Properties

Label 2214.2.i.b.1639.13
Level $2214$
Weight $2$
Character 2214.1639
Analytic conductor $17.679$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2214,2,Mod(901,2214)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2214.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2214, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2214 = 2 \cdot 3^{3} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2214.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6788790075\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 738)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1639.13
Character \(\chi\) \(=\) 2214.1639
Dual form 2214.2.i.b.901.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(1.18467 + 2.05191i) q^{5} +(-4.22182 - 2.43747i) q^{7} -1.00000 q^{8} +2.36934 q^{10} +(-3.26477 - 1.88492i) q^{11} +(0.883519 - 0.510100i) q^{13} +(-4.22182 + 2.43747i) q^{14} +(-0.500000 + 0.866025i) q^{16} -1.79124i q^{17} +8.27391i q^{19} +(1.18467 - 2.05191i) q^{20} +(-3.26477 + 1.88492i) q^{22} +(3.96640 + 6.87000i) q^{23} +(-0.306879 + 0.531530i) q^{25} -1.02020i q^{26} +4.87494i q^{28} +(7.89342 + 4.55727i) q^{29} +(2.79358 + 4.83863i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-1.55126 - 0.895620i) q^{34} -11.5504i q^{35} -6.27081 q^{37} +(7.16542 + 4.13696i) q^{38} +(-1.18467 - 2.05191i) q^{40} +(5.17282 - 3.77385i) q^{41} +(3.17911 - 5.50637i) q^{43} +3.76984i q^{44} +7.93279 q^{46} +(-0.755744 - 0.436329i) q^{47} +(8.38252 + 14.5189i) q^{49} +(0.306879 + 0.531530i) q^{50} +(-0.883519 - 0.510100i) q^{52} -2.59870i q^{53} -8.93201i q^{55} +(4.22182 + 2.43747i) q^{56} +(7.89342 - 4.55727i) q^{58} +(1.99784 + 3.46037i) q^{59} +(-0.584806 + 1.01291i) q^{61} +5.58717 q^{62} +1.00000 q^{64} +(2.09335 + 1.20860i) q^{65} +(-3.06655 + 1.77047i) q^{67} +(-1.55126 + 0.895620i) q^{68} +(-10.0029 - 5.77519i) q^{70} +4.65070i q^{71} +2.14855 q^{73} +(-3.13541 + 5.43068i) q^{74} +(7.16542 - 4.13696i) q^{76} +(9.18886 + 15.9156i) q^{77} +(2.47565 + 1.42931i) q^{79} -2.36934 q^{80} +(-0.681841 - 6.36672i) q^{82} +(-7.31381 + 12.6679i) q^{83} +(3.67546 - 2.12203i) q^{85} +(-3.17911 - 5.50637i) q^{86} +(3.26477 + 1.88492i) q^{88} +13.5197i q^{89} -4.97341 q^{91} +(3.96640 - 6.87000i) q^{92} +(-0.755744 + 0.436329i) q^{94} +(-16.9773 + 9.80184i) q^{95} +(-1.48001 - 0.854487i) q^{97} +16.7650 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{2} - 18 q^{4} - 4 q^{5} - 36 q^{8} - 8 q^{10} - 18 q^{16} - 4 q^{20} + 4 q^{23} - 26 q^{25} + 8 q^{31} + 18 q^{32} - 60 q^{37} + 4 q^{40} + 6 q^{41} + 6 q^{43} + 8 q^{46} + 38 q^{49} + 26 q^{50}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2214\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.18467 + 2.05191i 0.529800 + 0.917640i 0.999396 + 0.0347588i \(0.0110663\pi\)
−0.469596 + 0.882881i \(0.655600\pi\)
\(6\) 0 0
\(7\) −4.22182 2.43747i −1.59570 0.921277i −0.992303 0.123835i \(-0.960481\pi\)
−0.603396 0.797442i \(-0.706186\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.36934 0.749250
\(11\) −3.26477 1.88492i −0.984366 0.568324i −0.0807808 0.996732i \(-0.525741\pi\)
−0.903586 + 0.428408i \(0.859075\pi\)
\(12\) 0 0
\(13\) 0.883519 0.510100i 0.245044 0.141476i −0.372449 0.928053i \(-0.621482\pi\)
0.617493 + 0.786577i \(0.288148\pi\)
\(14\) −4.22182 + 2.43747i −1.12833 + 0.651441i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.79124i 0.434440i −0.976123 0.217220i \(-0.930301\pi\)
0.976123 0.217220i \(-0.0696988\pi\)
\(18\) 0 0
\(19\) 8.27391i 1.89817i 0.315027 + 0.949083i \(0.397986\pi\)
−0.315027 + 0.949083i \(0.602014\pi\)
\(20\) 1.18467 2.05191i 0.264900 0.458820i
\(21\) 0 0
\(22\) −3.26477 + 1.88492i −0.696052 + 0.401866i
\(23\) 3.96640 + 6.87000i 0.827051 + 1.43249i 0.900342 + 0.435183i \(0.143316\pi\)
−0.0732914 + 0.997311i \(0.523350\pi\)
\(24\) 0 0
\(25\) −0.306879 + 0.531530i −0.0613758 + 0.106306i
\(26\) 1.02020i 0.200078i
\(27\) 0 0
\(28\) 4.87494i 0.921277i
\(29\) 7.89342 + 4.55727i 1.46577 + 0.846263i 0.999268 0.0382562i \(-0.0121803\pi\)
0.466503 + 0.884520i \(0.345514\pi\)
\(30\) 0 0
\(31\) 2.79358 + 4.83863i 0.501743 + 0.869044i 0.999998 + 0.00201334i \(0.000640866\pi\)
−0.498255 + 0.867030i \(0.666026\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −1.55126 0.895620i −0.266039 0.153598i
\(35\) 11.5504i 1.95237i
\(36\) 0 0
\(37\) −6.27081 −1.03092 −0.515458 0.856915i \(-0.672378\pi\)
−0.515458 + 0.856915i \(0.672378\pi\)
\(38\) 7.16542 + 4.13696i 1.16238 + 0.671103i
\(39\) 0 0
\(40\) −1.18467 2.05191i −0.187313 0.324435i
\(41\) 5.17282 3.77385i 0.807859 0.589376i
\(42\) 0 0
\(43\) 3.17911 5.50637i 0.484809 0.839714i −0.515038 0.857167i \(-0.672222\pi\)
0.999848 + 0.0174529i \(0.00555570\pi\)
\(44\) 3.76984i 0.568324i
\(45\) 0 0
\(46\) 7.93279 1.16963
\(47\) −0.755744 0.436329i −0.110237 0.0636452i 0.443868 0.896092i \(-0.353606\pi\)
−0.554105 + 0.832447i \(0.686939\pi\)
\(48\) 0 0
\(49\) 8.38252 + 14.5189i 1.19750 + 2.07413i
\(50\) 0.306879 + 0.531530i 0.0433992 + 0.0751697i
\(51\) 0 0
\(52\) −0.883519 0.510100i −0.122522 0.0707381i
\(53\) 2.59870i 0.356959i −0.983944 0.178479i \(-0.942882\pi\)
0.983944 0.178479i \(-0.0571178\pi\)
\(54\) 0 0
\(55\) 8.93201i 1.20439i
\(56\) 4.22182 + 2.43747i 0.564165 + 0.325721i
\(57\) 0 0
\(58\) 7.89342 4.55727i 1.03646 0.598399i
\(59\) 1.99784 + 3.46037i 0.260097 + 0.450501i 0.966267 0.257541i \(-0.0829121\pi\)
−0.706170 + 0.708042i \(0.749579\pi\)
\(60\) 0 0
\(61\) −0.584806 + 1.01291i −0.0748768 + 0.129690i −0.901033 0.433751i \(-0.857190\pi\)
0.826156 + 0.563442i \(0.190523\pi\)
\(62\) 5.58717 0.709571
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.09335 + 1.20860i 0.259649 + 0.149908i
\(66\) 0 0
\(67\) −3.06655 + 1.77047i −0.374638 + 0.216297i −0.675483 0.737376i \(-0.736065\pi\)
0.300845 + 0.953673i \(0.402731\pi\)
\(68\) −1.55126 + 0.895620i −0.188118 + 0.108610i
\(69\) 0 0
\(70\) −10.0029 5.77519i −1.19558 0.690267i
\(71\) 4.65070i 0.551937i 0.961167 + 0.275968i \(0.0889985\pi\)
−0.961167 + 0.275968i \(0.911001\pi\)
\(72\) 0 0
\(73\) 2.14855 0.251468 0.125734 0.992064i \(-0.459871\pi\)
0.125734 + 0.992064i \(0.459871\pi\)
\(74\) −3.13541 + 5.43068i −0.364484 + 0.631304i
\(75\) 0 0
\(76\) 7.16542 4.13696i 0.821930 0.474541i
\(77\) 9.18886 + 15.9156i 1.04717 + 1.81375i
\(78\) 0 0
\(79\) 2.47565 + 1.42931i 0.278532 + 0.160810i 0.632759 0.774349i \(-0.281923\pi\)
−0.354227 + 0.935160i \(0.615256\pi\)
\(80\) −2.36934 −0.264900
\(81\) 0 0
\(82\) −0.681841 6.36672i −0.0752967 0.703086i
\(83\) −7.31381 + 12.6679i −0.802794 + 1.39048i 0.114976 + 0.993368i \(0.463321\pi\)
−0.917770 + 0.397112i \(0.870012\pi\)
\(84\) 0 0
\(85\) 3.67546 2.12203i 0.398659 0.230166i
\(86\) −3.17911 5.50637i −0.342812 0.593768i
\(87\) 0 0
\(88\) 3.26477 + 1.88492i 0.348026 + 0.200933i
\(89\) 13.5197i 1.43309i 0.697542 + 0.716543i \(0.254277\pi\)
−0.697542 + 0.716543i \(0.745723\pi\)
\(90\) 0 0
\(91\) −4.97341 −0.521355
\(92\) 3.96640 6.87000i 0.413525 0.716247i
\(93\) 0 0
\(94\) −0.755744 + 0.436329i −0.0779491 + 0.0450039i
\(95\) −16.9773 + 9.80184i −1.74183 + 1.00565i
\(96\) 0 0
\(97\) −1.48001 0.854487i −0.150273 0.0867600i 0.422978 0.906140i \(-0.360985\pi\)
−0.573251 + 0.819380i \(0.694318\pi\)
\(98\) 16.7650 1.69352
\(99\) 0 0
\(100\) 0.613758 0.0613758
\(101\) 4.29909 + 2.48208i 0.427775 + 0.246976i 0.698398 0.715709i \(-0.253896\pi\)
−0.270623 + 0.962685i \(0.587230\pi\)
\(102\) 0 0
\(103\) −6.24403 10.8150i −0.615242 1.06563i −0.990342 0.138646i \(-0.955725\pi\)
0.375100 0.926984i \(-0.377608\pi\)
\(104\) −0.883519 + 0.510100i −0.0866361 + 0.0500194i
\(105\) 0 0
\(106\) −2.25054 1.29935i −0.218592 0.126204i
\(107\) −2.56768 −0.248227 −0.124113 0.992268i \(-0.539609\pi\)
−0.124113 + 0.992268i \(0.539609\pi\)
\(108\) 0 0
\(109\) 12.8485i 1.23066i 0.788269 + 0.615330i \(0.210977\pi\)
−0.788269 + 0.615330i \(0.789023\pi\)
\(110\) −7.73535 4.46601i −0.737537 0.425817i
\(111\) 0 0
\(112\) 4.22182 2.43747i 0.398925 0.230319i
\(113\) 6.06365 + 10.5025i 0.570420 + 0.987996i 0.996523 + 0.0833216i \(0.0265529\pi\)
−0.426103 + 0.904675i \(0.640114\pi\)
\(114\) 0 0
\(115\) −9.39773 + 16.2773i −0.876343 + 1.51787i
\(116\) 9.11454i 0.846263i
\(117\) 0 0
\(118\) 3.99569 0.367833
\(119\) −4.36609 + 7.56230i −0.400239 + 0.693235i
\(120\) 0 0
\(121\) 1.60583 + 2.78138i 0.145985 + 0.252853i
\(122\) 0.584806 + 1.01291i 0.0529459 + 0.0917050i
\(123\) 0 0
\(124\) 2.79358 4.83863i 0.250871 0.434522i
\(125\) 10.3925 0.929532
\(126\) 0 0
\(127\) 19.9429 1.76965 0.884824 0.465925i \(-0.154278\pi\)
0.884824 + 0.465925i \(0.154278\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 2.09335 1.20860i 0.183599 0.106001i
\(131\) 2.06415 + 3.57521i 0.180345 + 0.312367i 0.941998 0.335618i \(-0.108945\pi\)
−0.761653 + 0.647985i \(0.775612\pi\)
\(132\) 0 0
\(133\) 20.1674 34.9310i 1.74874 3.02890i
\(134\) 3.54094i 0.305891i
\(135\) 0 0
\(136\) 1.79124i 0.153598i
\(137\) −5.91355 3.41419i −0.505228 0.291694i 0.225642 0.974210i \(-0.427552\pi\)
−0.730870 + 0.682517i \(0.760885\pi\)
\(138\) 0 0
\(139\) −9.29993 16.1080i −0.788810 1.36626i −0.926696 0.375811i \(-0.877364\pi\)
0.137886 0.990448i \(-0.455969\pi\)
\(140\) −10.0029 + 5.77519i −0.845401 + 0.488092i
\(141\) 0 0
\(142\) 4.02763 + 2.32535i 0.337991 + 0.195139i
\(143\) −3.84599 −0.321617
\(144\) 0 0
\(145\) 21.5954i 1.79340i
\(146\) 1.07427 1.86070i 0.0889075 0.153992i
\(147\) 0 0
\(148\) 3.13541 + 5.43068i 0.257729 + 0.446399i
\(149\) 3.24993 1.87635i 0.266245 0.153716i −0.360935 0.932591i \(-0.617542\pi\)
0.627180 + 0.778874i \(0.284209\pi\)
\(150\) 0 0
\(151\) −10.6094 6.12536i −0.863384 0.498475i 0.00176024 0.999998i \(-0.499440\pi\)
−0.865144 + 0.501524i \(0.832773\pi\)
\(152\) 8.27391i 0.671103i
\(153\) 0 0
\(154\) 18.3777 1.48092
\(155\) −6.61894 + 11.4643i −0.531646 + 0.920838i
\(156\) 0 0
\(157\) −1.69151 + 0.976594i −0.134997 + 0.0779407i −0.565978 0.824421i \(-0.691501\pi\)
0.430980 + 0.902361i \(0.358168\pi\)
\(158\) 2.47565 1.42931i 0.196952 0.113710i
\(159\) 0 0
\(160\) −1.18467 + 2.05191i −0.0936563 + 0.162217i
\(161\) 38.6719i 3.04777i
\(162\) 0 0
\(163\) −15.0198 −1.17644 −0.588220 0.808701i \(-0.700171\pi\)
−0.588220 + 0.808701i \(0.700171\pi\)
\(164\) −5.85466 2.59287i −0.457172 0.202469i
\(165\) 0 0
\(166\) 7.31381 + 12.6679i 0.567661 + 0.983218i
\(167\) −14.0692 + 8.12285i −1.08871 + 0.628565i −0.933232 0.359275i \(-0.883024\pi\)
−0.155474 + 0.987840i \(0.549691\pi\)
\(168\) 0 0
\(169\) −5.97960 + 10.3570i −0.459969 + 0.796690i
\(170\) 4.24405i 0.325504i
\(171\) 0 0
\(172\) −6.35821 −0.484809
\(173\) 3.45113 5.97753i 0.262385 0.454464i −0.704490 0.709713i \(-0.748824\pi\)
0.966875 + 0.255250i \(0.0821577\pi\)
\(174\) 0 0
\(175\) 2.59118 1.49602i 0.195874 0.113088i
\(176\) 3.26477 1.88492i 0.246092 0.142081i
\(177\) 0 0
\(178\) 11.7084 + 6.75986i 0.877583 + 0.506673i
\(179\) 14.8852i 1.11257i 0.830990 + 0.556287i \(0.187775\pi\)
−0.830990 + 0.556287i \(0.812225\pi\)
\(180\) 0 0
\(181\) 0.411674i 0.0305995i 0.999883 + 0.0152997i \(0.00487025\pi\)
−0.999883 + 0.0152997i \(0.995130\pi\)
\(182\) −2.48671 + 4.30710i −0.184327 + 0.319264i
\(183\) 0 0
\(184\) −3.96640 6.87000i −0.292407 0.506463i
\(185\) −7.42884 12.8671i −0.546179 0.946010i
\(186\) 0 0
\(187\) −3.37634 + 5.84799i −0.246902 + 0.427648i
\(188\) 0.872659i 0.0636452i
\(189\) 0 0
\(190\) 19.6037i 1.42220i
\(191\) 3.79497 + 2.19103i 0.274594 + 0.158537i 0.630974 0.775804i \(-0.282656\pi\)
−0.356379 + 0.934341i \(0.615989\pi\)
\(192\) 0 0
\(193\) −11.6920 + 6.75038i −0.841608 + 0.485903i −0.857811 0.513966i \(-0.828176\pi\)
0.0162022 + 0.999869i \(0.494842\pi\)
\(194\) −1.48001 + 0.854487i −0.106259 + 0.0613486i
\(195\) 0 0
\(196\) 8.38252 14.5189i 0.598751 1.03707i
\(197\) 11.8168 0.841911 0.420955 0.907081i \(-0.361695\pi\)
0.420955 + 0.907081i \(0.361695\pi\)
\(198\) 0 0
\(199\) 0.995626i 0.0705780i −0.999377 0.0352890i \(-0.988765\pi\)
0.999377 0.0352890i \(-0.0112352\pi\)
\(200\) 0.306879 0.531530i 0.0216996 0.0375848i
\(201\) 0 0
\(202\) 4.29909 2.48208i 0.302483 0.174638i
\(203\) −22.2164 38.4799i −1.55929 2.70076i
\(204\) 0 0
\(205\) 13.8717 + 6.14338i 0.968839 + 0.429072i
\(206\) −12.4881 −0.870084
\(207\) 0 0
\(208\) 1.02020i 0.0707381i
\(209\) 15.5956 27.0124i 1.07877 1.86849i
\(210\) 0 0
\(211\) 3.63947 2.10125i 0.250552 0.144656i −0.369465 0.929245i \(-0.620459\pi\)
0.620017 + 0.784588i \(0.287126\pi\)
\(212\) −2.25054 + 1.29935i −0.154568 + 0.0892397i
\(213\) 0 0
\(214\) −1.28384 + 2.22368i −0.0877615 + 0.152007i
\(215\) 15.0647 1.02741
\(216\) 0 0
\(217\) 27.2371i 1.84898i
\(218\) 11.1271 + 6.42424i 0.753623 + 0.435104i
\(219\) 0 0
\(220\) −7.73535 + 4.46601i −0.521517 + 0.301098i
\(221\) −0.913711 1.58259i −0.0614629 0.106457i
\(222\) 0 0
\(223\) −6.73892 + 11.6721i −0.451271 + 0.781625i −0.998465 0.0553810i \(-0.982363\pi\)
0.547194 + 0.837006i \(0.315696\pi\)
\(224\) 4.87494i 0.325721i
\(225\) 0 0
\(226\) 12.1273 0.806696
\(227\) −13.4763 7.78057i −0.894456 0.516414i −0.0190585 0.999818i \(-0.506067\pi\)
−0.875397 + 0.483404i \(0.839400\pi\)
\(228\) 0 0
\(229\) 19.7946 11.4284i 1.30806 0.755212i 0.326292 0.945269i \(-0.394201\pi\)
0.981773 + 0.190058i \(0.0608675\pi\)
\(230\) 9.39773 + 16.2773i 0.619668 + 1.07330i
\(231\) 0 0
\(232\) −7.89342 4.55727i −0.518228 0.299199i
\(233\) 6.30922i 0.413331i 0.978412 + 0.206665i \(0.0662612\pi\)
−0.978412 + 0.206665i \(0.933739\pi\)
\(234\) 0 0
\(235\) 2.06762i 0.134877i
\(236\) 1.99784 3.46037i 0.130049 0.225251i
\(237\) 0 0
\(238\) 4.36609 + 7.56230i 0.283012 + 0.490191i
\(239\) −15.9212 + 9.19209i −1.02985 + 0.594587i −0.916943 0.399018i \(-0.869351\pi\)
−0.112912 + 0.993605i \(0.536018\pi\)
\(240\) 0 0
\(241\) 9.73255 16.8573i 0.626929 1.08587i −0.361236 0.932475i \(-0.617645\pi\)
0.988164 0.153398i \(-0.0490217\pi\)
\(242\) 3.21166 0.206454
\(243\) 0 0
\(244\) 1.16961 0.0748768
\(245\) −19.8610 + 34.4003i −1.26887 + 2.19775i
\(246\) 0 0
\(247\) 4.22052 + 7.31016i 0.268545 + 0.465134i
\(248\) −2.79358 4.83863i −0.177393 0.307253i
\(249\) 0 0
\(250\) 5.19624 9.00016i 0.328639 0.569220i
\(251\) 1.76288 0.111272 0.0556361 0.998451i \(-0.482281\pi\)
0.0556361 + 0.998451i \(0.482281\pi\)
\(252\) 0 0
\(253\) 29.9053i 1.88013i
\(254\) 9.97146 17.2711i 0.625665 1.08368i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.28762 3.63016i 0.392211 0.226443i −0.290907 0.956751i \(-0.593957\pi\)
0.683118 + 0.730308i \(0.260624\pi\)
\(258\) 0 0
\(259\) 26.4743 + 15.2849i 1.64503 + 0.949759i
\(260\) 2.41720i 0.149908i
\(261\) 0 0
\(262\) 4.12829 0.255047
\(263\) −4.65782 2.68919i −0.287213 0.165823i 0.349471 0.936947i \(-0.386361\pi\)
−0.636685 + 0.771124i \(0.719695\pi\)
\(264\) 0 0
\(265\) 5.33229 3.07860i 0.327560 0.189117i
\(266\) −20.1674 34.9310i −1.23654 2.14176i
\(267\) 0 0
\(268\) 3.06655 + 1.77047i 0.187319 + 0.108149i
\(269\) −1.23141 −0.0750805 −0.0375403 0.999295i \(-0.511952\pi\)
−0.0375403 + 0.999295i \(0.511952\pi\)
\(270\) 0 0
\(271\) −7.39532 −0.449233 −0.224617 0.974447i \(-0.572113\pi\)
−0.224617 + 0.974447i \(0.572113\pi\)
\(272\) 1.55126 + 0.895620i 0.0940589 + 0.0543049i
\(273\) 0 0
\(274\) −5.91355 + 3.41419i −0.357250 + 0.206259i
\(275\) 2.00378 1.15688i 0.120832 0.0697627i
\(276\) 0 0
\(277\) −8.51360 + 14.7460i −0.511532 + 0.886000i 0.488378 + 0.872632i \(0.337589\pi\)
−0.999911 + 0.0133682i \(0.995745\pi\)
\(278\) −18.5999 −1.11555
\(279\) 0 0
\(280\) 11.5504i 0.690267i
\(281\) 19.5785 + 11.3037i 1.16796 + 0.674320i 0.953198 0.302347i \(-0.0977702\pi\)
0.214759 + 0.976667i \(0.431103\pi\)
\(282\) 0 0
\(283\) −2.14984 3.72362i −0.127794 0.221346i 0.795027 0.606574i \(-0.207456\pi\)
−0.922822 + 0.385227i \(0.874123\pi\)
\(284\) 4.02763 2.32535i 0.238996 0.137984i
\(285\) 0 0
\(286\) −1.92299 + 3.33072i −0.113709 + 0.196950i
\(287\) −31.0374 + 3.32393i −1.83208 + 0.196206i
\(288\) 0 0
\(289\) 13.7915 0.811262
\(290\) 18.7022 + 10.7977i 1.09823 + 0.634063i
\(291\) 0 0
\(292\) −1.07427 1.86070i −0.0628671 0.108889i
\(293\) −9.22331 + 5.32508i −0.538832 + 0.311095i −0.744605 0.667505i \(-0.767362\pi\)
0.205774 + 0.978600i \(0.434029\pi\)
\(294\) 0 0
\(295\) −4.73356 + 8.19877i −0.275599 + 0.477351i
\(296\) 6.27081 0.364484
\(297\) 0 0
\(298\) 3.75270i 0.217388i
\(299\) 7.00877 + 4.04652i 0.405328 + 0.234016i
\(300\) 0 0
\(301\) −26.8432 + 15.4980i −1.54722 + 0.893287i
\(302\) −10.6094 + 6.12536i −0.610504 + 0.352475i
\(303\) 0 0
\(304\) −7.16542 4.13696i −0.410965 0.237271i
\(305\) −2.77121 −0.158679
\(306\) 0 0
\(307\) 14.6398 0.835535 0.417768 0.908554i \(-0.362813\pi\)
0.417768 + 0.908554i \(0.362813\pi\)
\(308\) 9.18886 15.9156i 0.523584 0.906874i
\(309\) 0 0
\(310\) 6.61894 + 11.4643i 0.375931 + 0.651131i
\(311\) 8.57490 4.95072i 0.486238 0.280730i −0.236775 0.971565i \(-0.576090\pi\)
0.723012 + 0.690835i \(0.242757\pi\)
\(312\) 0 0
\(313\) −16.8234 9.71299i −0.950915 0.549011i −0.0575498 0.998343i \(-0.518329\pi\)
−0.893365 + 0.449332i \(0.851662\pi\)
\(314\) 1.95319i 0.110225i
\(315\) 0 0
\(316\) 2.85863i 0.160810i
\(317\) 26.8971 + 15.5290i 1.51069 + 0.872197i 0.999922 + 0.0124789i \(0.00397226\pi\)
0.510768 + 0.859719i \(0.329361\pi\)
\(318\) 0 0
\(319\) −17.1802 29.7569i −0.961904 1.66607i
\(320\) 1.18467 + 2.05191i 0.0662250 + 0.114705i
\(321\) 0 0
\(322\) −33.4908 19.3359i −1.86637 1.07755i
\(323\) 14.8206 0.824638
\(324\) 0 0
\(325\) 0.626155i 0.0347329i
\(326\) −7.50989 + 13.0075i −0.415934 + 0.720419i
\(327\) 0 0
\(328\) −5.17282 + 3.77385i −0.285621 + 0.208376i
\(329\) 2.12708 + 3.68421i 0.117270 + 0.203117i
\(330\) 0 0
\(331\) 22.0103 + 12.7077i 1.20980 + 0.698477i 0.962715 0.270518i \(-0.0871950\pi\)
0.247082 + 0.968995i \(0.420528\pi\)
\(332\) 14.6276 0.802794
\(333\) 0 0
\(334\) 16.2457i 0.888925i
\(335\) −7.26568 4.19484i −0.396967 0.229189i
\(336\) 0 0
\(337\) −11.4954 19.9107i −0.626195 1.08460i −0.988308 0.152468i \(-0.951278\pi\)
0.362113 0.932134i \(-0.382055\pi\)
\(338\) 5.97960 + 10.3570i 0.325247 + 0.563345i
\(339\) 0 0
\(340\) −3.67546 2.12203i −0.199330 0.115083i
\(341\) 21.0627i 1.14061i
\(342\) 0 0
\(343\) 47.6039i 2.57037i
\(344\) −3.17911 + 5.50637i −0.171406 + 0.296884i
\(345\) 0 0
\(346\) −3.45113 5.97753i −0.185534 0.321354i
\(347\) 25.5614 14.7579i 1.37221 0.792244i 0.381001 0.924575i \(-0.375580\pi\)
0.991206 + 0.132331i \(0.0422462\pi\)
\(348\) 0 0
\(349\) 4.54328 7.86919i 0.243196 0.421228i −0.718427 0.695603i \(-0.755137\pi\)
0.961623 + 0.274375i \(0.0884708\pi\)
\(350\) 2.99203i 0.159931i
\(351\) 0 0
\(352\) 3.76984i 0.200933i
\(353\) −10.5516 + 18.2760i −0.561607 + 0.972732i 0.435749 + 0.900068i \(0.356483\pi\)
−0.997356 + 0.0726642i \(0.976850\pi\)
\(354\) 0 0
\(355\) −9.54280 + 5.50954i −0.506479 + 0.292416i
\(356\) 11.7084 6.75986i 0.620545 0.358272i
\(357\) 0 0
\(358\) 12.8910 + 7.44262i 0.681310 + 0.393355i
\(359\) −17.0214 −0.898354 −0.449177 0.893443i \(-0.648283\pi\)
−0.449177 + 0.893443i \(0.648283\pi\)
\(360\) 0 0
\(361\) −49.4576 −2.60303
\(362\) 0.356520 + 0.205837i 0.0187383 + 0.0108185i
\(363\) 0 0
\(364\) 2.48671 + 4.30710i 0.130339 + 0.225753i
\(365\) 2.54532 + 4.40862i 0.133228 + 0.230757i
\(366\) 0 0
\(367\) 7.18379 12.4427i 0.374991 0.649503i −0.615335 0.788266i \(-0.710979\pi\)
0.990326 + 0.138763i \(0.0443125\pi\)
\(368\) −7.93279 −0.413525
\(369\) 0 0
\(370\) −14.8577 −0.772414
\(371\) −6.33425 + 10.9712i −0.328858 + 0.569599i
\(372\) 0 0
\(373\) 15.6241 + 27.0617i 0.808983 + 1.40120i 0.913569 + 0.406684i \(0.133315\pi\)
−0.104585 + 0.994516i \(0.533352\pi\)
\(374\) 3.37634 + 5.84799i 0.174586 + 0.302393i
\(375\) 0 0
\(376\) 0.755744 + 0.436329i 0.0389745 + 0.0225020i
\(377\) 9.29865 0.478905
\(378\) 0 0
\(379\) 10.8106 0.555303 0.277651 0.960682i \(-0.410444\pi\)
0.277651 + 0.960682i \(0.410444\pi\)
\(380\) 16.9773 + 9.80184i 0.870917 + 0.502824i
\(381\) 0 0
\(382\) 3.79497 2.19103i 0.194167 0.112103i
\(383\) 9.04861 5.22422i 0.462362 0.266945i −0.250675 0.968071i \(-0.580652\pi\)
0.713037 + 0.701126i \(0.247319\pi\)
\(384\) 0 0
\(385\) −21.7715 + 37.7094i −1.10958 + 1.92185i
\(386\) 13.5008i 0.687170i
\(387\) 0 0
\(388\) 1.70897i 0.0867600i
\(389\) 8.03655 13.9197i 0.407469 0.705757i −0.587136 0.809488i \(-0.699745\pi\)
0.994605 + 0.103731i \(0.0330781\pi\)
\(390\) 0 0
\(391\) 12.3058 7.10477i 0.622332 0.359304i
\(392\) −8.38252 14.5189i −0.423381 0.733317i
\(393\) 0 0
\(394\) 5.90839 10.2336i 0.297660 0.515563i
\(395\) 6.77305i 0.340789i
\(396\) 0 0
\(397\) 27.5081i 1.38059i 0.723528 + 0.690295i \(0.242519\pi\)
−0.723528 + 0.690295i \(0.757481\pi\)
\(398\) −0.862237 0.497813i −0.0432200 0.0249531i
\(399\) 0 0
\(400\) −0.306879 0.531530i −0.0153439 0.0265765i
\(401\) 5.26643 + 9.12173i 0.262993 + 0.455517i 0.967036 0.254640i \(-0.0819570\pi\)
−0.704043 + 0.710158i \(0.748624\pi\)
\(402\) 0 0
\(403\) 4.93637 + 2.85001i 0.245898 + 0.141969i
\(404\) 4.96416i 0.246976i
\(405\) 0 0
\(406\) −44.4328 −2.20516
\(407\) 20.4728 + 11.8200i 1.01480 + 0.585894i
\(408\) 0 0
\(409\) 7.41896 + 12.8500i 0.366844 + 0.635392i 0.989070 0.147445i \(-0.0471049\pi\)
−0.622226 + 0.782837i \(0.713772\pi\)
\(410\) 12.2562 8.94152i 0.605288 0.441590i
\(411\) 0 0
\(412\) −6.24403 + 10.8150i −0.307621 + 0.532815i
\(413\) 19.4787i 0.958486i
\(414\) 0 0
\(415\) −34.6577 −1.70128
\(416\) 0.883519 + 0.510100i 0.0433181 + 0.0250097i
\(417\) 0 0
\(418\) −15.5956 27.0124i −0.762808 1.32122i
\(419\) −10.8374 18.7709i −0.529442 0.917020i −0.999410 0.0343369i \(-0.989068\pi\)
0.469969 0.882683i \(-0.344265\pi\)
\(420\) 0 0
\(421\) −34.1977 19.7441i −1.66669 0.962267i −0.969402 0.245480i \(-0.921054\pi\)
−0.697293 0.716786i \(-0.745612\pi\)
\(422\) 4.20250i 0.204575i
\(423\) 0 0
\(424\) 2.59870i 0.126204i
\(425\) 0.952098 + 0.549694i 0.0461835 + 0.0266641i
\(426\) 0 0
\(427\) 4.93790 2.85090i 0.238962 0.137965i
\(428\) 1.28384 + 2.22368i 0.0620567 + 0.107485i
\(429\) 0 0
\(430\) 7.53237 13.0465i 0.363243 0.629156i
\(431\) −14.1510 −0.681627 −0.340814 0.940131i \(-0.610703\pi\)
−0.340814 + 0.940131i \(0.610703\pi\)
\(432\) 0 0
\(433\) −36.1991 −1.73962 −0.869810 0.493387i \(-0.835759\pi\)
−0.869810 + 0.493387i \(0.835759\pi\)
\(434\) −23.5880 13.6186i −1.13226 0.653712i
\(435\) 0 0
\(436\) 11.1271 6.42424i 0.532892 0.307665i
\(437\) −56.8418 + 32.8176i −2.71911 + 1.56988i
\(438\) 0 0
\(439\) 7.35009 + 4.24358i 0.350801 + 0.202535i 0.665038 0.746810i \(-0.268415\pi\)
−0.314237 + 0.949345i \(0.601749\pi\)
\(440\) 8.93201i 0.425817i
\(441\) 0 0
\(442\) −1.82742 −0.0869216
\(443\) 2.05505 3.55945i 0.0976385 0.169115i −0.813068 0.582168i \(-0.802204\pi\)
0.910707 + 0.413054i \(0.135538\pi\)
\(444\) 0 0
\(445\) −27.7412 + 16.0164i −1.31506 + 0.759249i
\(446\) 6.73892 + 11.6721i 0.319097 + 0.552692i
\(447\) 0 0
\(448\) −4.22182 2.43747i −0.199462 0.115160i
\(449\) −22.2112 −1.04821 −0.524106 0.851653i \(-0.675601\pi\)
−0.524106 + 0.851653i \(0.675601\pi\)
\(450\) 0 0
\(451\) −24.0015 + 2.57043i −1.13019 + 0.121037i
\(452\) 6.06365 10.5025i 0.285210 0.493998i
\(453\) 0 0
\(454\) −13.4763 + 7.78057i −0.632476 + 0.365160i
\(455\) −5.89184 10.2050i −0.276214 0.478416i
\(456\) 0 0
\(457\) −5.18852 2.99559i −0.242709 0.140128i 0.373712 0.927545i \(-0.378085\pi\)
−0.616421 + 0.787417i \(0.711418\pi\)
\(458\) 22.8568i 1.06803i
\(459\) 0 0
\(460\) 18.7955 0.876343
\(461\) 10.3050 17.8487i 0.479950 0.831299i −0.519785 0.854297i \(-0.673988\pi\)
0.999735 + 0.0229985i \(0.00732130\pi\)
\(462\) 0 0
\(463\) −2.61596 + 1.51032i −0.121574 + 0.0701907i −0.559554 0.828794i \(-0.689027\pi\)
0.437980 + 0.898985i \(0.355694\pi\)
\(464\) −7.89342 + 4.55727i −0.366443 + 0.211566i
\(465\) 0 0
\(466\) 5.46395 + 3.15461i 0.253112 + 0.146135i
\(467\) −38.3929 −1.77661 −0.888306 0.459252i \(-0.848118\pi\)
−0.888306 + 0.459252i \(0.848118\pi\)
\(468\) 0 0
\(469\) 17.2619 0.797079
\(470\) −1.79061 1.03381i −0.0825948 0.0476861i
\(471\) 0 0
\(472\) −1.99784 3.46037i −0.0919582 0.159276i
\(473\) −20.7581 + 11.9847i −0.954460 + 0.551058i
\(474\) 0 0
\(475\) −4.39783 2.53909i −0.201786 0.116501i
\(476\) 8.73219 0.400239
\(477\) 0 0
\(478\) 18.3842i 0.840873i
\(479\) −14.8658 8.58280i −0.679237 0.392158i 0.120330 0.992734i \(-0.461605\pi\)
−0.799568 + 0.600576i \(0.794938\pi\)
\(480\) 0 0
\(481\) −5.54038 + 3.19874i −0.252620 + 0.145850i
\(482\) −9.73255 16.8573i −0.443306 0.767828i
\(483\) 0 0
\(484\) 1.60583 2.78138i 0.0729923 0.126426i
\(485\) 4.04913i 0.183862i
\(486\) 0 0
\(487\) 8.83968 0.400564 0.200282 0.979738i \(-0.435814\pi\)
0.200282 + 0.979738i \(0.435814\pi\)
\(488\) 0.584806 1.01291i 0.0264729 0.0458525i
\(489\) 0 0
\(490\) 19.8610 + 34.4003i 0.897229 + 1.55405i
\(491\) 18.4092 + 31.8858i 0.830798 + 1.43898i 0.897406 + 0.441205i \(0.145449\pi\)
−0.0666087 + 0.997779i \(0.521218\pi\)
\(492\) 0 0
\(493\) 8.16316 14.1390i 0.367650 0.636789i
\(494\) 8.44104 0.379780
\(495\) 0 0
\(496\) −5.58717 −0.250871
\(497\) 11.3359 19.6344i 0.508487 0.880725i
\(498\) 0 0
\(499\) −0.131128 + 0.0757069i −0.00587010 + 0.00338910i −0.502932 0.864326i \(-0.667745\pi\)
0.497062 + 0.867715i \(0.334412\pi\)
\(500\) −5.19624 9.00016i −0.232383 0.402499i
\(501\) 0 0
\(502\) 0.881442 1.52670i 0.0393407 0.0681401i
\(503\) 17.8020i 0.793750i −0.917873 0.396875i \(-0.870095\pi\)
0.917873 0.396875i \(-0.129905\pi\)
\(504\) 0 0
\(505\) 11.7618i 0.523391i
\(506\) −25.8988 14.9527i −1.15134 0.664727i
\(507\) 0 0
\(508\) −9.97146 17.2711i −0.442412 0.766280i
\(509\) −12.7907 + 7.38472i −0.566939 + 0.327322i −0.755926 0.654657i \(-0.772813\pi\)
0.188987 + 0.981980i \(0.439480\pi\)
\(510\) 0 0
\(511\) −9.07078 5.23702i −0.401268 0.231672i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 7.26031i 0.320239i
\(515\) 14.7942 25.6243i 0.651910 1.12914i
\(516\) 0 0
\(517\) 1.64489 + 2.84903i 0.0723422 + 0.125300i
\(518\) 26.4743 15.2849i 1.16321 0.671581i
\(519\) 0 0
\(520\) −2.09335 1.20860i −0.0917996 0.0530005i
\(521\) 35.9628i 1.57556i 0.615958 + 0.787779i \(0.288769\pi\)
−0.615958 + 0.787779i \(0.711231\pi\)
\(522\) 0 0
\(523\) 31.3935 1.37274 0.686371 0.727252i \(-0.259203\pi\)
0.686371 + 0.727252i \(0.259203\pi\)
\(524\) 2.06415 3.57521i 0.0901727 0.156184i
\(525\) 0 0
\(526\) −4.65782 + 2.68919i −0.203091 + 0.117254i
\(527\) 8.66715 5.00398i 0.377547 0.217977i
\(528\) 0 0
\(529\) −19.9646 + 34.5797i −0.868025 + 1.50346i
\(530\) 6.15720i 0.267452i
\(531\) 0 0
\(532\) −40.3348 −1.74874
\(533\) 2.64524 5.97292i 0.114578 0.258716i
\(534\) 0 0
\(535\) −3.04185 5.26864i −0.131511 0.227783i
\(536\) 3.06655 1.77047i 0.132455 0.0764727i
\(537\) 0 0
\(538\) −0.615706 + 1.06643i −0.0265450 + 0.0459772i
\(539\) 63.2014i 2.72228i
\(540\) 0 0
\(541\) 35.1456 1.51103 0.755514 0.655133i \(-0.227387\pi\)
0.755514 + 0.655133i \(0.227387\pi\)
\(542\) −3.69766 + 6.40453i −0.158828 + 0.275098i
\(543\) 0 0
\(544\) 1.55126 0.895620i 0.0665097 0.0383994i
\(545\) −26.3639 + 15.2212i −1.12930 + 0.652004i
\(546\) 0 0
\(547\) 28.0707 + 16.2066i 1.20022 + 0.692946i 0.960604 0.277922i \(-0.0896457\pi\)
0.239614 + 0.970868i \(0.422979\pi\)
\(548\) 6.82838i 0.291694i
\(549\) 0 0
\(550\) 2.31377i 0.0986593i
\(551\) −37.7064 + 65.3095i −1.60635 + 2.78228i
\(552\) 0 0
\(553\) −6.96782 12.0686i −0.296302 0.513210i
\(554\) 8.51360 + 14.7460i 0.361708 + 0.626497i
\(555\) 0 0
\(556\) −9.29993 + 16.1080i −0.394405 + 0.683130i
\(557\) 10.9092i 0.462237i 0.972926 + 0.231118i \(0.0742384\pi\)
−0.972926 + 0.231118i \(0.925762\pi\)
\(558\) 0 0
\(559\) 6.48665i 0.274356i
\(560\) 10.0029 + 5.77519i 0.422700 + 0.244046i
\(561\) 0 0
\(562\) 19.5785 11.3037i 0.825870 0.476816i
\(563\) 3.87933 2.23973i 0.163494 0.0943935i −0.416020 0.909355i \(-0.636575\pi\)
0.579515 + 0.814962i \(0.303242\pi\)
\(564\) 0 0
\(565\) −14.3668 + 24.8841i −0.604417 + 1.04688i
\(566\) −4.29967 −0.180729
\(567\) 0 0
\(568\) 4.65070i 0.195139i
\(569\) 14.7509 25.5493i 0.618390 1.07108i −0.371390 0.928477i \(-0.621119\pi\)
0.989780 0.142606i \(-0.0455481\pi\)
\(570\) 0 0
\(571\) 7.52372 4.34382i 0.314858 0.181783i −0.334240 0.942488i \(-0.608480\pi\)
0.649098 + 0.760705i \(0.275146\pi\)
\(572\) 1.92299 + 3.33072i 0.0804044 + 0.139264i
\(573\) 0 0
\(574\) −12.6401 + 28.5411i −0.527586 + 1.19128i
\(575\) −4.86881 −0.203044
\(576\) 0 0
\(577\) 31.3335i 1.30443i −0.758034 0.652215i \(-0.773840\pi\)
0.758034 0.652215i \(-0.226160\pi\)
\(578\) 6.89573 11.9438i 0.286825 0.496795i
\(579\) 0 0
\(580\) 18.7022 10.7977i 0.776565 0.448350i
\(581\) 61.7552 35.6544i 2.56204 1.47919i
\(582\) 0 0
\(583\) −4.89834 + 8.48417i −0.202868 + 0.351378i
\(584\) −2.14855 −0.0889075
\(585\) 0 0
\(586\) 10.6502i 0.439954i
\(587\) 10.0003 + 5.77368i 0.412757 + 0.238305i 0.691974 0.721923i \(-0.256741\pi\)
−0.279217 + 0.960228i \(0.590075\pi\)
\(588\) 0 0
\(589\) −40.0344 + 23.1139i −1.64959 + 0.952390i
\(590\) 4.73356 + 8.19877i 0.194878 + 0.337538i
\(591\) 0 0
\(592\) 3.13541 5.43068i 0.128864 0.223200i
\(593\) 2.38737i 0.0980375i −0.998798 0.0490187i \(-0.984391\pi\)
0.998798 0.0490187i \(-0.0156094\pi\)
\(594\) 0 0
\(595\) −20.6895 −0.848187
\(596\) −3.24993 1.87635i −0.133122 0.0768582i
\(597\) 0 0
\(598\) 7.00877 4.04652i 0.286610 0.165474i
\(599\) −12.4875 21.6290i −0.510225 0.883736i −0.999930 0.0118473i \(-0.996229\pi\)
0.489705 0.871888i \(-0.337105\pi\)
\(600\) 0 0
\(601\) 2.68855 + 1.55223i 0.109668 + 0.0633169i 0.553831 0.832629i \(-0.313165\pi\)
−0.444163 + 0.895946i \(0.646499\pi\)
\(602\) 30.9959i 1.26330i
\(603\) 0 0
\(604\) 12.2507i 0.498475i
\(605\) −3.80476 + 6.59003i −0.154685 + 0.267923i
\(606\) 0 0
\(607\) −15.9613 27.6458i −0.647850 1.12211i −0.983635 0.180170i \(-0.942335\pi\)
0.335786 0.941938i \(-0.390998\pi\)
\(608\) −7.16542 + 4.13696i −0.290596 + 0.167776i
\(609\) 0 0
\(610\) −1.38560 + 2.39994i −0.0561014 + 0.0971706i
\(611\) −0.890286 −0.0360171
\(612\) 0 0
\(613\) 40.2200 1.62447 0.812236 0.583330i \(-0.198250\pi\)
0.812236 + 0.583330i \(0.198250\pi\)
\(614\) 7.31988 12.6784i 0.295406 0.511659i
\(615\) 0 0
\(616\) −9.18886 15.9156i −0.370230 0.641257i
\(617\) −9.19582 15.9276i −0.370210 0.641222i 0.619388 0.785085i \(-0.287381\pi\)
−0.989598 + 0.143863i \(0.954048\pi\)
\(618\) 0 0
\(619\) −8.32782 + 14.4242i −0.334723 + 0.579758i −0.983432 0.181279i \(-0.941976\pi\)
0.648708 + 0.761037i \(0.275310\pi\)
\(620\) 13.2379 0.531646
\(621\) 0 0
\(622\) 9.90144i 0.397012i
\(623\) 32.9539 57.0778i 1.32027 2.28677i
\(624\) 0 0
\(625\) 13.8460 + 23.9821i 0.553842 + 0.959282i
\(626\) −16.8234 + 9.71299i −0.672398 + 0.388209i
\(627\) 0 0
\(628\) 1.69151 + 0.976594i 0.0674986 + 0.0389703i
\(629\) 11.2325i 0.447870i
\(630\) 0 0
\(631\) 1.18152 0.0470356 0.0235178 0.999723i \(-0.492513\pi\)
0.0235178 + 0.999723i \(0.492513\pi\)
\(632\) −2.47565 1.42931i −0.0984759 0.0568551i
\(633\) 0 0
\(634\) 26.8971 15.5290i 1.06822 0.616737i
\(635\) 23.6258 + 40.9210i 0.937560 + 1.62390i
\(636\) 0 0
\(637\) 14.8122 + 8.55184i 0.586882 + 0.338836i
\(638\) −34.3603 −1.36034
\(639\) 0 0
\(640\) 2.36934 0.0936563
\(641\) 14.2317 + 8.21670i 0.562120 + 0.324540i 0.753996 0.656879i \(-0.228124\pi\)
−0.191876 + 0.981419i \(0.561457\pi\)
\(642\) 0 0
\(643\) 14.0501 8.11186i 0.554084 0.319900i −0.196684 0.980467i \(-0.563017\pi\)
0.750767 + 0.660567i \(0.229684\pi\)
\(644\) −33.4908 + 19.3359i −1.31972 + 0.761943i
\(645\) 0 0
\(646\) 7.41028 12.8350i 0.291554 0.504986i
\(647\) −2.79497 −0.109882 −0.0549408 0.998490i \(-0.517497\pi\)
−0.0549408 + 0.998490i \(0.517497\pi\)
\(648\) 0 0
\(649\) 15.0631i 0.591278i
\(650\) 0.542267 + 0.313078i 0.0212694 + 0.0122799i
\(651\) 0 0
\(652\) 7.50989 + 13.0075i 0.294110 + 0.509413i
\(653\) −29.2270 + 16.8742i −1.14374 + 0.660340i −0.947355 0.320186i \(-0.896255\pi\)
−0.196388 + 0.980526i \(0.562921\pi\)
\(654\) 0 0
\(655\) −4.89066 + 8.47087i −0.191094 + 0.330984i
\(656\) 0.681841 + 6.36672i 0.0266214 + 0.248579i
\(657\) 0 0
\(658\) 4.25416 0.165844
\(659\) 11.6023 + 6.69857i 0.451960 + 0.260939i 0.708658 0.705553i \(-0.249301\pi\)
−0.256698 + 0.966492i \(0.582634\pi\)
\(660\) 0 0
\(661\) −3.00112 5.19808i −0.116730 0.202182i 0.801740 0.597673i \(-0.203908\pi\)
−0.918470 + 0.395491i \(0.870575\pi\)
\(662\) 22.0103 12.7077i 0.855456 0.493898i
\(663\) 0 0
\(664\) 7.31381 12.6679i 0.283831 0.491609i
\(665\) 95.5668 3.70592
\(666\) 0 0
\(667\) 72.3037i 2.79961i
\(668\) 14.0692 + 8.12285i 0.544353 + 0.314282i
\(669\) 0 0
\(670\) −7.26568 + 4.19484i −0.280698 + 0.162061i
\(671\) 3.81852 2.20462i 0.147412 0.0851086i
\(672\) 0 0
\(673\) 17.1253 + 9.88732i 0.660134 + 0.381128i 0.792328 0.610095i \(-0.208869\pi\)
−0.132194 + 0.991224i \(0.542202\pi\)
\(674\) −22.9908 −0.885574
\(675\) 0 0
\(676\) 11.9592 0.459969
\(677\) −1.57334 + 2.72511i −0.0604684 + 0.104734i −0.894675 0.446718i \(-0.852593\pi\)
0.834206 + 0.551452i \(0.185926\pi\)
\(678\) 0 0
\(679\) 4.16557 + 7.21498i 0.159860 + 0.276886i
\(680\) −3.67546 + 2.12203i −0.140947 + 0.0813760i
\(681\) 0 0
\(682\) −18.2408 10.5314i −0.698478 0.403266i
\(683\) 27.0410i 1.03470i 0.855775 + 0.517348i \(0.173081\pi\)
−0.855775 + 0.517348i \(0.826919\pi\)
\(684\) 0 0
\(685\) 16.1787i 0.618157i
\(686\) −41.2262 23.8020i −1.57402 0.908764i
\(687\) 0 0
\(688\) 3.17911 + 5.50637i 0.121202 + 0.209929i
\(689\) −1.32560 2.29600i −0.0505012 0.0874707i
\(690\) 0 0
\(691\) 5.89775 + 3.40506i 0.224361 + 0.129535i 0.607968 0.793962i \(-0.291985\pi\)
−0.383607 + 0.923496i \(0.625318\pi\)
\(692\) −6.90226 −0.262385
\(693\) 0 0
\(694\) 29.5157i 1.12040i
\(695\) 22.0347 38.1652i 0.835823 1.44769i
\(696\) 0 0
\(697\) −6.75987 9.26576i −0.256048 0.350966i
\(698\) −4.54328 7.86919i −0.171966 0.297853i
\(699\) 0 0
\(700\) −2.59118 1.49602i −0.0979372 0.0565441i
\(701\) −24.5252 −0.926303 −0.463151 0.886279i \(-0.653281\pi\)
−0.463151 + 0.886279i \(0.653281\pi\)
\(702\) 0 0
\(703\) 51.8842i 1.95685i
\(704\) −3.26477 1.88492i −0.123046 0.0710405i
\(705\) 0 0
\(706\) 10.5516 + 18.2760i 0.397116 + 0.687826i
\(707\) −12.1000 20.9578i −0.455067 0.788199i
\(708\) 0 0
\(709\) −8.31381 4.79998i −0.312232 0.180267i 0.335693 0.941971i \(-0.391030\pi\)
−0.647925 + 0.761704i \(0.724363\pi\)
\(710\) 11.0191i 0.413539i
\(711\) 0 0
\(712\) 13.5197i 0.506673i
\(713\) −22.1609 + 38.3838i −0.829933 + 1.43749i
\(714\) 0 0
\(715\) −4.55622 7.89160i −0.170393 0.295129i
\(716\) 12.8910 7.44262i 0.481759 0.278144i
\(717\) 0 0
\(718\) −8.51069 + 14.7409i −0.317616 + 0.550127i
\(719\) 50.1862i 1.87163i 0.352495 + 0.935814i \(0.385333\pi\)
−0.352495 + 0.935814i \(0.614667\pi\)
\(720\) 0 0
\(721\) 60.8785i 2.26723i
\(722\) −24.7288 + 42.8315i −0.920311 + 1.59403i
\(723\) 0 0
\(724\) 0.356520 0.205837i 0.0132500 0.00764987i
\(725\) −4.84465 + 2.79706i −0.179926 + 0.103880i
\(726\) 0 0
\(727\) 38.0592 + 21.9735i 1.41154 + 0.814952i 0.995533 0.0944103i \(-0.0300965\pi\)
0.416005 + 0.909362i \(0.363430\pi\)
\(728\) 4.97341 0.184327
\(729\) 0 0
\(730\) 5.09063 0.188413
\(731\) −9.86324 5.69454i −0.364805 0.210620i
\(732\) 0 0
\(733\) −21.8748 37.8883i −0.807964 1.39943i −0.914272 0.405101i \(-0.867236\pi\)
0.106308 0.994333i \(-0.466097\pi\)
\(734\) −7.18379 12.4427i −0.265159 0.459268i
\(735\) 0 0
\(736\) −3.96640 + 6.87000i −0.146203 + 0.253231i
\(737\) 13.3488 0.491708
\(738\) 0 0
\(739\) 15.0259 0.552738 0.276369 0.961052i \(-0.410869\pi\)
0.276369 + 0.961052i \(0.410869\pi\)
\(740\) −7.42884 + 12.8671i −0.273089 + 0.473005i
\(741\) 0 0
\(742\) 6.33425 + 10.9712i 0.232538 + 0.402767i
\(743\) −3.10453 5.37720i −0.113894 0.197270i 0.803443 0.595382i \(-0.202999\pi\)
−0.917337 + 0.398111i \(0.869666\pi\)
\(744\) 0 0
\(745\) 7.70018 + 4.44570i 0.282113 + 0.162878i
\(746\) 31.2481 1.14408
\(747\) 0 0
\(748\) 6.75268 0.246902
\(749\) 10.8403 + 6.25864i 0.396095 + 0.228686i
\(750\) 0 0
\(751\) −13.3710 + 7.71976i −0.487915 + 0.281698i −0.723709 0.690105i \(-0.757564\pi\)
0.235794 + 0.971803i \(0.424231\pi\)
\(752\) 0.755744 0.436329i 0.0275592 0.0159113i
\(753\) 0 0
\(754\) 4.64932 8.05286i 0.169318 0.293268i
\(755\) 29.0261i 1.05637i
\(756\) 0 0
\(757\) 51.1223i 1.85807i −0.369992 0.929035i \(-0.620639\pi\)
0.369992 0.929035i \(-0.379361\pi\)
\(758\) 5.40529 9.36225i 0.196329 0.340052i
\(759\) 0 0
\(760\) 16.9773 9.80184i 0.615831 0.355550i
\(761\) −10.2952 17.8318i −0.373201 0.646403i 0.616855 0.787077i \(-0.288406\pi\)
−0.990056 + 0.140674i \(0.955073\pi\)
\(762\) 0 0
\(763\) 31.3178 54.2440i 1.13378 1.96376i
\(764\) 4.38205i 0.158537i
\(765\) 0 0
\(766\) 10.4484i 0.377517i
\(767\) 3.53026 + 2.03820i 0.127470 + 0.0735951i
\(768\) 0 0
\(769\) 15.5878 + 26.9989i 0.562111 + 0.973605i 0.997312 + 0.0732713i \(0.0233439\pi\)
−0.435201 + 0.900333i \(0.643323\pi\)
\(770\) 21.7715 + 37.7094i 0.784591 + 1.35895i
\(771\) 0 0
\(772\) 11.6920 + 6.75038i 0.420804 + 0.242951i
\(773\) 37.8592i 1.36170i −0.732423 0.680850i \(-0.761611\pi\)
0.732423 0.680850i \(-0.238389\pi\)
\(774\) 0 0
\(775\) −3.42917 −0.123179
\(776\) 1.48001 + 0.854487i 0.0531294 + 0.0306743i
\(777\) 0 0
\(778\) −8.03655 13.9197i −0.288124 0.499046i
\(779\) 31.2245 + 42.7994i 1.11873 + 1.53345i
\(780\) 0 0
\(781\) 8.76619 15.1835i 0.313679 0.543308i
\(782\) 14.2095i 0.508132i
\(783\) 0 0
\(784\) −16.7650 −0.598751
\(785\) −4.00776 2.31388i −0.143043 0.0825859i
\(786\) 0 0
\(787\) 1.00283 + 1.73695i 0.0357470 + 0.0619156i 0.883345 0.468723i \(-0.155286\pi\)
−0.847598 + 0.530638i \(0.821952\pi\)
\(788\) −5.90839 10.2336i −0.210478 0.364558i
\(789\) 0 0
\(790\) 5.86564 + 3.38653i 0.208690 + 0.120487i
\(791\) 59.1198i 2.10206i
\(792\) 0 0
\(793\) 1.19324i 0.0423731i
\(794\) 23.8227 + 13.7540i 0.845435 + 0.488112i
\(795\) 0 0
\(796\) −0.862237 + 0.497813i −0.0305612 + 0.0176445i
\(797\) −11.7865 20.4149i −0.417501 0.723132i 0.578187 0.815904i \(-0.303760\pi\)
−0.995687 + 0.0927722i \(0.970427\pi\)
\(798\) 0 0
\(799\) −0.781571 + 1.35372i −0.0276500 + 0.0478912i
\(800\) −0.613758 −0.0216996
\(801\) 0 0
\(802\) 10.5329 0.371928
\(803\) −7.01452 4.04983i −0.247537 0.142916i
\(804\) 0 0
\(805\) 79.3511 45.8134i 2.79676 1.61471i
\(806\) 4.93637 2.85001i 0.173876 0.100387i
\(807\) 0 0
\(808\) −4.29909 2.48208i −0.151241 0.0873192i
\(809\) 6.06955i 0.213394i −0.994292 0.106697i \(-0.965973\pi\)
0.994292 0.106697i \(-0.0340275\pi\)
\(810\) 0 0
\(811\) −39.1375 −1.37430 −0.687152 0.726514i \(-0.741139\pi\)
−0.687152 + 0.726514i \(0.741139\pi\)
\(812\) −22.2164 + 38.4799i −0.779643 + 1.35038i
\(813\) 0 0
\(814\) 20.4728 11.8200i 0.717571 0.414290i
\(815\) −17.7935 30.8192i −0.623277 1.07955i
\(816\) 0 0
\(817\) 45.5593 + 26.3036i 1.59392 + 0.920248i
\(818\) 14.8379 0.518796
\(819\) 0 0
\(820\) −1.61551 15.0849i −0.0564161 0.526788i
\(821\) −3.20799 + 5.55640i −0.111960 + 0.193920i −0.916560 0.399896i \(-0.869046\pi\)
0.804601 + 0.593816i \(0.202379\pi\)
\(822\) 0 0
\(823\) −34.8428 + 20.1165i −1.21454 + 0.701217i −0.963746 0.266823i \(-0.914026\pi\)
−0.250797 + 0.968040i \(0.580693\pi\)
\(824\) 6.24403 + 10.8150i 0.217521 + 0.376757i
\(825\) 0 0
\(826\) −16.8691 9.73936i −0.586950 0.338876i
\(827\) 42.8896i 1.49142i 0.666272 + 0.745709i \(0.267889\pi\)
−0.666272 + 0.745709i \(0.732111\pi\)
\(828\) 0 0
\(829\) −14.0068 −0.486476 −0.243238 0.969967i \(-0.578210\pi\)
−0.243238 + 0.969967i \(0.578210\pi\)
\(830\) −17.3289 + 30.0145i −0.601494 + 1.04182i
\(831\) 0 0
\(832\) 0.883519 0.510100i 0.0306305 0.0176845i
\(833\) 26.0069 15.0151i 0.901086 0.520242i
\(834\) 0 0
\(835\) −33.3346 19.2458i −1.15359 0.666027i
\(836\) −31.1913 −1.07877
\(837\) 0 0
\(838\) −21.6748 −0.748744
\(839\) 13.0827 + 7.55328i 0.451664 + 0.260768i 0.708533 0.705678i \(-0.249358\pi\)
−0.256869 + 0.966446i \(0.582691\pi\)
\(840\) 0 0
\(841\) 27.0374 + 46.8301i 0.932323 + 1.61483i
\(842\) −34.1977 + 19.7441i −1.17853 + 0.680425i
\(843\) 0 0
\(844\) −3.63947 2.10125i −0.125276 0.0723281i
\(845\) −28.3354 −0.974766
\(846\) 0 0
\(847\) 15.6567i 0.537969i
\(848\) 2.25054 + 1.29935i 0.0772839 + 0.0446199i
\(849\) 0 0
\(850\) 0.952098 0.549694i 0.0326567 0.0188543i
\(851\) −24.8725 43.0805i −0.852619 1.47678i
\(852\) 0 0
\(853\) 12.8734 22.2974i 0.440776 0.763447i −0.556971 0.830532i \(-0.688036\pi\)
0.997747 + 0.0670849i \(0.0213698\pi\)
\(854\) 5.70179i 0.195111i
\(855\) 0 0
\(856\) 2.56768 0.0877615
\(857\) −13.3942 + 23.1994i −0.457536 + 0.792475i −0.998830 0.0483583i \(-0.984601\pi\)
0.541295 + 0.840833i \(0.317934\pi\)
\(858\) 0 0
\(859\) −15.0584 26.0819i −0.513786 0.889903i −0.999872 0.0159924i \(-0.994909\pi\)
0.486086 0.873911i \(-0.338424\pi\)
\(860\) −7.53237 13.0465i −0.256852 0.444880i
\(861\) 0 0
\(862\) −7.07548 + 12.2551i −0.240992 + 0.417410i
\(863\) 36.4107 1.23943 0.619717 0.784825i \(-0.287247\pi\)
0.619717 + 0.784825i \(0.287247\pi\)
\(864\) 0 0
\(865\) 16.3538 0.556045
\(866\) −18.0996 + 31.3494i −0.615048 + 1.06530i
\(867\) 0 0
\(868\) −23.5880 + 13.6186i −0.800630 + 0.462244i
\(869\) −5.38828 9.33278i −0.182785 0.316593i
\(870\) 0 0
\(871\) −1.80623 + 3.12849i −0.0612019 + 0.106005i
\(872\) 12.8485i 0.435104i
\(873\) 0 0
\(874\) 65.6352i 2.22014i
\(875\) −43.8752 25.3314i −1.48325 0.856357i
\(876\) 0 0
\(877\) 21.4618 + 37.1729i 0.724713 + 1.25524i 0.959092 + 0.283095i \(0.0913611\pi\)
−0.234379 + 0.972145i \(0.575306\pi\)
\(878\) 7.35009 4.24358i 0.248054 0.143214i
\(879\) 0 0
\(880\) 7.73535 + 4.46601i 0.260759 + 0.150549i
\(881\) 8.22436 0.277086 0.138543 0.990356i \(-0.455758\pi\)
0.138543 + 0.990356i \(0.455758\pi\)
\(882\) 0 0
\(883\) 0.0492990i 0.00165904i −1.00000 0.000829522i \(-0.999736\pi\)
1.00000 0.000829522i \(-0.000264045\pi\)
\(884\) −0.913711 + 1.58259i −0.0307314 + 0.0532284i
\(885\) 0 0
\(886\) −2.05505 3.55945i −0.0690408 0.119582i
\(887\) −11.9207 + 6.88244i −0.400259 + 0.231090i −0.686596 0.727039i \(-0.740896\pi\)
0.286337 + 0.958129i \(0.407562\pi\)
\(888\) 0 0
\(889\) −84.1955 48.6103i −2.82383 1.63034i
\(890\) 32.0328i 1.07374i
\(891\) 0 0
\(892\) 13.4778 0.451271
\(893\) 3.61015 6.25296i 0.120809 0.209247i
\(894\) 0 0
\(895\) −30.5431 + 17.6341i −1.02094 + 0.589442i
\(896\) −4.22182 + 2.43747i −0.141041 + 0.0814301i
\(897\) 0 0
\(898\) −11.1056 + 19.2355i −0.370599 + 0.641896i
\(899\) 50.9244i 1.69843i
\(900\) 0 0
\(901\) −4.65490 −0.155077
\(902\) −9.77468 + 22.0711i −0.325461 + 0.734887i
\(903\) 0 0
\(904\) −6.06365 10.5025i −0.201674 0.349309i
\(905\) −0.844716 + 0.487697i −0.0280793 + 0.0162116i
\(906\) 0 0
\(907\) −18.1325 + 31.4065i −0.602081 + 1.04284i 0.390424 + 0.920635i \(0.372328\pi\)
−0.992505 + 0.122200i \(0.961005\pi\)
\(908\) 15.5611i 0.516414i
\(909\) 0 0
\(910\) −11.7837 −0.390625
\(911\) 11.9582 20.7121i 0.396192 0.686224i −0.597061 0.802196i \(-0.703665\pi\)
0.993253 + 0.115972i \(0.0369982\pi\)
\(912\) 0 0
\(913\) 47.7558 27.5718i 1.58049 0.912495i
\(914\) −5.18852 + 2.99559i −0.171621 + 0.0990854i
\(915\) 0 0
\(916\) −19.7946 11.4284i −0.654032 0.377606i
\(917\) 20.1252i 0.664592i
\(918\) 0 0
\(919\) 22.1114i 0.729387i −0.931128 0.364693i \(-0.881174\pi\)
0.931128 0.364693i \(-0.118826\pi\)
\(920\) 9.39773 16.2773i 0.309834 0.536648i
\(921\) 0 0
\(922\) −10.3050 17.8487i −0.339376 0.587817i
\(923\) 2.37232 + 4.10898i 0.0780859 + 0.135249i
\(924\) 0 0
\(925\) 1.92438 3.33312i 0.0632732 0.109592i
\(926\) 3.02065i 0.0992647i
\(927\) 0 0
\(928\) 9.11454i 0.299199i
\(929\) −19.5249 11.2727i −0.640591 0.369845i 0.144251 0.989541i \(-0.453923\pi\)
−0.784842 + 0.619696i \(0.787256\pi\)
\(930\) 0 0
\(931\) −120.128 + 69.3562i −3.93705 + 2.27306i
\(932\) 5.46395 3.15461i 0.178978 0.103333i
\(933\) 0 0
\(934\) −19.1965 + 33.2492i −0.628127 + 1.08795i
\(935\) −15.9994 −0.523236
\(936\) 0 0
\(937\) 30.5206i 0.997063i −0.866872 0.498532i \(-0.833873\pi\)
0.866872 0.498532i \(-0.166127\pi\)
\(938\) 8.63094 14.9492i 0.281810 0.488109i
\(939\) 0 0
\(940\) −1.79061 + 1.03381i −0.0584034 + 0.0337192i
\(941\) −1.50505 2.60683i −0.0490634 0.0849803i 0.840451 0.541888i \(-0.182290\pi\)
−0.889514 + 0.456908i \(0.848957\pi\)
\(942\) 0 0
\(943\) 46.4438 + 20.5687i 1.51242 + 0.669808i
\(944\) −3.99569 −0.130049
\(945\) 0 0
\(946\) 23.9694i 0.779313i
\(947\) 11.2653 19.5120i 0.366072 0.634055i −0.622876 0.782321i \(-0.714036\pi\)
0.988948 + 0.148266i \(0.0473691\pi\)
\(948\) 0 0
\(949\) 1.89828 1.09597i 0.0616208 0.0355768i
\(950\) −4.39783 + 2.53909i −0.142684 + 0.0823789i
\(951\) 0 0
\(952\) 4.36609 7.56230i 0.141506 0.245095i
\(953\) 8.27459 0.268040 0.134020 0.990979i \(-0.457211\pi\)
0.134020 + 0.990979i \(0.457211\pi\)
\(954\) 0 0
\(955\) 10.3826i 0.335972i
\(956\) 15.9212 + 9.19209i 0.514927 + 0.297293i
\(957\) 0 0
\(958\) −14.8658 + 8.58280i −0.480293 + 0.277298i
\(959\) 16.6440 + 28.8282i 0.537461 + 0.930911i
\(960\) 0 0
\(961\) −0.108229 + 0.187458i −0.00349125 + 0.00604702i
\(962\) 6.39748i 0.206263i
\(963\) 0 0
\(964\) −19.4651 −0.626929
\(965\) −27.7023 15.9939i −0.891768 0.514863i
\(966\) 0 0
\(967\) −2.43201 + 1.40412i −0.0782082 + 0.0451535i −0.538594 0.842565i \(-0.681044\pi\)
0.460386 + 0.887719i \(0.347711\pi\)
\(968\) −1.60583 2.78138i −0.0516134 0.0893970i
\(969\) 0 0
\(970\) −3.50665 2.02457i −0.112592 0.0650049i
\(971\) 33.4875i 1.07467i −0.843370 0.537333i \(-0.819432\pi\)
0.843370 0.537333i \(-0.180568\pi\)
\(972\) 0 0
\(973\) 90.6732i 2.90685i
\(974\) 4.41984 7.65539i 0.141621 0.245294i
\(975\) 0 0
\(976\) −0.584806 1.01291i −0.0187192 0.0324226i
\(977\) 26.2539 15.1577i 0.839937 0.484938i −0.0173059 0.999850i \(-0.505509\pi\)
0.857243 + 0.514913i \(0.172176\pi\)
\(978\) 0 0
\(979\) 25.4836 44.1388i 0.814458 1.41068i
\(980\) 39.7220 1.26887
\(981\) 0 0
\(982\) 36.8185 1.17493
\(983\) −9.39214 + 16.2677i −0.299563 + 0.518858i −0.976036 0.217609i \(-0.930174\pi\)
0.676473 + 0.736467i \(0.263507\pi\)
\(984\) 0 0
\(985\) 13.9990 + 24.2469i 0.446044 + 0.772571i
\(986\) −8.16316 14.1390i −0.259968 0.450278i
\(987\) 0 0
\(988\) 4.22052 7.31016i 0.134273 0.232567i
\(989\) 50.4384 1.60385
\(990\) 0 0
\(991\) 9.81733i 0.311858i −0.987768 0.155929i \(-0.950163\pi\)
0.987768 0.155929i \(-0.0498371\pi\)
\(992\) −2.79358 + 4.83863i −0.0886964 + 0.153627i
\(993\) 0 0
\(994\) −11.3359 19.6344i −0.359554 0.622766i
\(995\) 2.04293 1.17949i 0.0647652 0.0373922i
\(996\) 0 0
\(997\) 7.91332 + 4.56875i 0.250617 + 0.144694i 0.620047 0.784565i \(-0.287114\pi\)
−0.369430 + 0.929259i \(0.620447\pi\)
\(998\) 0.151414i 0.00479292i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2214.2.i.b.1639.13 36
3.2 odd 2 738.2.i.b.655.13 yes 36
9.4 even 3 inner 2214.2.i.b.901.14 36
9.5 odd 6 738.2.i.b.409.6 36
41.40 even 2 inner 2214.2.i.b.1639.14 36
123.122 odd 2 738.2.i.b.655.6 yes 36
369.40 even 6 inner 2214.2.i.b.901.13 36
369.122 odd 6 738.2.i.b.409.13 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.i.b.409.6 36 9.5 odd 6
738.2.i.b.409.13 yes 36 369.122 odd 6
738.2.i.b.655.6 yes 36 123.122 odd 2
738.2.i.b.655.13 yes 36 3.2 odd 2
2214.2.i.b.901.13 36 369.40 even 6 inner
2214.2.i.b.901.14 36 9.4 even 3 inner
2214.2.i.b.1639.13 36 1.1 even 1 trivial
2214.2.i.b.1639.14 36 41.40 even 2 inner