Properties

Label 2214.2.i.b.1639.7
Level $2214$
Weight $2$
Character 2214.1639
Analytic conductor $17.679$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2214,2,Mod(901,2214)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2214.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2214, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2214 = 2 \cdot 3^{3} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2214.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6788790075\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 738)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1639.7
Character \(\chi\) \(=\) 2214.1639
Dual form 2214.2.i.b.901.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.714167 - 1.23697i) q^{5} +(-2.06322 - 1.19120i) q^{7} -1.00000 q^{8} -1.42833 q^{10} +(3.59438 + 2.07522i) q^{11} +(3.86282 - 2.23020i) q^{13} +(-2.06322 + 1.19120i) q^{14} +(-0.500000 + 0.866025i) q^{16} -8.04790i q^{17} +0.0146965i q^{19} +(-0.714167 + 1.23697i) q^{20} +(3.59438 - 2.07522i) q^{22} +(1.70954 + 2.96101i) q^{23} +(1.47993 - 2.56332i) q^{25} -4.46041i q^{26} +2.38240i q^{28} +(-3.69126 - 2.13115i) q^{29} +(3.83330 + 6.63947i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-6.96968 - 4.02395i) q^{34} +3.40286i q^{35} +1.09021 q^{37} +(0.0127276 + 0.00734827i) q^{38} +(0.714167 + 1.23697i) q^{40} +(-2.12147 - 6.04147i) q^{41} +(-4.92281 + 8.52655i) q^{43} -4.15044i q^{44} +3.41907 q^{46} +(-11.3345 - 6.54395i) q^{47} +(-0.662088 - 1.14677i) q^{49} +(-1.47993 - 2.56332i) q^{50} +(-3.86282 - 2.23020i) q^{52} -2.16886i q^{53} -5.92821i q^{55} +(2.06322 + 1.19120i) q^{56} +(-3.69126 + 2.13115i) q^{58} +(-6.49314 - 11.2464i) q^{59} +(-0.312896 + 0.541952i) q^{61} +7.66660 q^{62} +1.00000 q^{64} +(-5.51740 - 3.18547i) q^{65} +(-6.40189 + 3.69613i) q^{67} +(-6.96968 + 4.02395i) q^{68} +(2.94696 + 1.70143i) q^{70} -11.1353i q^{71} -2.91859 q^{73} +(0.545105 - 0.944150i) q^{74} +(0.0127276 - 0.00734827i) q^{76} +(-4.94400 - 8.56325i) q^{77} +(10.9430 + 6.31792i) q^{79} +1.42833 q^{80} +(-6.29280 - 1.18348i) q^{82} +(-7.00585 + 12.1345i) q^{83} +(-9.95504 + 5.74754i) q^{85} +(4.92281 + 8.52655i) q^{86} +(-3.59438 - 2.07522i) q^{88} +0.614362i q^{89} -10.6265 q^{91} +(1.70954 - 2.96101i) q^{92} +(-11.3345 + 6.54395i) q^{94} +(0.0181792 - 0.0104958i) q^{95} +(-3.71537 - 2.14507i) q^{97} -1.32418 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{2} - 18 q^{4} - 4 q^{5} - 36 q^{8} - 8 q^{10} - 18 q^{16} - 4 q^{20} + 4 q^{23} - 26 q^{25} + 8 q^{31} + 18 q^{32} - 60 q^{37} + 4 q^{40} + 6 q^{41} + 6 q^{43} + 8 q^{46} + 38 q^{49} + 26 q^{50}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2214\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.714167 1.23697i −0.319385 0.553191i 0.660975 0.750408i \(-0.270143\pi\)
−0.980360 + 0.197217i \(0.936810\pi\)
\(6\) 0 0
\(7\) −2.06322 1.19120i −0.779823 0.450231i 0.0565445 0.998400i \(-0.481992\pi\)
−0.836368 + 0.548169i \(0.815325\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.42833 −0.451679
\(11\) 3.59438 + 2.07522i 1.08375 + 0.625702i 0.931905 0.362703i \(-0.118146\pi\)
0.151842 + 0.988405i \(0.451479\pi\)
\(12\) 0 0
\(13\) 3.86282 2.23020i 1.07135 0.618547i 0.142803 0.989751i \(-0.454388\pi\)
0.928551 + 0.371204i \(0.121055\pi\)
\(14\) −2.06322 + 1.19120i −0.551418 + 0.318361i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 8.04790i 1.95190i −0.217990 0.975951i \(-0.569950\pi\)
0.217990 0.975951i \(-0.430050\pi\)
\(18\) 0 0
\(19\) 0.0146965i 0.00337162i 0.999999 + 0.00168581i \(0.000536610\pi\)
−0.999999 + 0.00168581i \(0.999463\pi\)
\(20\) −0.714167 + 1.23697i −0.159693 + 0.276596i
\(21\) 0 0
\(22\) 3.59438 2.07522i 0.766325 0.442438i
\(23\) 1.70954 + 2.96101i 0.356463 + 0.617412i 0.987367 0.158449i \(-0.0506492\pi\)
−0.630904 + 0.775861i \(0.717316\pi\)
\(24\) 0 0
\(25\) 1.47993 2.56332i 0.295986 0.512663i
\(26\) 4.46041i 0.874758i
\(27\) 0 0
\(28\) 2.38240i 0.450231i
\(29\) −3.69126 2.13115i −0.685449 0.395744i 0.116456 0.993196i \(-0.462847\pi\)
−0.801905 + 0.597452i \(0.796180\pi\)
\(30\) 0 0
\(31\) 3.83330 + 6.63947i 0.688481 + 1.19248i 0.972329 + 0.233615i \(0.0750557\pi\)
−0.283848 + 0.958869i \(0.591611\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −6.96968 4.02395i −1.19529 0.690102i
\(35\) 3.40286i 0.575189i
\(36\) 0 0
\(37\) 1.09021 0.179230 0.0896148 0.995977i \(-0.471436\pi\)
0.0896148 + 0.995977i \(0.471436\pi\)
\(38\) 0.0127276 + 0.00734827i 0.00206468 + 0.00119205i
\(39\) 0 0
\(40\) 0.714167 + 1.23697i 0.112920 + 0.195583i
\(41\) −2.12147 6.04147i −0.331319 0.943519i
\(42\) 0 0
\(43\) −4.92281 + 8.52655i −0.750721 + 1.30029i 0.196752 + 0.980453i \(0.436960\pi\)
−0.947474 + 0.319834i \(0.896373\pi\)
\(44\) 4.15044i 0.625702i
\(45\) 0 0
\(46\) 3.41907 0.504115
\(47\) −11.3345 6.54395i −1.65330 0.954533i −0.975702 0.219100i \(-0.929688\pi\)
−0.677597 0.735433i \(-0.736979\pi\)
\(48\) 0 0
\(49\) −0.662088 1.14677i −0.0945840 0.163824i
\(50\) −1.47993 2.56332i −0.209294 0.362508i
\(51\) 0 0
\(52\) −3.86282 2.23020i −0.535677 0.309273i
\(53\) 2.16886i 0.297915i −0.988844 0.148958i \(-0.952408\pi\)
0.988844 0.148958i \(-0.0475918\pi\)
\(54\) 0 0
\(55\) 5.92821i 0.799360i
\(56\) 2.06322 + 1.19120i 0.275709 + 0.159181i
\(57\) 0 0
\(58\) −3.69126 + 2.13115i −0.484686 + 0.279833i
\(59\) −6.49314 11.2464i −0.845335 1.46416i −0.885330 0.464963i \(-0.846068\pi\)
0.0399952 0.999200i \(-0.487266\pi\)
\(60\) 0 0
\(61\) −0.312896 + 0.541952i −0.0400622 + 0.0693898i −0.885361 0.464904i \(-0.846089\pi\)
0.845299 + 0.534293i \(0.179422\pi\)
\(62\) 7.66660 0.973660
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −5.51740 3.18547i −0.684350 0.395110i
\(66\) 0 0
\(67\) −6.40189 + 3.69613i −0.782116 + 0.451555i −0.837180 0.546928i \(-0.815797\pi\)
0.0550639 + 0.998483i \(0.482464\pi\)
\(68\) −6.96968 + 4.02395i −0.845198 + 0.487975i
\(69\) 0 0
\(70\) 2.94696 + 1.70143i 0.352230 + 0.203360i
\(71\) 11.1353i 1.32152i −0.750597 0.660760i \(-0.770234\pi\)
0.750597 0.660760i \(-0.229766\pi\)
\(72\) 0 0
\(73\) −2.91859 −0.341596 −0.170798 0.985306i \(-0.554635\pi\)
−0.170798 + 0.985306i \(0.554635\pi\)
\(74\) 0.545105 0.944150i 0.0633672 0.109755i
\(75\) 0 0
\(76\) 0.0127276 0.00734827i 0.00145995 0.000842904i
\(77\) −4.94400 8.56325i −0.563421 0.975873i
\(78\) 0 0
\(79\) 10.9430 + 6.31792i 1.23118 + 0.710821i 0.967276 0.253728i \(-0.0816568\pi\)
0.263903 + 0.964549i \(0.414990\pi\)
\(80\) 1.42833 0.159693
\(81\) 0 0
\(82\) −6.29280 1.18348i −0.694924 0.130694i
\(83\) −7.00585 + 12.1345i −0.768992 + 1.33193i 0.169118 + 0.985596i \(0.445908\pi\)
−0.938110 + 0.346337i \(0.887425\pi\)
\(84\) 0 0
\(85\) −9.95504 + 5.74754i −1.07978 + 0.623409i
\(86\) 4.92281 + 8.52655i 0.530840 + 0.919442i
\(87\) 0 0
\(88\) −3.59438 2.07522i −0.383162 0.221219i
\(89\) 0.614362i 0.0651223i 0.999470 + 0.0325611i \(0.0103664\pi\)
−0.999470 + 0.0325611i \(0.989634\pi\)
\(90\) 0 0
\(91\) −10.6265 −1.11396
\(92\) 1.70954 2.96101i 0.178232 0.308706i
\(93\) 0 0
\(94\) −11.3345 + 6.54395i −1.16906 + 0.674957i
\(95\) 0.0181792 0.0104958i 0.00186515 0.00107684i
\(96\) 0 0
\(97\) −3.71537 2.14507i −0.377239 0.217799i 0.299378 0.954135i \(-0.403221\pi\)
−0.676616 + 0.736336i \(0.736554\pi\)
\(98\) −1.32418 −0.133762
\(99\) 0 0
\(100\) −2.95986 −0.295986
\(101\) −4.04648 2.33624i −0.402640 0.232464i 0.284982 0.958533i \(-0.408012\pi\)
−0.687622 + 0.726068i \(0.741346\pi\)
\(102\) 0 0
\(103\) 0.551394 + 0.955042i 0.0543304 + 0.0941031i 0.891912 0.452210i \(-0.149364\pi\)
−0.837581 + 0.546313i \(0.816031\pi\)
\(104\) −3.86282 + 2.23020i −0.378781 + 0.218689i
\(105\) 0 0
\(106\) −1.87829 1.08443i −0.182435 0.105329i
\(107\) 6.55946 0.634127 0.317064 0.948404i \(-0.397303\pi\)
0.317064 + 0.948404i \(0.397303\pi\)
\(108\) 0 0
\(109\) 13.5227i 1.29524i −0.761964 0.647619i \(-0.775765\pi\)
0.761964 0.647619i \(-0.224235\pi\)
\(110\) −5.13398 2.96410i −0.489506 0.282616i
\(111\) 0 0
\(112\) 2.06322 1.19120i 0.194956 0.112558i
\(113\) 9.29636 + 16.1018i 0.874528 + 1.51473i 0.857264 + 0.514876i \(0.172162\pi\)
0.0172638 + 0.999851i \(0.494504\pi\)
\(114\) 0 0
\(115\) 2.44179 4.22930i 0.227698 0.394385i
\(116\) 4.26230i 0.395744i
\(117\) 0 0
\(118\) −12.9863 −1.19548
\(119\) −9.58665 + 16.6046i −0.878807 + 1.52214i
\(120\) 0 0
\(121\) 3.11306 + 5.39197i 0.283005 + 0.490179i
\(122\) 0.312896 + 0.541952i 0.0283283 + 0.0490660i
\(123\) 0 0
\(124\) 3.83330 6.63947i 0.344241 0.596242i
\(125\) −11.3693 −1.01690
\(126\) 0 0
\(127\) 13.5119 1.19898 0.599492 0.800381i \(-0.295369\pi\)
0.599492 + 0.800381i \(0.295369\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −5.51740 + 3.18547i −0.483908 + 0.279385i
\(131\) −5.80001 10.0459i −0.506749 0.877715i −0.999969 0.00781101i \(-0.997514\pi\)
0.493220 0.869904i \(-0.335820\pi\)
\(132\) 0 0
\(133\) 0.0175065 0.0303221i 0.00151801 0.00262926i
\(134\) 7.39227i 0.638595i
\(135\) 0 0
\(136\) 8.04790i 0.690102i
\(137\) 5.75151 + 3.32063i 0.491384 + 0.283701i 0.725149 0.688592i \(-0.241771\pi\)
−0.233764 + 0.972293i \(0.575104\pi\)
\(138\) 0 0
\(139\) −6.59661 11.4257i −0.559517 0.969113i −0.997537 0.0701470i \(-0.977653\pi\)
0.438019 0.898966i \(-0.355680\pi\)
\(140\) 2.94696 1.70143i 0.249064 0.143797i
\(141\) 0 0
\(142\) −9.64348 5.56767i −0.809263 0.467228i
\(143\) 18.5126 1.54810
\(144\) 0 0
\(145\) 6.08798i 0.505580i
\(146\) −1.45930 + 2.52758i −0.120772 + 0.209184i
\(147\) 0 0
\(148\) −0.545105 0.944150i −0.0448074 0.0776087i
\(149\) −9.45898 + 5.46114i −0.774910 + 0.447394i −0.834623 0.550821i \(-0.814315\pi\)
0.0597135 + 0.998216i \(0.480981\pi\)
\(150\) 0 0
\(151\) −8.42334 4.86322i −0.685482 0.395763i 0.116435 0.993198i \(-0.462853\pi\)
−0.801917 + 0.597435i \(0.796187\pi\)
\(152\) 0.0146965i 0.00119205i
\(153\) 0 0
\(154\) −9.88799 −0.796797
\(155\) 5.47524 9.48339i 0.439782 0.761724i
\(156\) 0 0
\(157\) −2.32471 + 1.34217i −0.185532 + 0.107117i −0.589889 0.807484i \(-0.700829\pi\)
0.404357 + 0.914601i \(0.367495\pi\)
\(158\) 10.9430 6.31792i 0.870575 0.502627i
\(159\) 0 0
\(160\) 0.714167 1.23697i 0.0564599 0.0977914i
\(161\) 8.14560i 0.641963i
\(162\) 0 0
\(163\) 20.8186 1.63064 0.815320 0.579011i \(-0.196561\pi\)
0.815320 + 0.579011i \(0.196561\pi\)
\(164\) −4.17133 + 4.85799i −0.325726 + 0.379345i
\(165\) 0 0
\(166\) 7.00585 + 12.1345i 0.543759 + 0.941819i
\(167\) 15.8135 9.12995i 1.22369 0.706496i 0.257985 0.966149i \(-0.416941\pi\)
0.965702 + 0.259652i \(0.0836080\pi\)
\(168\) 0 0
\(169\) 3.44761 5.97143i 0.265201 0.459341i
\(170\) 11.4951i 0.881633i
\(171\) 0 0
\(172\) 9.84562 0.750721
\(173\) −8.69165 + 15.0544i −0.660814 + 1.14456i 0.319589 + 0.947556i \(0.396455\pi\)
−0.980402 + 0.197006i \(0.936878\pi\)
\(174\) 0 0
\(175\) −6.10684 + 3.52579i −0.461634 + 0.266524i
\(176\) −3.59438 + 2.07522i −0.270937 + 0.156425i
\(177\) 0 0
\(178\) 0.532053 + 0.307181i 0.0398791 + 0.0230242i
\(179\) 21.4868i 1.60600i −0.595981 0.802999i \(-0.703237\pi\)
0.595981 0.802999i \(-0.296763\pi\)
\(180\) 0 0
\(181\) 8.54851i 0.635406i 0.948190 + 0.317703i \(0.102911\pi\)
−0.948190 + 0.317703i \(0.897089\pi\)
\(182\) −5.31323 + 9.20279i −0.393843 + 0.682156i
\(183\) 0 0
\(184\) −1.70954 2.96101i −0.126029 0.218288i
\(185\) −0.778593 1.34856i −0.0572433 0.0991483i
\(186\) 0 0
\(187\) 16.7011 28.9272i 1.22131 2.11537i
\(188\) 13.0879i 0.954533i
\(189\) 0 0
\(190\) 0.0209916i 0.00152289i
\(191\) 0.759862 + 0.438706i 0.0549817 + 0.0317437i 0.527239 0.849717i \(-0.323227\pi\)
−0.472257 + 0.881461i \(0.656561\pi\)
\(192\) 0 0
\(193\) 2.59152 1.49621i 0.186542 0.107700i −0.403821 0.914838i \(-0.632318\pi\)
0.590363 + 0.807138i \(0.298985\pi\)
\(194\) −3.71537 + 2.14507i −0.266748 + 0.154007i
\(195\) 0 0
\(196\) −0.662088 + 1.14677i −0.0472920 + 0.0819121i
\(197\) 16.3005 1.16136 0.580681 0.814131i \(-0.302786\pi\)
0.580681 + 0.814131i \(0.302786\pi\)
\(198\) 0 0
\(199\) 12.4760i 0.884399i 0.896917 + 0.442199i \(0.145802\pi\)
−0.896917 + 0.442199i \(0.854198\pi\)
\(200\) −1.47993 + 2.56332i −0.104647 + 0.181254i
\(201\) 0 0
\(202\) −4.04648 + 2.33624i −0.284709 + 0.164377i
\(203\) 5.07725 + 8.79405i 0.356353 + 0.617221i
\(204\) 0 0
\(205\) −5.95805 + 6.93883i −0.416128 + 0.484629i
\(206\) 1.10279 0.0768349
\(207\) 0 0
\(208\) 4.46041i 0.309273i
\(209\) −0.0304985 + 0.0528250i −0.00210963 + 0.00365398i
\(210\) 0 0
\(211\) 13.1514 7.59299i 0.905383 0.522723i 0.0264399 0.999650i \(-0.491583\pi\)
0.878943 + 0.476928i \(0.158250\pi\)
\(212\) −1.87829 + 1.08443i −0.129001 + 0.0744789i
\(213\) 0 0
\(214\) 3.27973 5.68066i 0.224198 0.388322i
\(215\) 14.0628 0.959077
\(216\) 0 0
\(217\) 18.2649i 1.23990i
\(218\) −11.7110 6.76135i −0.793169 0.457936i
\(219\) 0 0
\(220\) −5.13398 + 2.96410i −0.346133 + 0.199840i
\(221\) −17.9484 31.0876i −1.20734 2.09118i
\(222\) 0 0
\(223\) 2.46975 4.27774i 0.165387 0.286459i −0.771406 0.636344i \(-0.780446\pi\)
0.936793 + 0.349885i \(0.113779\pi\)
\(224\) 2.38240i 0.159181i
\(225\) 0 0
\(226\) 18.5927 1.23677
\(227\) 7.96322 + 4.59757i 0.528538 + 0.305151i 0.740421 0.672144i \(-0.234626\pi\)
−0.211883 + 0.977295i \(0.567960\pi\)
\(228\) 0 0
\(229\) 12.4634 7.19575i 0.823605 0.475509i −0.0280530 0.999606i \(-0.508931\pi\)
0.851658 + 0.524098i \(0.175597\pi\)
\(230\) −2.44179 4.22930i −0.161007 0.278872i
\(231\) 0 0
\(232\) 3.69126 + 2.13115i 0.242343 + 0.139917i
\(233\) 15.4149i 1.00986i −0.863159 0.504932i \(-0.831518\pi\)
0.863159 0.504932i \(-0.168482\pi\)
\(234\) 0 0
\(235\) 18.6939i 1.21945i
\(236\) −6.49314 + 11.2464i −0.422667 + 0.732081i
\(237\) 0 0
\(238\) 9.58665 + 16.6046i 0.621410 + 1.07631i
\(239\) −8.19166 + 4.72946i −0.529875 + 0.305923i −0.740965 0.671543i \(-0.765632\pi\)
0.211091 + 0.977466i \(0.432298\pi\)
\(240\) 0 0
\(241\) −3.02525 + 5.23989i −0.194874 + 0.337531i −0.946859 0.321649i \(-0.895763\pi\)
0.751985 + 0.659180i \(0.229096\pi\)
\(242\) 6.22612 0.400230
\(243\) 0 0
\(244\) 0.625792 0.0400622
\(245\) −0.945682 + 1.63797i −0.0604174 + 0.104646i
\(246\) 0 0
\(247\) 0.0327762 + 0.0567701i 0.00208550 + 0.00361220i
\(248\) −3.83330 6.63947i −0.243415 0.421607i
\(249\) 0 0
\(250\) −5.68467 + 9.84614i −0.359530 + 0.622725i
\(251\) −21.9727 −1.38690 −0.693451 0.720504i \(-0.743911\pi\)
−0.693451 + 0.720504i \(0.743911\pi\)
\(252\) 0 0
\(253\) 14.1906i 0.892158i
\(254\) 6.75594 11.7016i 0.423905 0.734225i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 12.4040 7.16143i 0.773738 0.446718i −0.0604686 0.998170i \(-0.519260\pi\)
0.834206 + 0.551452i \(0.185926\pi\)
\(258\) 0 0
\(259\) −2.24934 1.29866i −0.139767 0.0806947i
\(260\) 6.37095i 0.395110i
\(261\) 0 0
\(262\) −11.6000 −0.716652
\(263\) 11.3331 + 6.54315i 0.698827 + 0.403468i 0.806910 0.590674i \(-0.201138\pi\)
−0.108083 + 0.994142i \(0.534471\pi\)
\(264\) 0 0
\(265\) −2.68282 + 1.54893i −0.164804 + 0.0951498i
\(266\) −0.0175065 0.0303221i −0.00107339 0.00185917i
\(267\) 0 0
\(268\) 6.40189 + 3.69613i 0.391058 + 0.225777i
\(269\) 11.4157 0.696029 0.348015 0.937489i \(-0.386856\pi\)
0.348015 + 0.937489i \(0.386856\pi\)
\(270\) 0 0
\(271\) −21.5113 −1.30672 −0.653359 0.757048i \(-0.726641\pi\)
−0.653359 + 0.757048i \(0.726641\pi\)
\(272\) 6.96968 + 4.02395i 0.422599 + 0.243988i
\(273\) 0 0
\(274\) 5.75151 3.32063i 0.347461 0.200607i
\(275\) 10.6389 6.14236i 0.641548 0.370398i
\(276\) 0 0
\(277\) −13.3063 + 23.0471i −0.799496 + 1.38477i 0.120449 + 0.992720i \(0.461567\pi\)
−0.919945 + 0.392048i \(0.871767\pi\)
\(278\) −13.1932 −0.791277
\(279\) 0 0
\(280\) 3.40286i 0.203360i
\(281\) −12.6222 7.28744i −0.752978 0.434732i 0.0737909 0.997274i \(-0.476490\pi\)
−0.826769 + 0.562542i \(0.809824\pi\)
\(282\) 0 0
\(283\) −13.4593 23.3123i −0.800075 1.38577i −0.919566 0.392935i \(-0.871460\pi\)
0.119491 0.992835i \(-0.461874\pi\)
\(284\) −9.64348 + 5.56767i −0.572235 + 0.330380i
\(285\) 0 0
\(286\) 9.25631 16.0324i 0.547337 0.948016i
\(287\) −2.81953 + 14.9920i −0.166432 + 0.884948i
\(288\) 0 0
\(289\) −47.7687 −2.80992
\(290\) 5.27235 + 3.04399i 0.309603 + 0.178749i
\(291\) 0 0
\(292\) 1.45930 + 2.52758i 0.0853989 + 0.147915i
\(293\) 12.4103 7.16509i 0.725017 0.418589i −0.0915794 0.995798i \(-0.529192\pi\)
0.816596 + 0.577209i \(0.195858\pi\)
\(294\) 0 0
\(295\) −9.27437 + 16.0637i −0.539975 + 0.935264i
\(296\) −1.09021 −0.0633672
\(297\) 0 0
\(298\) 10.9223i 0.632711i
\(299\) 13.2073 + 7.62523i 0.763797 + 0.440978i
\(300\) 0 0
\(301\) 20.3137 11.7281i 1.17086 0.675996i
\(302\) −8.42334 + 4.86322i −0.484709 + 0.279847i
\(303\) 0 0
\(304\) −0.0127276 0.00734827i −0.000729976 0.000421452i
\(305\) 0.893840 0.0511811
\(306\) 0 0
\(307\) −4.41645 −0.252060 −0.126030 0.992026i \(-0.540224\pi\)
−0.126030 + 0.992026i \(0.540224\pi\)
\(308\) −4.94400 + 8.56325i −0.281710 + 0.487937i
\(309\) 0 0
\(310\) −5.47524 9.48339i −0.310973 0.538620i
\(311\) −4.72361 + 2.72718i −0.267852 + 0.154644i −0.627911 0.778285i \(-0.716090\pi\)
0.360059 + 0.932929i \(0.382756\pi\)
\(312\) 0 0
\(313\) −4.98572 2.87851i −0.281810 0.162703i 0.352433 0.935837i \(-0.385355\pi\)
−0.634242 + 0.773134i \(0.718688\pi\)
\(314\) 2.68435i 0.151486i
\(315\) 0 0
\(316\) 12.6358i 0.710821i
\(317\) 20.7570 + 11.9841i 1.16583 + 0.673091i 0.952694 0.303931i \(-0.0982994\pi\)
0.213135 + 0.977023i \(0.431633\pi\)
\(318\) 0 0
\(319\) −8.84519 15.3203i −0.495236 0.857774i
\(320\) −0.714167 1.23697i −0.0399232 0.0691489i
\(321\) 0 0
\(322\) −7.05430 4.07280i −0.393121 0.226968i
\(323\) 0.118276 0.00658106
\(324\) 0 0
\(325\) 13.2022i 0.732325i
\(326\) 10.4093 18.0294i 0.576518 0.998559i
\(327\) 0 0
\(328\) 2.12147 + 6.04147i 0.117139 + 0.333584i
\(329\) 15.5903 + 27.0032i 0.859521 + 1.48873i
\(330\) 0 0
\(331\) 16.5404 + 9.54960i 0.909142 + 0.524893i 0.880155 0.474686i \(-0.157439\pi\)
0.0289870 + 0.999580i \(0.490772\pi\)
\(332\) 14.0117 0.768992
\(333\) 0 0
\(334\) 18.2599i 0.999137i
\(335\) 9.14404 + 5.27932i 0.499592 + 0.288440i
\(336\) 0 0
\(337\) 14.4120 + 24.9623i 0.785070 + 1.35978i 0.928957 + 0.370187i \(0.120706\pi\)
−0.143887 + 0.989594i \(0.545960\pi\)
\(338\) −3.44761 5.97143i −0.187525 0.324803i
\(339\) 0 0
\(340\) 9.95504 + 5.74754i 0.539888 + 0.311704i
\(341\) 31.8197i 1.72314i
\(342\) 0 0
\(343\) 19.8315i 1.07080i
\(344\) 4.92281 8.52655i 0.265420 0.459721i
\(345\) 0 0
\(346\) 8.69165 + 15.0544i 0.467266 + 0.809328i
\(347\) −19.9667 + 11.5278i −1.07187 + 0.618844i −0.928691 0.370853i \(-0.879065\pi\)
−0.143177 + 0.989697i \(0.545732\pi\)
\(348\) 0 0
\(349\) 7.42676 12.8635i 0.397545 0.688569i −0.595877 0.803076i \(-0.703195\pi\)
0.993422 + 0.114507i \(0.0365288\pi\)
\(350\) 7.05157i 0.376922i
\(351\) 0 0
\(352\) 4.15044i 0.221219i
\(353\) 4.63803 8.03331i 0.246858 0.427570i −0.715795 0.698311i \(-0.753935\pi\)
0.962652 + 0.270741i \(0.0872687\pi\)
\(354\) 0 0
\(355\) −13.7741 + 7.95249i −0.731054 + 0.422074i
\(356\) 0.532053 0.307181i 0.0281988 0.0162806i
\(357\) 0 0
\(358\) −18.6081 10.7434i −0.983469 0.567806i
\(359\) 12.5634 0.663070 0.331535 0.943443i \(-0.392433\pi\)
0.331535 + 0.943443i \(0.392433\pi\)
\(360\) 0 0
\(361\) 18.9998 0.999989
\(362\) 7.40323 + 4.27426i 0.389105 + 0.224650i
\(363\) 0 0
\(364\) 5.31323 + 9.20279i 0.278489 + 0.482357i
\(365\) 2.08436 + 3.61022i 0.109101 + 0.188968i
\(366\) 0 0
\(367\) −3.14993 + 5.45583i −0.164425 + 0.284792i −0.936451 0.350799i \(-0.885910\pi\)
0.772026 + 0.635591i \(0.219243\pi\)
\(368\) −3.41907 −0.178232
\(369\) 0 0
\(370\) −1.55719 −0.0809542
\(371\) −2.58354 + 4.47483i −0.134131 + 0.232321i
\(372\) 0 0
\(373\) 3.63352 + 6.29343i 0.188136 + 0.325862i 0.944629 0.328141i \(-0.106422\pi\)
−0.756493 + 0.654002i \(0.773089\pi\)
\(374\) −16.7011 28.9272i −0.863595 1.49579i
\(375\) 0 0
\(376\) 11.3345 + 6.54395i 0.584530 + 0.337478i
\(377\) −19.0116 −0.979146
\(378\) 0 0
\(379\) 12.4631 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(380\) −0.0181792 0.0104958i −0.000932574 0.000538422i
\(381\) 0 0
\(382\) 0.759862 0.438706i 0.0388779 0.0224462i
\(383\) 17.6944 10.2158i 0.904139 0.522005i 0.0255984 0.999672i \(-0.491851\pi\)
0.878541 + 0.477667i \(0.158518\pi\)
\(384\) 0 0
\(385\) −7.06168 + 12.2312i −0.359897 + 0.623359i
\(386\) 2.99243i 0.152311i
\(387\) 0 0
\(388\) 4.29014i 0.217799i
\(389\) 15.4480 26.7567i 0.783245 1.35662i −0.146798 0.989167i \(-0.546897\pi\)
0.930042 0.367453i \(-0.119770\pi\)
\(390\) 0 0
\(391\) 23.8299 13.7582i 1.20513 0.695781i
\(392\) 0.662088 + 1.14677i 0.0334405 + 0.0579206i
\(393\) 0 0
\(394\) 8.15025 14.1166i 0.410604 0.711186i
\(395\) 18.0482i 0.908103i
\(396\) 0 0
\(397\) 20.5484i 1.03129i −0.856801 0.515647i \(-0.827552\pi\)
0.856801 0.515647i \(-0.172448\pi\)
\(398\) 10.8045 + 6.23799i 0.541581 + 0.312682i
\(399\) 0 0
\(400\) 1.47993 + 2.56332i 0.0739965 + 0.128166i
\(401\) −16.6549 28.8472i −0.831708 1.44056i −0.896682 0.442674i \(-0.854030\pi\)
0.0649741 0.997887i \(-0.479304\pi\)
\(402\) 0 0
\(403\) 29.6147 + 17.0981i 1.47522 + 0.851716i
\(404\) 4.67247i 0.232464i
\(405\) 0 0
\(406\) 10.1545 0.503959
\(407\) 3.91864 + 2.26243i 0.194240 + 0.112144i
\(408\) 0 0
\(409\) 8.59951 + 14.8948i 0.425219 + 0.736500i 0.996441 0.0842953i \(-0.0268639\pi\)
−0.571222 + 0.820795i \(0.693531\pi\)
\(410\) 3.03018 + 8.62924i 0.149650 + 0.426168i
\(411\) 0 0
\(412\) 0.551394 0.955042i 0.0271652 0.0470515i
\(413\) 30.9385i 1.52238i
\(414\) 0 0
\(415\) 20.0134 0.982419
\(416\) 3.86282 + 2.23020i 0.189391 + 0.109345i
\(417\) 0 0
\(418\) 0.0304985 + 0.0528250i 0.00149173 + 0.00258375i
\(419\) −0.647062 1.12074i −0.0316111 0.0547520i 0.849787 0.527126i \(-0.176730\pi\)
−0.881398 + 0.472374i \(0.843397\pi\)
\(420\) 0 0
\(421\) 16.9999 + 9.81488i 0.828523 + 0.478348i 0.853347 0.521344i \(-0.174569\pi\)
−0.0248238 + 0.999692i \(0.507902\pi\)
\(422\) 15.1860i 0.739242i
\(423\) 0 0
\(424\) 2.16886i 0.105329i
\(425\) −20.6293 11.9103i −1.00067 0.577736i
\(426\) 0 0
\(427\) 1.29115 0.745443i 0.0624829 0.0360745i
\(428\) −3.27973 5.68066i −0.158532 0.274585i
\(429\) 0 0
\(430\) 7.03141 12.1788i 0.339085 0.587312i
\(431\) −0.0569818 −0.00274472 −0.00137236 0.999999i \(-0.500437\pi\)
−0.00137236 + 0.999999i \(0.500437\pi\)
\(432\) 0 0
\(433\) 14.1350 0.679283 0.339642 0.940555i \(-0.389694\pi\)
0.339642 + 0.940555i \(0.389694\pi\)
\(434\) −15.8179 9.13245i −0.759282 0.438372i
\(435\) 0 0
\(436\) −11.7110 + 6.76135i −0.560855 + 0.323810i
\(437\) −0.0435165 + 0.0251243i −0.00208168 + 0.00120186i
\(438\) 0 0
\(439\) 2.88979 + 1.66842i 0.137922 + 0.0796293i 0.567373 0.823461i \(-0.307960\pi\)
−0.429451 + 0.903090i \(0.641293\pi\)
\(440\) 5.92821i 0.282616i
\(441\) 0 0
\(442\) −35.8969 −1.70744
\(443\) −12.8324 + 22.2263i −0.609684 + 1.05600i 0.381608 + 0.924324i \(0.375370\pi\)
−0.991292 + 0.131680i \(0.957963\pi\)
\(444\) 0 0
\(445\) 0.759950 0.438757i 0.0360251 0.0207991i
\(446\) −2.46975 4.27774i −0.116946 0.202557i
\(447\) 0 0
\(448\) −2.06322 1.19120i −0.0974779 0.0562789i
\(449\) 36.0194 1.69986 0.849930 0.526895i \(-0.176644\pi\)
0.849930 + 0.526895i \(0.176644\pi\)
\(450\) 0 0
\(451\) 4.91197 26.1179i 0.231296 1.22984i
\(452\) 9.29636 16.1018i 0.437264 0.757364i
\(453\) 0 0
\(454\) 7.96322 4.59757i 0.373733 0.215775i
\(455\) 7.58907 + 13.1447i 0.355781 + 0.616231i
\(456\) 0 0
\(457\) −9.97284 5.75782i −0.466510 0.269340i 0.248268 0.968691i \(-0.420139\pi\)
−0.714778 + 0.699352i \(0.753472\pi\)
\(458\) 14.3915i 0.672471i
\(459\) 0 0
\(460\) −4.88358 −0.227698
\(461\) 1.57003 2.71937i 0.0731236 0.126654i −0.827145 0.561988i \(-0.810037\pi\)
0.900269 + 0.435335i \(0.143370\pi\)
\(462\) 0 0
\(463\) 20.9825 12.1143i 0.975139 0.562997i 0.0743402 0.997233i \(-0.476315\pi\)
0.900799 + 0.434236i \(0.142982\pi\)
\(464\) 3.69126 2.13115i 0.171362 0.0989361i
\(465\) 0 0
\(466\) −13.3497 7.70745i −0.618413 0.357041i
\(467\) 18.9167 0.875358 0.437679 0.899131i \(-0.355801\pi\)
0.437679 + 0.899131i \(0.355801\pi\)
\(468\) 0 0
\(469\) 17.6113 0.813216
\(470\) 16.1894 + 9.34695i 0.746761 + 0.431142i
\(471\) 0 0
\(472\) 6.49314 + 11.2464i 0.298871 + 0.517660i
\(473\) −35.3889 + 20.4318i −1.62718 + 0.939455i
\(474\) 0 0
\(475\) 0.0376718 + 0.0217498i 0.00172850 + 0.000997952i
\(476\) 19.1733 0.878807
\(477\) 0 0
\(478\) 9.45892i 0.432641i
\(479\) 8.82523 + 5.09525i 0.403235 + 0.232808i 0.687879 0.725825i \(-0.258542\pi\)
−0.284644 + 0.958633i \(0.591875\pi\)
\(480\) 0 0
\(481\) 4.21129 2.43139i 0.192018 0.110862i
\(482\) 3.02525 + 5.23989i 0.137796 + 0.238670i
\(483\) 0 0
\(484\) 3.11306 5.39197i 0.141503 0.245090i
\(485\) 6.12775i 0.278247i
\(486\) 0 0
\(487\) 4.83348 0.219026 0.109513 0.993985i \(-0.465071\pi\)
0.109513 + 0.993985i \(0.465071\pi\)
\(488\) 0.312896 0.541952i 0.0141641 0.0245330i
\(489\) 0 0
\(490\) 0.945682 + 1.63797i 0.0427216 + 0.0739959i
\(491\) −9.64383 16.7036i −0.435220 0.753823i 0.562094 0.827074i \(-0.309996\pi\)
−0.997314 + 0.0732505i \(0.976663\pi\)
\(492\) 0 0
\(493\) −17.1513 + 29.7069i −0.772454 + 1.33793i
\(494\) 0.0655525 0.00294935
\(495\) 0 0
\(496\) −7.66660 −0.344241
\(497\) −13.2644 + 22.9746i −0.594990 + 1.03055i
\(498\) 0 0
\(499\) −15.3525 + 8.86378i −0.687273 + 0.396797i −0.802590 0.596531i \(-0.796545\pi\)
0.115316 + 0.993329i \(0.463212\pi\)
\(500\) 5.68467 + 9.84614i 0.254226 + 0.440333i
\(501\) 0 0
\(502\) −10.9863 + 19.0289i −0.490344 + 0.849301i
\(503\) 16.3294i 0.728093i 0.931381 + 0.364046i \(0.118605\pi\)
−0.931381 + 0.364046i \(0.881395\pi\)
\(504\) 0 0
\(505\) 6.67385i 0.296983i
\(506\) 12.2895 + 7.09532i 0.546333 + 0.315426i
\(507\) 0 0
\(508\) −6.75594 11.7016i −0.299746 0.519176i
\(509\) −33.0122 + 19.0596i −1.46324 + 0.844802i −0.999160 0.0409912i \(-0.986948\pi\)
−0.464080 + 0.885793i \(0.653615\pi\)
\(510\) 0 0
\(511\) 6.02170 + 3.47663i 0.266384 + 0.153797i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 14.3229i 0.631754i
\(515\) 0.787575 1.36412i 0.0347047 0.0601103i
\(516\) 0 0
\(517\) −27.1602 47.0429i −1.19451 2.06894i
\(518\) −2.24934 + 1.29866i −0.0988304 + 0.0570598i
\(519\) 0 0
\(520\) 5.51740 + 3.18547i 0.241954 + 0.139692i
\(521\) 7.83296i 0.343168i −0.985169 0.171584i \(-0.945111\pi\)
0.985169 0.171584i \(-0.0548885\pi\)
\(522\) 0 0
\(523\) −12.0929 −0.528784 −0.264392 0.964415i \(-0.585171\pi\)
−0.264392 + 0.964415i \(0.585171\pi\)
\(524\) −5.80001 + 10.0459i −0.253375 + 0.438858i
\(525\) 0 0
\(526\) 11.3331 6.54315i 0.494145 0.285295i
\(527\) 53.4338 30.8500i 2.32761 1.34385i
\(528\) 0 0
\(529\) 5.65497 9.79469i 0.245868 0.425856i
\(530\) 3.09785i 0.134562i
\(531\) 0 0
\(532\) −0.0350130 −0.00151801
\(533\) −21.6686 18.6058i −0.938571 0.805907i
\(534\) 0 0
\(535\) −4.68455 8.11388i −0.202531 0.350794i
\(536\) 6.40189 3.69613i 0.276520 0.159649i
\(537\) 0 0
\(538\) 5.70786 9.88631i 0.246083 0.426229i
\(539\) 5.49590i 0.236725i
\(540\) 0 0
\(541\) −1.56971 −0.0674872 −0.0337436 0.999431i \(-0.510743\pi\)
−0.0337436 + 0.999431i \(0.510743\pi\)
\(542\) −10.7556 + 18.6293i −0.461995 + 0.800198i
\(543\) 0 0
\(544\) 6.96968 4.02395i 0.298823 0.172525i
\(545\) −16.7272 + 9.65746i −0.716515 + 0.413680i
\(546\) 0 0
\(547\) 29.8157 + 17.2141i 1.27483 + 0.736022i 0.975893 0.218251i \(-0.0700352\pi\)
0.298935 + 0.954273i \(0.403368\pi\)
\(548\) 6.64127i 0.283701i
\(549\) 0 0
\(550\) 12.2847i 0.523822i
\(551\) 0.0313205 0.0542487i 0.00133430 0.00231107i
\(552\) 0 0
\(553\) −15.0518 26.0705i −0.640068 1.10863i
\(554\) 13.3063 + 23.0471i 0.565329 + 0.979179i
\(555\) 0 0
\(556\) −6.59661 + 11.4257i −0.279759 + 0.484556i
\(557\) 11.2004i 0.474574i 0.971440 + 0.237287i \(0.0762582\pi\)
−0.971440 + 0.237287i \(0.923742\pi\)
\(558\) 0 0
\(559\) 43.9154i 1.85743i
\(560\) −2.94696 1.70143i −0.124532 0.0718986i
\(561\) 0 0
\(562\) −12.6222 + 7.28744i −0.532436 + 0.307402i
\(563\) −16.9275 + 9.77312i −0.713411 + 0.411888i −0.812323 0.583208i \(-0.801797\pi\)
0.0989120 + 0.995096i \(0.468464\pi\)
\(564\) 0 0
\(565\) 13.2783 22.9987i 0.558623 0.967563i
\(566\) −26.9187 −1.13148
\(567\) 0 0
\(568\) 11.1353i 0.467228i
\(569\) 8.30154 14.3787i 0.348018 0.602786i −0.637879 0.770137i \(-0.720188\pi\)
0.985897 + 0.167351i \(0.0535213\pi\)
\(570\) 0 0
\(571\) −11.4782 + 6.62696i −0.480349 + 0.277330i −0.720562 0.693391i \(-0.756116\pi\)
0.240213 + 0.970720i \(0.422783\pi\)
\(572\) −9.25631 16.0324i −0.387026 0.670349i
\(573\) 0 0
\(574\) 11.5737 + 9.93777i 0.483075 + 0.414794i
\(575\) 10.1200 0.422033
\(576\) 0 0
\(577\) 24.7685i 1.03112i −0.856852 0.515562i \(-0.827583\pi\)
0.856852 0.515562i \(-0.172417\pi\)
\(578\) −23.8843 + 41.3689i −0.993457 + 1.72072i
\(579\) 0 0
\(580\) 5.27235 3.04399i 0.218922 0.126395i
\(581\) 28.9092 16.6907i 1.19936 0.692448i
\(582\) 0 0
\(583\) 4.50085 7.79570i 0.186406 0.322865i
\(584\) 2.91859 0.120772
\(585\) 0 0
\(586\) 14.3302i 0.591974i
\(587\) −1.86665 1.07771i −0.0770450 0.0444820i 0.460983 0.887409i \(-0.347497\pi\)
−0.538028 + 0.842927i \(0.680830\pi\)
\(588\) 0 0
\(589\) −0.0975772 + 0.0563362i −0.00402060 + 0.00232129i
\(590\) 9.27437 + 16.0637i 0.381820 + 0.661332i
\(591\) 0 0
\(592\) −0.545105 + 0.944150i −0.0224037 + 0.0388043i
\(593\) 15.7753i 0.647813i −0.946089 0.323906i \(-0.895004\pi\)
0.946089 0.323906i \(-0.104996\pi\)
\(594\) 0 0
\(595\) 27.3859 1.12271
\(596\) 9.45898 + 5.46114i 0.387455 + 0.223697i
\(597\) 0 0
\(598\) 13.2073 7.62523i 0.540086 0.311819i
\(599\) 4.87085 + 8.43655i 0.199017 + 0.344708i 0.948210 0.317644i \(-0.102892\pi\)
−0.749193 + 0.662352i \(0.769558\pi\)
\(600\) 0 0
\(601\) 6.71345 + 3.87601i 0.273847 + 0.158106i 0.630635 0.776080i \(-0.282795\pi\)
−0.356787 + 0.934186i \(0.616128\pi\)
\(602\) 23.4562i 0.956003i
\(603\) 0 0
\(604\) 9.72644i 0.395763i
\(605\) 4.44649 7.70154i 0.180775 0.313112i
\(606\) 0 0
\(607\) −11.7573 20.3642i −0.477212 0.826556i 0.522447 0.852672i \(-0.325019\pi\)
−0.999659 + 0.0261160i \(0.991686\pi\)
\(608\) −0.0127276 + 0.00734827i −0.000516171 + 0.000298012i
\(609\) 0 0
\(610\) 0.446920 0.774088i 0.0180953 0.0313419i
\(611\) −58.3773 −2.36169
\(612\) 0 0
\(613\) 4.18208 0.168913 0.0844564 0.996427i \(-0.473085\pi\)
0.0844564 + 0.996427i \(0.473085\pi\)
\(614\) −2.20823 + 3.82476i −0.0891168 + 0.154355i
\(615\) 0 0
\(616\) 4.94400 + 8.56325i 0.199199 + 0.345023i
\(617\) −5.28838 9.15975i −0.212902 0.368758i 0.739719 0.672916i \(-0.234958\pi\)
−0.952622 + 0.304158i \(0.901625\pi\)
\(618\) 0 0
\(619\) −3.11818 + 5.40084i −0.125330 + 0.217078i −0.921862 0.387518i \(-0.873332\pi\)
0.796532 + 0.604597i \(0.206666\pi\)
\(620\) −10.9505 −0.439782
\(621\) 0 0
\(622\) 5.45436i 0.218700i
\(623\) 0.731828 1.26756i 0.0293201 0.0507839i
\(624\) 0 0
\(625\) 0.719956 + 1.24700i 0.0287983 + 0.0498800i
\(626\) −4.98572 + 2.87851i −0.199270 + 0.115048i
\(627\) 0 0
\(628\) 2.32471 + 1.34217i 0.0927662 + 0.0535586i
\(629\) 8.77391i 0.349839i
\(630\) 0 0
\(631\) 18.7111 0.744878 0.372439 0.928057i \(-0.378522\pi\)
0.372439 + 0.928057i \(0.378522\pi\)
\(632\) −10.9430 6.31792i −0.435287 0.251313i
\(633\) 0 0
\(634\) 20.7570 11.9841i 0.824365 0.475948i
\(635\) −9.64973 16.7138i −0.382938 0.663268i
\(636\) 0 0
\(637\) −5.11506 2.95318i −0.202666 0.117009i
\(638\) −17.6904 −0.700369
\(639\) 0 0
\(640\) −1.42833 −0.0564599
\(641\) 19.8200 + 11.4431i 0.782842 + 0.451974i 0.837437 0.546535i \(-0.184053\pi\)
−0.0545946 + 0.998509i \(0.517387\pi\)
\(642\) 0 0
\(643\) 40.9513 23.6432i 1.61496 0.932398i 0.626763 0.779210i \(-0.284379\pi\)
0.988197 0.153188i \(-0.0489540\pi\)
\(644\) −7.05430 + 4.07280i −0.277978 + 0.160491i
\(645\) 0 0
\(646\) 0.0591381 0.102430i 0.00232676 0.00403006i
\(647\) 6.75872 0.265713 0.132856 0.991135i \(-0.457585\pi\)
0.132856 + 0.991135i \(0.457585\pi\)
\(648\) 0 0
\(649\) 53.8987i 2.11571i
\(650\) −11.4334 6.60109i −0.448456 0.258916i
\(651\) 0 0
\(652\) −10.4093 18.0294i −0.407660 0.706088i
\(653\) −6.16367 + 3.55859i −0.241203 + 0.139259i −0.615729 0.787958i \(-0.711139\pi\)
0.374527 + 0.927216i \(0.377805\pi\)
\(654\) 0 0
\(655\) −8.28435 + 14.3489i −0.323696 + 0.560659i
\(656\) 6.29280 + 1.18348i 0.245693 + 0.0462073i
\(657\) 0 0
\(658\) 31.1806 1.21555
\(659\) 10.8085 + 6.24028i 0.421039 + 0.243087i 0.695522 0.718505i \(-0.255173\pi\)
−0.274483 + 0.961592i \(0.588507\pi\)
\(660\) 0 0
\(661\) −2.42439 4.19917i −0.0942980 0.163329i 0.815017 0.579436i \(-0.196727\pi\)
−0.909315 + 0.416108i \(0.863394\pi\)
\(662\) 16.5404 9.54960i 0.642860 0.371156i
\(663\) 0 0
\(664\) 7.00585 12.1345i 0.271880 0.470909i
\(665\) −0.0500103 −0.00193931
\(666\) 0 0
\(667\) 14.5731i 0.564273i
\(668\) −15.8135 9.12995i −0.611844 0.353248i
\(669\) 0 0
\(670\) 9.14404 5.27932i 0.353265 0.203958i
\(671\) −2.24934 + 1.29865i −0.0868346 + 0.0501340i
\(672\) 0 0
\(673\) −6.80282 3.92761i −0.262230 0.151398i 0.363122 0.931742i \(-0.381711\pi\)
−0.625351 + 0.780343i \(0.715044\pi\)
\(674\) 28.8239 1.11026
\(675\) 0 0
\(676\) −6.89522 −0.265201
\(677\) −1.16112 + 2.01112i −0.0446256 + 0.0772937i −0.887475 0.460855i \(-0.847543\pi\)
0.842850 + 0.538149i \(0.180876\pi\)
\(678\) 0 0
\(679\) 5.11041 + 8.85149i 0.196120 + 0.339689i
\(680\) 9.95504 5.74754i 0.381758 0.220408i
\(681\) 0 0
\(682\) 27.5567 + 15.9099i 1.05520 + 0.609221i
\(683\) 7.17931i 0.274709i 0.990522 + 0.137354i \(0.0438599\pi\)
−0.990522 + 0.137354i \(0.956140\pi\)
\(684\) 0 0
\(685\) 9.48595i 0.362440i
\(686\) 17.1746 + 9.91575i 0.655729 + 0.378585i
\(687\) 0 0
\(688\) −4.92281 8.52655i −0.187680 0.325072i
\(689\) −4.83699 8.37792i −0.184275 0.319173i
\(690\) 0 0
\(691\) −40.8938 23.6100i −1.55567 0.898168i −0.997663 0.0683333i \(-0.978232\pi\)
−0.558010 0.829834i \(-0.688435\pi\)
\(692\) 17.3833 0.660814
\(693\) 0 0
\(694\) 23.0556i 0.875177i
\(695\) −9.42217 + 16.3197i −0.357403 + 0.619040i
\(696\) 0 0
\(697\) −48.6211 + 17.0734i −1.84166 + 0.646702i
\(698\) −7.42676 12.8635i −0.281107 0.486892i
\(699\) 0 0
\(700\) 6.10684 + 3.52579i 0.230817 + 0.133262i
\(701\) 17.6566 0.666879 0.333439 0.942772i \(-0.391791\pi\)
0.333439 + 0.942772i \(0.391791\pi\)
\(702\) 0 0
\(703\) 0.0160223i 0.000604293i
\(704\) 3.59438 + 2.07522i 0.135468 + 0.0782127i
\(705\) 0 0
\(706\) −4.63803 8.03331i −0.174555 0.302338i
\(707\) 5.56585 + 9.64033i 0.209325 + 0.362562i
\(708\) 0 0
\(709\) −29.8030 17.2068i −1.11928 0.646214i −0.178059 0.984020i \(-0.556982\pi\)
−0.941216 + 0.337806i \(0.890315\pi\)
\(710\) 15.9050i 0.596903i
\(711\) 0 0
\(712\) 0.614362i 0.0230242i
\(713\) −13.1063 + 22.7009i −0.490836 + 0.850154i
\(714\) 0 0
\(715\) −13.2211 22.8996i −0.494441 0.856398i
\(716\) −18.6081 + 10.7434i −0.695417 + 0.401499i
\(717\) 0 0
\(718\) 6.28169 10.8802i 0.234431 0.406046i
\(719\) 21.6311i 0.806705i 0.915045 + 0.403353i \(0.132155\pi\)
−0.915045 + 0.403353i \(0.867845\pi\)
\(720\) 0 0
\(721\) 2.62728i 0.0978450i
\(722\) 9.49989 16.4543i 0.353549 0.612365i
\(723\) 0 0
\(724\) 7.40323 4.27426i 0.275139 0.158851i
\(725\) −10.9256 + 6.30790i −0.405767 + 0.234270i
\(726\) 0 0
\(727\) 25.7779 + 14.8829i 0.956049 + 0.551975i 0.894955 0.446157i \(-0.147208\pi\)
0.0610942 + 0.998132i \(0.480541\pi\)
\(728\) 10.6265 0.393843
\(729\) 0 0
\(730\) 4.16873 0.154292
\(731\) 68.6208 + 39.6183i 2.53803 + 1.46533i
\(732\) 0 0
\(733\) 19.2444 + 33.3324i 0.710810 + 1.23116i 0.964554 + 0.263887i \(0.0850046\pi\)
−0.253744 + 0.967271i \(0.581662\pi\)
\(734\) 3.14993 + 5.45583i 0.116266 + 0.201378i
\(735\) 0 0
\(736\) −1.70954 + 2.96101i −0.0630144 + 0.109144i
\(737\) −30.6811 −1.13015
\(738\) 0 0
\(739\) −17.9498 −0.660294 −0.330147 0.943930i \(-0.607098\pi\)
−0.330147 + 0.943930i \(0.607098\pi\)
\(740\) −0.778593 + 1.34856i −0.0286216 + 0.0495741i
\(741\) 0 0
\(742\) 2.58354 + 4.47483i 0.0948448 + 0.164276i
\(743\) 8.81832 + 15.2738i 0.323513 + 0.560340i 0.981210 0.192942i \(-0.0618028\pi\)
−0.657698 + 0.753282i \(0.728469\pi\)
\(744\) 0 0
\(745\) 13.5106 + 7.80034i 0.494989 + 0.285782i
\(746\) 7.26703 0.266065
\(747\) 0 0
\(748\) −33.4023 −1.22131
\(749\) −13.5336 7.81363i −0.494507 0.285504i
\(750\) 0 0
\(751\) 10.9998 6.35076i 0.401390 0.231743i −0.285694 0.958321i \(-0.592224\pi\)
0.687084 + 0.726578i \(0.258891\pi\)
\(752\) 11.3345 6.54395i 0.413325 0.238633i
\(753\) 0 0
\(754\) −9.50579 + 16.4645i −0.346180 + 0.599602i
\(755\) 13.8926i 0.505604i
\(756\) 0 0
\(757\) 23.1460i 0.841255i 0.907233 + 0.420627i \(0.138190\pi\)
−0.907233 + 0.420627i \(0.861810\pi\)
\(758\) 6.23153 10.7933i 0.226339 0.392031i
\(759\) 0 0
\(760\) −0.0181792 + 0.0104958i −0.000659430 + 0.000380722i
\(761\) 4.25263 + 7.36577i 0.154158 + 0.267009i 0.932752 0.360519i \(-0.117400\pi\)
−0.778594 + 0.627528i \(0.784067\pi\)
\(762\) 0 0
\(763\) −16.1082 + 27.9003i −0.583157 + 1.01006i
\(764\) 0.877413i 0.0317437i
\(765\) 0 0
\(766\) 20.4317i 0.738227i
\(767\) −50.1637 28.9620i −1.81131 1.04576i
\(768\) 0 0
\(769\) 9.38633 + 16.2576i 0.338480 + 0.586264i 0.984147 0.177355i \(-0.0567540\pi\)
−0.645667 + 0.763619i \(0.723421\pi\)
\(770\) 7.06168 + 12.2312i 0.254485 + 0.440781i
\(771\) 0 0
\(772\) −2.59152 1.49621i −0.0932708 0.0538499i
\(773\) 27.7742i 0.998970i 0.866322 + 0.499485i \(0.166477\pi\)
−0.866322 + 0.499485i \(0.833523\pi\)
\(774\) 0 0
\(775\) 22.6921 0.815124
\(776\) 3.71537 + 2.14507i 0.133374 + 0.0770035i
\(777\) 0 0
\(778\) −15.4480 26.7567i −0.553838 0.959275i
\(779\) 0.0887886 0.0311783i 0.00318118 0.00111708i
\(780\) 0 0
\(781\) 23.1082 40.0246i 0.826878 1.43219i
\(782\) 27.5164i 0.983983i
\(783\) 0 0
\(784\) 1.32418 0.0472920
\(785\) 3.32047 + 1.91707i 0.118513 + 0.0684233i
\(786\) 0 0
\(787\) −7.04430 12.2011i −0.251102 0.434922i 0.712727 0.701441i \(-0.247460\pi\)
−0.963830 + 0.266519i \(0.914126\pi\)
\(788\) −8.15025 14.1166i −0.290341 0.502885i
\(789\) 0 0
\(790\) −15.6302 9.02410i −0.556097 0.321063i
\(791\) 44.2953i 1.57496i
\(792\) 0 0
\(793\) 2.79129i 0.0991215i
\(794\) −17.7954 10.2742i −0.631536 0.364617i
\(795\) 0 0
\(796\) 10.8045 6.23799i 0.382956 0.221100i
\(797\) 7.09250 + 12.2846i 0.251229 + 0.435142i 0.963865 0.266393i \(-0.0858318\pi\)
−0.712635 + 0.701535i \(0.752498\pi\)
\(798\) 0 0
\(799\) −52.6650 + 91.2185i −1.86315 + 3.22708i
\(800\) 2.95986 0.104647
\(801\) 0 0
\(802\) −33.3099 −1.17621
\(803\) −10.4905 6.05672i −0.370203 0.213737i
\(804\) 0 0
\(805\) −10.0759 + 5.81732i −0.355128 + 0.205034i
\(806\) 29.6147 17.0981i 1.04313 0.602254i
\(807\) 0 0
\(808\) 4.04648 + 2.33624i 0.142355 + 0.0821885i
\(809\) 21.6209i 0.760149i −0.924956 0.380074i \(-0.875898\pi\)
0.924956 0.380074i \(-0.124102\pi\)
\(810\) 0 0
\(811\) 13.4305 0.471609 0.235804 0.971801i \(-0.424228\pi\)
0.235804 + 0.971801i \(0.424228\pi\)
\(812\) 5.07725 8.79405i 0.178176 0.308611i
\(813\) 0 0
\(814\) 3.91864 2.26243i 0.137348 0.0792980i
\(815\) −14.8680 25.7521i −0.520802 0.902056i
\(816\) 0 0
\(817\) −0.125311 0.0723482i −0.00438407 0.00253114i
\(818\) 17.1990 0.601350
\(819\) 0 0
\(820\) 8.98823 + 1.69041i 0.313882 + 0.0590317i
\(821\) −2.84720 + 4.93150i −0.0993681 + 0.172111i −0.911423 0.411470i \(-0.865015\pi\)
0.812055 + 0.583581i \(0.198349\pi\)
\(822\) 0 0
\(823\) 0.522209 0.301498i 0.0182031 0.0105095i −0.490871 0.871232i \(-0.663321\pi\)
0.509074 + 0.860723i \(0.329988\pi\)
\(824\) −0.551394 0.955042i −0.0192087 0.0332705i
\(825\) 0 0
\(826\) 26.7935 + 15.4693i 0.932266 + 0.538244i
\(827\) 27.1613i 0.944491i 0.881467 + 0.472245i \(0.156556\pi\)
−0.881467 + 0.472245i \(0.843444\pi\)
\(828\) 0 0
\(829\) 43.2145 1.50090 0.750451 0.660926i \(-0.229836\pi\)
0.750451 + 0.660926i \(0.229836\pi\)
\(830\) 10.0067 17.3321i 0.347337 0.601606i
\(831\) 0 0
\(832\) 3.86282 2.23020i 0.133919 0.0773184i
\(833\) −9.22908 + 5.32841i −0.319769 + 0.184619i
\(834\) 0 0
\(835\) −22.5870 13.0406i −0.781655 0.451289i
\(836\) 0.0609970 0.00210963
\(837\) 0 0
\(838\) −1.29412 −0.0447048
\(839\) 25.8547 + 14.9272i 0.892604 + 0.515345i 0.874793 0.484496i \(-0.160997\pi\)
0.0178107 + 0.999841i \(0.494330\pi\)
\(840\) 0 0
\(841\) −5.41641 9.38150i −0.186773 0.323500i
\(842\) 16.9999 9.81488i 0.585854 0.338243i
\(843\) 0 0
\(844\) −13.1514 7.59299i −0.452691 0.261361i
\(845\) −9.84868 −0.338805
\(846\) 0 0
\(847\) 14.8331i 0.509671i
\(848\) 1.87829 + 1.08443i 0.0645006 + 0.0372394i
\(849\) 0 0
\(850\) −20.6293 + 11.9103i −0.707579 + 0.408521i
\(851\) 1.86376 + 3.22812i 0.0638887 + 0.110659i
\(852\) 0 0
\(853\) 0.896369 1.55256i 0.0306911 0.0531585i −0.850272 0.526344i \(-0.823563\pi\)
0.880963 + 0.473185i \(0.156896\pi\)
\(854\) 1.49089i 0.0510171i
\(855\) 0 0
\(856\) −6.55946 −0.224198
\(857\) 3.67633 6.36759i 0.125581 0.217513i −0.796379 0.604798i \(-0.793254\pi\)
0.921960 + 0.387285i \(0.126587\pi\)
\(858\) 0 0
\(859\) −8.38450 14.5224i −0.286076 0.495497i 0.686794 0.726852i \(-0.259017\pi\)
−0.972869 + 0.231355i \(0.925684\pi\)
\(860\) −7.03141 12.1788i −0.239769 0.415293i
\(861\) 0 0
\(862\) −0.0284909 + 0.0493477i −0.000970403 + 0.00168079i
\(863\) 53.1750 1.81010 0.905048 0.425309i \(-0.139834\pi\)
0.905048 + 0.425309i \(0.139834\pi\)
\(864\) 0 0
\(865\) 24.8291 0.844216
\(866\) 7.06749 12.2412i 0.240163 0.415974i
\(867\) 0 0
\(868\) −15.8179 + 9.13245i −0.536894 + 0.309976i
\(869\) 26.2221 + 45.4180i 0.889524 + 1.54070i
\(870\) 0 0
\(871\) −16.4863 + 28.5550i −0.558616 + 0.967551i
\(872\) 13.5227i 0.457936i
\(873\) 0 0
\(874\) 0.0502485i 0.00169968i
\(875\) 23.4574 + 13.5432i 0.793006 + 0.457842i
\(876\) 0 0
\(877\) −1.84817 3.20112i −0.0624083 0.108094i 0.833133 0.553073i \(-0.186545\pi\)
−0.895541 + 0.444978i \(0.853211\pi\)
\(878\) 2.88979 1.66842i 0.0975256 0.0563064i
\(879\) 0 0
\(880\) 5.13398 + 2.96410i 0.173066 + 0.0999199i
\(881\) −7.14596 −0.240753 −0.120377 0.992728i \(-0.538410\pi\)
−0.120377 + 0.992728i \(0.538410\pi\)
\(882\) 0 0
\(883\) 20.1401i 0.677769i 0.940828 + 0.338885i \(0.110050\pi\)
−0.940828 + 0.338885i \(0.889950\pi\)
\(884\) −17.9484 + 31.0876i −0.603671 + 1.04559i
\(885\) 0 0
\(886\) 12.8324 + 22.2263i 0.431112 + 0.746708i
\(887\) 19.3659 11.1809i 0.650244 0.375419i −0.138305 0.990390i \(-0.544166\pi\)
0.788550 + 0.614971i \(0.210832\pi\)
\(888\) 0 0
\(889\) −27.8779 16.0953i −0.934996 0.539820i
\(890\) 0.877515i 0.0294144i
\(891\) 0 0
\(892\) −4.93951 −0.165387
\(893\) 0.0961733 0.166577i 0.00321832 0.00557429i
\(894\) 0 0
\(895\) −26.5786 + 15.3452i −0.888424 + 0.512932i
\(896\) −2.06322 + 1.19120i −0.0689273 + 0.0397952i
\(897\) 0 0
\(898\) 18.0097 31.1937i 0.600992 1.04095i
\(899\) 32.6773i 1.08985i
\(900\) 0 0
\(901\) −17.4547 −0.581502
\(902\) −20.1628 17.3128i −0.671346 0.576454i
\(903\) 0 0
\(904\) −9.29636 16.1018i −0.309192 0.535537i
\(905\) 10.5743 6.10506i 0.351501 0.202939i
\(906\) 0 0
\(907\) 12.4416 21.5495i 0.413118 0.715541i −0.582111 0.813109i \(-0.697773\pi\)
0.995229 + 0.0975686i \(0.0311065\pi\)
\(908\) 9.19514i 0.305151i
\(909\) 0 0
\(910\) 15.1781 0.503151
\(911\) 20.6692 35.8001i 0.684802 1.18611i −0.288697 0.957420i \(-0.593222\pi\)
0.973499 0.228691i \(-0.0734446\pi\)
\(912\) 0 0
\(913\) −50.3634 + 29.0773i −1.66679 + 0.962319i
\(914\) −9.97284 + 5.75782i −0.329872 + 0.190452i
\(915\) 0 0
\(916\) −12.4634 7.19575i −0.411803 0.237754i
\(917\) 27.6359i 0.912617i
\(918\) 0 0
\(919\) 5.81914i 0.191956i 0.995383 + 0.0959778i \(0.0305978\pi\)
−0.995383 + 0.0959778i \(0.969402\pi\)
\(920\) −2.44179 + 4.22930i −0.0805034 + 0.139436i
\(921\) 0 0
\(922\) −1.57003 2.71937i −0.0517062 0.0895578i
\(923\) −24.8340 43.0138i −0.817423 1.41582i
\(924\) 0 0
\(925\) 1.61344 2.79455i 0.0530495 0.0918844i
\(926\) 24.2285i 0.796198i
\(927\) 0 0
\(928\) 4.26230i 0.139917i
\(929\) −50.7596 29.3061i −1.66537 0.961500i −0.970086 0.242763i \(-0.921946\pi\)
−0.695282 0.718737i \(-0.744721\pi\)
\(930\) 0 0
\(931\) 0.0168535 0.00973039i 0.000552352 0.000318901i
\(932\) −13.3497 + 7.70745i −0.437284 + 0.252466i
\(933\) 0 0
\(934\) 9.45833 16.3823i 0.309486 0.536045i
\(935\) −47.7096 −1.56027
\(936\) 0 0
\(937\) 6.28736i 0.205399i 0.994712 + 0.102700i \(0.0327480\pi\)
−0.994712 + 0.102700i \(0.967252\pi\)
\(938\) 8.80567 15.2519i 0.287515 0.497991i
\(939\) 0 0
\(940\) 16.1894 9.34695i 0.528039 0.304864i
\(941\) 28.1013 + 48.6729i 0.916077 + 1.58669i 0.805317 + 0.592845i \(0.201995\pi\)
0.110761 + 0.993847i \(0.464671\pi\)
\(942\) 0 0
\(943\) 14.2621 16.6098i 0.464437 0.540890i
\(944\) 12.9863 0.422667
\(945\) 0 0
\(946\) 40.8636i 1.32859i
\(947\) −11.6205 + 20.1273i −0.377616 + 0.654051i −0.990715 0.135956i \(-0.956589\pi\)
0.613099 + 0.790006i \(0.289923\pi\)
\(948\) 0 0
\(949\) −11.2740 + 6.50906i −0.365970 + 0.211293i
\(950\) 0.0376718 0.0217498i 0.00122224 0.000705658i
\(951\) 0 0
\(952\) 9.58665 16.6046i 0.310705 0.538157i
\(953\) −19.6687 −0.637133 −0.318566 0.947901i \(-0.603201\pi\)
−0.318566 + 0.947901i \(0.603201\pi\)
\(954\) 0 0
\(955\) 1.25324i 0.0405538i
\(956\) 8.19166 + 4.72946i 0.264937 + 0.152962i
\(957\) 0 0
\(958\) 8.82523 5.09525i 0.285130 0.164620i
\(959\) −7.91108 13.7024i −0.255462 0.442473i
\(960\) 0 0
\(961\) −13.8884 + 24.0554i −0.448013 + 0.775982i
\(962\) 4.86278i 0.156782i
\(963\) 0 0
\(964\) 6.05050 0.194874
\(965\) −3.70156 2.13709i −0.119157 0.0687955i
\(966\) 0 0
\(967\) 29.7728 17.1894i 0.957430 0.552772i 0.0620486 0.998073i \(-0.480237\pi\)
0.895381 + 0.445301i \(0.146903\pi\)
\(968\) −3.11306 5.39197i −0.100057 0.173305i
\(969\) 0 0
\(970\) 5.30679 + 3.06388i 0.170391 + 0.0983751i
\(971\) 0.680693i 0.0218445i 0.999940 + 0.0109222i \(0.00347672\pi\)
−0.999940 + 0.0109222i \(0.996523\pi\)
\(972\) 0 0
\(973\) 31.4315i 1.00765i
\(974\) 2.41674 4.18592i 0.0774373 0.134125i
\(975\) 0 0
\(976\) −0.312896 0.541952i −0.0100156 0.0173475i
\(977\) −46.5672 + 26.8856i −1.48982 + 0.860146i −0.999932 0.0116420i \(-0.996294\pi\)
−0.489884 + 0.871788i \(0.662961\pi\)
\(978\) 0 0
\(979\) −1.27494 + 2.20825i −0.0407471 + 0.0705761i
\(980\) 1.89136 0.0604174
\(981\) 0 0
\(982\) −19.2877 −0.615494
\(983\) 25.3232 43.8611i 0.807686 1.39895i −0.106777 0.994283i \(-0.534053\pi\)
0.914463 0.404669i \(-0.132613\pi\)
\(984\) 0 0
\(985\) −11.6413 20.1633i −0.370922 0.642456i
\(986\) 17.1513 + 29.7069i 0.546207 + 0.946059i
\(987\) 0 0
\(988\) 0.0327762 0.0567701i 0.00104275 0.00180610i
\(989\) −33.6629 −1.07042
\(990\) 0 0
\(991\) 19.0963i 0.606613i −0.952893 0.303306i \(-0.901909\pi\)
0.952893 0.303306i \(-0.0980906\pi\)
\(992\) −3.83330 + 6.63947i −0.121707 + 0.210804i
\(993\) 0 0
\(994\) 13.2644 + 22.9746i 0.420721 + 0.728711i
\(995\) 15.4325 8.90993i 0.489242 0.282464i
\(996\) 0 0
\(997\) −38.5931 22.2817i −1.22226 0.705670i −0.256857 0.966449i \(-0.582687\pi\)
−0.965398 + 0.260780i \(0.916020\pi\)
\(998\) 17.7276i 0.561156i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2214.2.i.b.1639.7 36
3.2 odd 2 738.2.i.b.655.2 yes 36
9.4 even 3 inner 2214.2.i.b.901.8 36
9.5 odd 6 738.2.i.b.409.17 yes 36
41.40 even 2 inner 2214.2.i.b.1639.8 36
123.122 odd 2 738.2.i.b.655.17 yes 36
369.40 even 6 inner 2214.2.i.b.901.7 36
369.122 odd 6 738.2.i.b.409.2 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.i.b.409.2 36 369.122 odd 6
738.2.i.b.409.17 yes 36 9.5 odd 6
738.2.i.b.655.2 yes 36 3.2 odd 2
738.2.i.b.655.17 yes 36 123.122 odd 2
2214.2.i.b.901.7 36 369.40 even 6 inner
2214.2.i.b.901.8 36 9.4 even 3 inner
2214.2.i.b.1639.7 36 1.1 even 1 trivial
2214.2.i.b.1639.8 36 41.40 even 2 inner