 0.0695003
\(785\) 2.10154 1.21333i 0.0750073 0.0433055i
\(786\) 0 0
\(787\) −27.0243 + 46.8074i −0.963311 + 1.66850i −0.249226 + 0.968445i \(0.580176\pi\)
−0.714085 + 0.700059i \(0.753157\pi\)
\(788\) −0.876924 + 1.51888i −0.0312391 + 0.0541078i
\(789\) 0 0
\(790\) −0.139337 + 0.0804463i −0.00495739 + 0.00286215i
\(791\) 35.7371i 1.27067i
\(792\) 0 0
\(793\) 12.6868i 0.450522i
\(794\) 17.8544 10.3083i 0.633630 0.365826i
\(795\) 0 0
\(796\) 8.74915 + 5.05133i 0.310106 + 0.179040i
\(797\) −7.72987 + 13.3885i −0.273806 + 0.474246i −0.969833 0.243770i \(-0.921616\pi\)
0.696027 + 0.718015i \(0.254949\pi\)
\(798\) 0 0
\(799\) −16.0883 27.8657i −0.569163 0.985819i
\(800\) 4.97678 0.175956
\(801\) 0 0
\(802\) 2.15244 0.0760052
\(803\) 19.5254 11.2730i 0.689038 0.397816i
\(804\) 0 0
\(805\) −0.0150264 0.00867547i −0.000529609 0.000305770i
\(806\) 0.00630888 + 0.00364243i 0.000222221 + 0.000128299i
\(807\) 0 0
\(808\) 1.42966 0.825415i 0.0502953 0.0290380i
\(809\) 50.5603i 1.77761i 0.458290 + 0.888803i \(0.348462\pi\)
−0.458290 + 0.888803i \(0.651538\pi\)
\(810\) 0 0
\(811\) 6.13463 0.215416 0.107708 0.994183i \(-0.465649\pi\)
0.107708 + 0.994183i \(0.465649\pi\)
\(812\) −6.27885 10.8753i −0.220344 0.381648i
\(813\) 0 0
\(814\) −1.35451 0.782029i −0.0474757 0.0274101i
\(815\) −0.315188 + 0.545922i −0.0110406 + 0.0191228i
\(816\) 0 0
\(817\) −0.182507 + 0.105370i −0.00638510 + 0.00368644i
\(818\) 14.8527 0.519313
\(819\) 0 0
\(820\) −0.717483 + 0.661098i −0.0250556 + 0.0230866i
\(821\) 4.37657 + 7.58045i 0.152743 + 0.264559i 0.932235 0.361853i \(-0.117856\pi\)
−0.779492 + 0.626413i \(0.784523\pi\)
\(822\) 0 0
\(823\) −26.3734 15.2267i −0.919319 0.530769i −0.0359014 0.999355i \(-0.511430\pi\)
−0.883418 + 0.468586i \(0.844764\pi\)
\(824\) 4.52054 7.82980i 0.157480 0.272764i
\(825\) 0 0
\(826\) 8.34691 4.81909i 0.290426 0.167678i
\(827\) 23.8217i 0.828361i −0.910195 0.414181i \(-0.864068\pi\)
0.910195 0.414181i \(-0.135932\pi\)
\(828\) 0 0
\(829\) −34.0006 −1.18089 −0.590445 0.807078i \(-0.701048\pi\)
−0.590445 + 0.807078i \(0.701048\pi\)
\(830\) 0.479575 + 0.830648i 0.0166463 + 0.0288322i
\(831\) 0 0
\(832\) 1.91844 + 1.10761i 0.0665101 + 0.0383996i
\(833\) 5.23953 + 3.02504i 0.181539 + 0.104812i
\(834\) 0 0
\(835\) 0.0112423 0.00649075i 0.000389056 0.000224622i
\(836\) −0.271826 −0.00940131
\(837\) 0 0
\(838\) 33.3617 1.15246
\(839\) −23.8762 + 13.7849i −0.824298 + 0.475909i −0.851896 0.523710i \(-0.824547\pi\)
0.0275982 + 0.999619i \(0.491214\pi\)
\(840\) 0 0
\(841\) 1.10110 1.90716i 0.0379689 0.0657641i
\(842\) 5.14435 + 2.97009i 0.177286 + 0.102356i
\(843\) 0 0
\(844\) 0.747210 0.431402i 0.0257200 0.0148495i
\(845\) −1.23306 −0.0424187
\(846\) 0 0
\(847\) 20.6514i 0.709591i
\(848\) 0.759193 0.438321i 0.0260708 0.0150520i
\(849\) 0 0
\(850\) 13.3997 + 7.73634i 0.459607 + 0.265354i
\(851\) 0.00881685 0.0152712i 0.000302238 0.000523491i
\(852\) 0 0
\(853\) −12.3422 21.3773i −0.422589 0.731946i 0.573603 0.819134i \(-0.305545\pi\)
−0.996192 + 0.0871877i \(0.972212\pi\)
\(854\) 12.8751i 0.440578i
\(855\) 0 0
\(856\) −18.3510 −0.627225
\(857\) 12.6375 + 21.8889i 0.431690 + 0.747709i 0.997019 0.0771563i \(-0.0245841\pi\)
−0.565329 + 0.824866i \(0.691251\pi\)
\(858\) 0 0
\(859\) −4.48560 + 7.76928i −0.153047 + 0.265085i −0.932346 0.361567i \(-0.882242\pi\)
0.779299 + 0.626652i \(0.215575\pi\)
\(860\) −0.265364 + 0.459623i −0.00904883 + 0.0156730i
\(861\) 0 0
\(862\) −0.609499 1.05568i −0.0207596 0.0359567i
\(863\) 15.5313 0.528690 0.264345 0.964428i \(-0.414844\pi\)
0.264345 + 0.964428i \(0.414844\pi\)
\(864\) 0 0
\(865\) −2.83468 −0.0963821
\(866\) −9.51335 16.4776i −0.323277 0.559932i
\(867\) 0 0
\(868\) −0.00640252 0.00369649i −0.000217316 0.000125467i
\(869\) −2.37216 + 4.10870i −0.0804701 + 0.139378i
\(870\) 0 0
\(871\) −1.65882 2.87316i −0.0562069 0.0973531i
\(872\) 11.5501i 0.391137i
\(873\) 0 0
\(874\) 0.00306466i 0.000103664i
\(875\) −2.95956 + 1.70870i −0.100051 + 0.0577647i
\(876\) 0 0
\(877\) −22.1024 + 38.2825i −0.746345 + 1.29271i 0.203219 + 0.979133i \(0.434860\pi\)
−0.949564 + 0.313574i \(0.898474\pi\)
\(878\) 25.0111 + 14.4402i 0.844084 + 0.487332i
\(879\) 0 0
\(880\) −0.592851 + 0.342283i −0.0199850 + 0.0115383i
\(881\) −18.7461 −0.631574 −0.315787 0.948830i \(-0.602268\pi\)
−0.315787 + 0.948830i \(0.602268\pi\)
\(882\) 0 0
\(883\) 10.3327i 0.347724i 0.984770 + 0.173862i \(0.0556247\pi\)
−0.984770 + 0.173862i \(0.944375\pi\)
\(884\) 3.44354 + 5.96439i 0.115819 + 0.200604i
\(885\) 0 0
\(886\) 9.41162 16.3014i 0.316190 0.547656i
\(887\) −27.9654 16.1458i −0.938986 0.542124i −0.0493435 0.998782i \(-0.515713\pi\)
−0.889642 + 0.456658i \(0.849046\pi\)
\(888\) 0 0
\(889\) 34.0675 19.6689i 1.14259 0.659674i
\(890\) 0 0.000505786i 0 1.69540e-5i
\(891\) 0 0
\(892\) 22.7350 0.761225
\(893\) 0.313082 + 0.542274i 0.0104769 + 0.0181465i
\(894\) 0 0
\(895\) 1.45370 + 0.839295i 0.0485919 + 0.0280545i
\(896\) −1.94692 1.12405i −0.0650420 0.0375520i
\(897\) 0 0
\(898\) −15.5668 26.9626i −0.519472 0.899753i
\(899\) 0.0183694i 0.000612654i
\(900\) 0 0
\(901\) 2.72545 0.0907980
\(902\) −8.57524 + 27.4608i −0.285524 + 0.914345i
\(903\) 0 0
\(904\) 7.94827 13.7668i 0.264355 0.457877i
\(905\) −0.371957 0.214749i −0.0123643 0.00713851i
\(906\) 0 0
\(907\) 7.00150 + 12.1269i 0.232481 + 0.402669i 0.958538 0.284966i \(-0.0919824\pi\)
−0.726057 + 0.687635i \(0.758649\pi\)
\(908\) 10.1651i 0.337341i
\(909\) 0 0
\(910\) −0.758794 −0.0251538
\(911\) −21.2207 36.7553i −0.703073 1.21776i −0.967383 0.253320i \(-0.918478\pi\)
0.264310 0.964438i \(-0.414856\pi\)
\(912\) 0 0
\(913\) 24.4937 + 14.1415i 0.810624 + 0.468014i
\(914\) 25.2256 + 14.5640i 0.834389 + 0.481735i
\(915\) 0 0
\(916\) −13.9895 + 8.07682i −0.462225 + 0.266866i
\(917\) 39.1192i 1.29183i
\(918\) 0 0
\(919\) 24.0226i 0.792432i 0.918157 + 0.396216i \(0.129677\pi\)
−0.918157 + 0.396216i \(0.870323\pi\)
\(920\) −0.00385901 0.00668400i −0.000127228 0.000220365i
\(921\) 0 0
\(922\) 11.9827 20.7547i 0.394630 0.683519i
\(923\) −2.14908 + 3.72231i −0.0707378 + 0.122521i
\(924\) 0 0
\(925\) −0.866254 1.50040i −0.0284823 0.0493327i
\(926\) 8.38213i 0.275454i
\(927\) 0 0
\(928\) 5.58589i 0.183366i
\(929\) 35.2695 20.3629i 1.15716 0.668084i 0.206535 0.978439i \(-0.433781\pi\)
0.950621 + 0.310355i \(0.100448\pi\)
\(930\) 0 0
\(931\) −0.101962 0.0588680i −0.00334168 0.00192932i
\(932\) −2.32752 1.34380i −0.0762406 0.0440175i
\(933\) 0 0
\(934\) 11.9858 + 20.7599i 0.392186 + 0.679286i
\(935\) −2.12830 −0.0696027
\(936\) 0 0
\(937\) 30.1667i 0.985505i −0.870170 0.492752i \(-0.835991\pi\)
0.870170 0.492752i \(-0.164009\pi\)
\(938\) 1.68344 + 2.91580i 0.0549662 + 0.0952043i
\(939\) 0 0
\(940\) 1.36566 + 0.788463i 0.0445429 + 0.0257168i
\(941\) −11.2157 + 19.4261i −0.365620 + 0.633272i −0.988875 0.148746i \(-0.952476\pi\)
0.623256 + 0.782018i \(0.285810\pi\)
\(942\) 0 0
\(943\) −0.309602 0.0966801i −0.0100820 0.00314834i
\(944\) 4.28724 0.139538
\(945\) 0 0
\(946\) 15.6498i 0.508820i
\(947\) −1.60522 2.78033i −0.0521628 0.0903486i 0.838765 0.544494i \(-0.183278\pi\)
−0.890928 + 0.454145i \(0.849945\pi\)
\(948\) 0 0
\(949\) 9.62704 + 5.55817i 0.312507 + 0.180426i
\(950\) −0.260762 0.150551i −0.00846024 0.00488452i
\(951\) 0 0
\(952\) −3.49465 6.05292i −0.113262 0.196176i
\(953\) −58.6410 −1.89957 −0.949784 0.312905i \(-0.898698\pi\)
−0.949784 + 0.312905i \(0.898698\pi\)
\(954\) 0 0
\(955\) 2.79371i 0.0904025i
\(956\) 23.5174 13.5778i 0.760607 0.439137i
\(957\) 0 0
\(958\) 10.1348 + 5.85131i 0.327439 + 0.189047i
\(959\) −15.6680 + 27.1377i −0.505945 + 0.876322i
\(960\) 0 0
\(961\) 15.5000 + 26.8468i 0.500000 + 0.866025i
\(962\) 0.771161i 0.0248632i
\(963\) 0 0
\(964\) −24.2630 −0.781457
\(965\) −2.95026 + 1.70333i −0.0949722 + 0.0548322i
\(966\) 0 0
\(967\) 8.04704 + 4.64596i 0.258775 + 0.149404i 0.623776 0.781603i \(-0.285598\pi\)
−0.365000 + 0.931007i \(0.618931\pi\)
\(968\) −4.59306 + 7.95542i −0.147627 + 0.255697i
\(969\) 0 0
\(970\) 0.460661 0.265963i 0.0147909 0.00853955i
\(971\) 48.0170i 1.54094i −0.637478 0.770469i \(-0.720022\pi\)
0.637478 0.770469i \(-0.279978\pi\)
\(972\) 0 0
\(973\) 11.1559i 0.357642i
\(974\) 11.4945 + 19.9090i 0.368307 + 0.637926i
\(975\) 0 0
\(976\) 2.86354 4.95981i 0.0916598 0.158759i
\(977\) −36.3768 21.0021i −1.16380 0.671918i −0.211585 0.977360i \(-0.567863\pi\)
−0.952211 + 0.305442i \(0.901196\pi\)
\(978\) 0 0
\(979\) −0.00745718 0.0129162i −0.000238332 0.000412804i
\(980\) −0.296506 −0.00947153
\(981\) 0 0
\(982\) 8.71119 0.277985
\(983\) −6.83770 11.8433i −0.218089 0.377741i 0.736135 0.676835i \(-0.236649\pi\)
−0.954224 + 0.299094i \(0.903316\pi\)
\(984\) 0 0
\(985\) 0.133614 0.231425i 0.00425728 0.00737383i
\(986\) 8.68319 15.0397i 0.276529 0.478963i
\(987\) 0 0
\(988\) −0.0670121 0.116068i −0.00213194 0.00369263i
\(989\) −0.176441 −0.00561051
\(990\) 0 0
\(991\) 45.7751i 1.45410i 0.686587 + 0.727048i \(0.259108\pi\)
−0.686587 + 0.727048i \(0.740892\pi\)
\(992\) −0.00164427 0.00284796i −5.22056e−5 9.04227e-5i
\(993\) 0 0
\(994\) 2.18098 3.77756i 0.0691764 0.119817i
\(995\) −1.33307 0.769651i −0.0422613 0.0243996i
\(996\) 0 0
\(997\) −36.9732 + 21.3465i −1.17095 + 0.676050i −0.953904 0.300111i \(-0.902976\pi\)
−0.217049 + 0.976161i \(0.569643\pi\)
\(998\) 27.9139i 0.883598i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2214.2.i.b.901.12 36
3.2 odd 2 738.2.i.b.409.11 yes 36
9.2 odd 6 738.2.i.b.655.8 yes 36
9.7 even 3 inner 2214.2.i.b.1639.11 36
41.40 even 2 inner 2214.2.i.b.901.11 36
123.122 odd 2 738.2.i.b.409.8 36
369.245 odd 6 738.2.i.b.655.11 yes 36
369.286 even 6 inner 2214.2.i.b.1639.12 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.i.b.409.8 36 123.122 odd 2
738.2.i.b.409.11 yes 36 3.2 odd 2
738.2.i.b.655.8 yes 36 9.2 odd 6
738.2.i.b.655.11 yes 36 369.245 odd 6
2214.2.i.b.901.11 36 41.40 even 2 inner
2214.2.i.b.901.12 36 1.1 even 1 trivial
2214.2.i.b.1639.11 36 9.7 even 3 inner
2214.2.i.b.1639.12 36 369.286 even 6 inner