Properties

Label 2214.2.a.t.1.4
Level $2214$
Weight $2$
Character 2214.1
Self dual yes
Analytic conductor $17.679$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2214,2,Mod(1,2214)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2214.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2214, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2214 = 2 \cdot 3^{3} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2214.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,5,0,5,0,0,2,5,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6788790075\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.7857909.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 16x^{3} + 14x^{2} + 63x + 33 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(4.01671\) of defining polynomial
Character \(\chi\) \(=\) 2214.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.66155 q^{5} -0.624556 q^{7} +1.00000 q^{8} +1.66155 q^{10} -1.18557 q^{11} -5.30281 q^{13} -0.624556 q^{14} +1.00000 q^{16} +5.64126 q^{17} +6.03268 q^{19} +1.66155 q^{20} -1.18557 q^{22} +1.43899 q^{23} -2.23927 q^{25} -5.30281 q^{26} -0.624556 q^{28} +3.06967 q^{29} +9.86456 q^{31} +1.00000 q^{32} +5.64126 q^{34} -1.03773 q^{35} +9.47241 q^{37} +6.03268 q^{38} +1.66155 q^{40} +1.00000 q^{41} +5.81012 q^{43} -1.18557 q^{44} +1.43899 q^{46} -1.56101 q^{47} -6.60993 q^{49} -2.23927 q^{50} -5.30281 q^{52} +10.8813 q^{53} -1.96987 q^{55} -0.624556 q^{56} +3.06967 q^{58} -4.40334 q^{59} +3.43899 q^{61} +9.86456 q^{62} +1.00000 q^{64} -8.81086 q^{65} -8.14992 q^{67} +5.64126 q^{68} -1.03773 q^{70} -12.2036 q^{71} +1.94704 q^{73} +9.47241 q^{74} +6.03268 q^{76} +0.740453 q^{77} +12.6899 q^{79} +1.66155 q^{80} +1.00000 q^{82} +2.74180 q^{83} +9.37322 q^{85} +5.81012 q^{86} -1.18557 q^{88} -12.1507 q^{89} +3.31190 q^{91} +1.43899 q^{92} -1.56101 q^{94} +10.0236 q^{95} +4.47672 q^{97} -6.60993 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 5 q^{4} + 2 q^{7} + 5 q^{8} - q^{11} + 5 q^{13} + 2 q^{14} + 5 q^{16} + 5 q^{17} + 12 q^{19} - q^{22} + 7 q^{23} + 15 q^{25} + 5 q^{26} + 2 q^{28} - 6 q^{29} + 5 q^{32} + 5 q^{34} + 16 q^{35}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.66155 0.743066 0.371533 0.928420i \(-0.378832\pi\)
0.371533 + 0.928420i \(0.378832\pi\)
\(6\) 0 0
\(7\) −0.624556 −0.236060 −0.118030 0.993010i \(-0.537658\pi\)
−0.118030 + 0.993010i \(0.537658\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.66155 0.525427
\(11\) −1.18557 −0.357462 −0.178731 0.983898i \(-0.557199\pi\)
−0.178731 + 0.983898i \(0.557199\pi\)
\(12\) 0 0
\(13\) −5.30281 −1.47073 −0.735367 0.677669i \(-0.762990\pi\)
−0.735367 + 0.677669i \(0.762990\pi\)
\(14\) −0.624556 −0.166920
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.64126 1.36821 0.684104 0.729385i \(-0.260193\pi\)
0.684104 + 0.729385i \(0.260193\pi\)
\(18\) 0 0
\(19\) 6.03268 1.38399 0.691996 0.721901i \(-0.256732\pi\)
0.691996 + 0.721901i \(0.256732\pi\)
\(20\) 1.66155 0.371533
\(21\) 0 0
\(22\) −1.18557 −0.252764
\(23\) 1.43899 0.300050 0.150025 0.988682i \(-0.452065\pi\)
0.150025 + 0.988682i \(0.452065\pi\)
\(24\) 0 0
\(25\) −2.23927 −0.447853
\(26\) −5.30281 −1.03997
\(27\) 0 0
\(28\) −0.624556 −0.118030
\(29\) 3.06967 0.570023 0.285012 0.958524i \(-0.408003\pi\)
0.285012 + 0.958524i \(0.408003\pi\)
\(30\) 0 0
\(31\) 9.86456 1.77173 0.885864 0.463946i \(-0.153567\pi\)
0.885864 + 0.463946i \(0.153567\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 5.64126 0.967469
\(35\) −1.03773 −0.175408
\(36\) 0 0
\(37\) 9.47241 1.55725 0.778627 0.627487i \(-0.215916\pi\)
0.778627 + 0.627487i \(0.215916\pi\)
\(38\) 6.03268 0.978630
\(39\) 0 0
\(40\) 1.66155 0.262713
\(41\) 1.00000 0.156174
\(42\) 0 0
\(43\) 5.81012 0.886035 0.443018 0.896513i \(-0.353908\pi\)
0.443018 + 0.896513i \(0.353908\pi\)
\(44\) −1.18557 −0.178731
\(45\) 0 0
\(46\) 1.43899 0.212167
\(47\) −1.56101 −0.227697 −0.113848 0.993498i \(-0.536318\pi\)
−0.113848 + 0.993498i \(0.536318\pi\)
\(48\) 0 0
\(49\) −6.60993 −0.944276
\(50\) −2.23927 −0.316680
\(51\) 0 0
\(52\) −5.30281 −0.735367
\(53\) 10.8813 1.49466 0.747329 0.664455i \(-0.231336\pi\)
0.747329 + 0.664455i \(0.231336\pi\)
\(54\) 0 0
\(55\) −1.96987 −0.265618
\(56\) −0.624556 −0.0834598
\(57\) 0 0
\(58\) 3.06967 0.403067
\(59\) −4.40334 −0.573267 −0.286633 0.958040i \(-0.592536\pi\)
−0.286633 + 0.958040i \(0.592536\pi\)
\(60\) 0 0
\(61\) 3.43899 0.440317 0.220159 0.975464i \(-0.429342\pi\)
0.220159 + 0.975464i \(0.429342\pi\)
\(62\) 9.86456 1.25280
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −8.81086 −1.09285
\(66\) 0 0
\(67\) −8.14992 −0.995672 −0.497836 0.867271i \(-0.665872\pi\)
−0.497836 + 0.867271i \(0.665872\pi\)
\(68\) 5.64126 0.684104
\(69\) 0 0
\(70\) −1.03773 −0.124032
\(71\) −12.2036 −1.44830 −0.724152 0.689641i \(-0.757768\pi\)
−0.724152 + 0.689641i \(0.757768\pi\)
\(72\) 0 0
\(73\) 1.94704 0.227884 0.113942 0.993487i \(-0.463652\pi\)
0.113942 + 0.993487i \(0.463652\pi\)
\(74\) 9.47241 1.10114
\(75\) 0 0
\(76\) 6.03268 0.691996
\(77\) 0.740453 0.0843824
\(78\) 0 0
\(79\) 12.6899 1.42773 0.713864 0.700285i \(-0.246944\pi\)
0.713864 + 0.700285i \(0.246944\pi\)
\(80\) 1.66155 0.185766
\(81\) 0 0
\(82\) 1.00000 0.110432
\(83\) 2.74180 0.300951 0.150476 0.988614i \(-0.451919\pi\)
0.150476 + 0.988614i \(0.451919\pi\)
\(84\) 0 0
\(85\) 9.37322 1.01667
\(86\) 5.81012 0.626522
\(87\) 0 0
\(88\) −1.18557 −0.126382
\(89\) −12.1507 −1.28797 −0.643984 0.765039i \(-0.722720\pi\)
−0.643984 + 0.765039i \(0.722720\pi\)
\(90\) 0 0
\(91\) 3.31190 0.347181
\(92\) 1.43899 0.150025
\(93\) 0 0
\(94\) −1.56101 −0.161006
\(95\) 10.0236 1.02840
\(96\) 0 0
\(97\) 4.47672 0.454542 0.227271 0.973832i \(-0.427020\pi\)
0.227271 + 0.973832i \(0.427020\pi\)
\(98\) −6.60993 −0.667704
\(99\) 0 0
\(100\) −2.23927 −0.223927
\(101\) −12.6357 −1.25730 −0.628652 0.777687i \(-0.716393\pi\)
−0.628652 + 0.777687i \(0.716393\pi\)
\(102\) 0 0
\(103\) −4.61471 −0.454701 −0.227350 0.973813i \(-0.573006\pi\)
−0.227350 + 0.973813i \(0.573006\pi\)
\(104\) −5.30281 −0.519983
\(105\) 0 0
\(106\) 10.8813 1.05688
\(107\) −15.4738 −1.49590 −0.747952 0.663753i \(-0.768963\pi\)
−0.747952 + 0.663753i \(0.768963\pi\)
\(108\) 0 0
\(109\) −9.23018 −0.884091 −0.442045 0.896993i \(-0.645747\pi\)
−0.442045 + 0.896993i \(0.645747\pi\)
\(110\) −1.96987 −0.187820
\(111\) 0 0
\(112\) −0.624556 −0.0590150
\(113\) 10.3410 0.972800 0.486400 0.873736i \(-0.338310\pi\)
0.486400 + 0.873736i \(0.338310\pi\)
\(114\) 0 0
\(115\) 2.39094 0.222957
\(116\) 3.06967 0.285012
\(117\) 0 0
\(118\) −4.40334 −0.405361
\(119\) −3.52328 −0.322979
\(120\) 0 0
\(121\) −9.59443 −0.872221
\(122\) 3.43899 0.311351
\(123\) 0 0
\(124\) 9.86456 0.885864
\(125\) −12.0284 −1.07585
\(126\) 0 0
\(127\) 2.52894 0.224407 0.112204 0.993685i \(-0.464209\pi\)
0.112204 + 0.993685i \(0.464209\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −8.81086 −0.772764
\(131\) 16.7069 1.45969 0.729844 0.683614i \(-0.239593\pi\)
0.729844 + 0.683614i \(0.239593\pi\)
\(132\) 0 0
\(133\) −3.76774 −0.326705
\(134\) −8.14992 −0.704046
\(135\) 0 0
\(136\) 5.64126 0.483734
\(137\) −17.8497 −1.52500 −0.762500 0.646988i \(-0.776028\pi\)
−0.762500 + 0.646988i \(0.776028\pi\)
\(138\) 0 0
\(139\) 1.16334 0.0986732 0.0493366 0.998782i \(-0.484289\pi\)
0.0493366 + 0.998782i \(0.484289\pi\)
\(140\) −1.03773 −0.0877040
\(141\) 0 0
\(142\) −12.2036 −1.02411
\(143\) 6.28684 0.525732
\(144\) 0 0
\(145\) 5.10040 0.423565
\(146\) 1.94704 0.161138
\(147\) 0 0
\(148\) 9.47241 0.778627
\(149\) −16.1827 −1.32574 −0.662871 0.748734i \(-0.730662\pi\)
−0.662871 + 0.748734i \(0.730662\pi\)
\(150\) 0 0
\(151\) 10.9114 0.887957 0.443978 0.896038i \(-0.353567\pi\)
0.443978 + 0.896038i \(0.353567\pi\)
\(152\) 6.03268 0.489315
\(153\) 0 0
\(154\) 0.740453 0.0596674
\(155\) 16.3904 1.31651
\(156\) 0 0
\(157\) −11.7955 −0.941383 −0.470692 0.882298i \(-0.655996\pi\)
−0.470692 + 0.882298i \(0.655996\pi\)
\(158\) 12.6899 1.00956
\(159\) 0 0
\(160\) 1.66155 0.131357
\(161\) −0.898728 −0.0708297
\(162\) 0 0
\(163\) 9.14365 0.716186 0.358093 0.933686i \(-0.383427\pi\)
0.358093 + 0.933686i \(0.383427\pi\)
\(164\) 1.00000 0.0780869
\(165\) 0 0
\(166\) 2.74180 0.212805
\(167\) −22.5991 −1.74877 −0.874385 0.485233i \(-0.838735\pi\)
−0.874385 + 0.485233i \(0.838735\pi\)
\(168\) 0 0
\(169\) 15.1198 1.16306
\(170\) 9.37322 0.718893
\(171\) 0 0
\(172\) 5.81012 0.443018
\(173\) −18.7912 −1.42867 −0.714334 0.699805i \(-0.753270\pi\)
−0.714334 + 0.699805i \(0.753270\pi\)
\(174\) 0 0
\(175\) 1.39855 0.105720
\(176\) −1.18557 −0.0893655
\(177\) 0 0
\(178\) −12.1507 −0.910731
\(179\) 16.4176 1.22711 0.613553 0.789654i \(-0.289740\pi\)
0.613553 + 0.789654i \(0.289740\pi\)
\(180\) 0 0
\(181\) 23.1771 1.72274 0.861370 0.507979i \(-0.169607\pi\)
0.861370 + 0.507979i \(0.169607\pi\)
\(182\) 3.31190 0.245494
\(183\) 0 0
\(184\) 1.43899 0.106084
\(185\) 15.7388 1.15714
\(186\) 0 0
\(187\) −6.68810 −0.489082
\(188\) −1.56101 −0.113848
\(189\) 0 0
\(190\) 10.0236 0.727186
\(191\) 11.5439 0.835287 0.417643 0.908611i \(-0.362856\pi\)
0.417643 + 0.908611i \(0.362856\pi\)
\(192\) 0 0
\(193\) 14.8407 1.06826 0.534129 0.845403i \(-0.320640\pi\)
0.534129 + 0.845403i \(0.320640\pi\)
\(194\) 4.47672 0.321409
\(195\) 0 0
\(196\) −6.60993 −0.472138
\(197\) 25.1902 1.79473 0.897365 0.441290i \(-0.145479\pi\)
0.897365 + 0.441290i \(0.145479\pi\)
\(198\) 0 0
\(199\) 24.5421 1.73974 0.869871 0.493280i \(-0.164202\pi\)
0.869871 + 0.493280i \(0.164202\pi\)
\(200\) −2.23927 −0.158340
\(201\) 0 0
\(202\) −12.6357 −0.889048
\(203\) −1.91718 −0.134560
\(204\) 0 0
\(205\) 1.66155 0.116047
\(206\) −4.61471 −0.321522
\(207\) 0 0
\(208\) −5.30281 −0.367684
\(209\) −7.15215 −0.494725
\(210\) 0 0
\(211\) 5.67395 0.390610 0.195305 0.980743i \(-0.437430\pi\)
0.195305 + 0.980743i \(0.437430\pi\)
\(212\) 10.8813 0.747329
\(213\) 0 0
\(214\) −15.4738 −1.05776
\(215\) 9.65378 0.658383
\(216\) 0 0
\(217\) −6.16097 −0.418234
\(218\) −9.23018 −0.625146
\(219\) 0 0
\(220\) −1.96987 −0.132809
\(221\) −29.9146 −2.01227
\(222\) 0 0
\(223\) −10.2036 −0.683285 −0.341643 0.939830i \(-0.610983\pi\)
−0.341643 + 0.939830i \(0.610983\pi\)
\(224\) −0.624556 −0.0417299
\(225\) 0 0
\(226\) 10.3410 0.687874
\(227\) −14.2233 −0.944033 −0.472017 0.881590i \(-0.656474\pi\)
−0.472017 + 0.881590i \(0.656474\pi\)
\(228\) 0 0
\(229\) −20.0188 −1.32288 −0.661440 0.749998i \(-0.730054\pi\)
−0.661440 + 0.749998i \(0.730054\pi\)
\(230\) 2.39094 0.157654
\(231\) 0 0
\(232\) 3.06967 0.201534
\(233\) −15.2622 −0.999863 −0.499932 0.866065i \(-0.666642\pi\)
−0.499932 + 0.866065i \(0.666642\pi\)
\(234\) 0 0
\(235\) −2.59369 −0.169194
\(236\) −4.40334 −0.286633
\(237\) 0 0
\(238\) −3.52328 −0.228381
\(239\) −0.200801 −0.0129887 −0.00649436 0.999979i \(-0.502067\pi\)
−0.00649436 + 0.999979i \(0.502067\pi\)
\(240\) 0 0
\(241\) −17.8239 −1.14814 −0.574068 0.818808i \(-0.694636\pi\)
−0.574068 + 0.818808i \(0.694636\pi\)
\(242\) −9.59443 −0.616753
\(243\) 0 0
\(244\) 3.43899 0.220159
\(245\) −10.9827 −0.701659
\(246\) 0 0
\(247\) −31.9902 −2.03549
\(248\) 9.86456 0.626400
\(249\) 0 0
\(250\) −12.0284 −0.760741
\(251\) 9.14871 0.577462 0.288731 0.957410i \(-0.406767\pi\)
0.288731 + 0.957410i \(0.406767\pi\)
\(252\) 0 0
\(253\) −1.70602 −0.107256
\(254\) 2.52894 0.158680
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.3522 0.895266 0.447633 0.894217i \(-0.352267\pi\)
0.447633 + 0.894217i \(0.352267\pi\)
\(258\) 0 0
\(259\) −5.91605 −0.367605
\(260\) −8.81086 −0.546426
\(261\) 0 0
\(262\) 16.7069 1.03216
\(263\) −11.8219 −0.728970 −0.364485 0.931209i \(-0.618755\pi\)
−0.364485 + 0.931209i \(0.618755\pi\)
\(264\) 0 0
\(265\) 18.0797 1.11063
\(266\) −3.76774 −0.231015
\(267\) 0 0
\(268\) −8.14992 −0.497836
\(269\) −21.8129 −1.32996 −0.664979 0.746862i \(-0.731560\pi\)
−0.664979 + 0.746862i \(0.731560\pi\)
\(270\) 0 0
\(271\) 7.44330 0.452148 0.226074 0.974110i \(-0.427411\pi\)
0.226074 + 0.974110i \(0.427411\pi\)
\(272\) 5.64126 0.342052
\(273\) 0 0
\(274\) −17.8497 −1.07834
\(275\) 2.65480 0.160091
\(276\) 0 0
\(277\) −15.2205 −0.914509 −0.457254 0.889336i \(-0.651167\pi\)
−0.457254 + 0.889336i \(0.651167\pi\)
\(278\) 1.16334 0.0697725
\(279\) 0 0
\(280\) −1.03773 −0.0620161
\(281\) 2.28758 0.136465 0.0682327 0.997669i \(-0.478264\pi\)
0.0682327 + 0.997669i \(0.478264\pi\)
\(282\) 0 0
\(283\) 15.3153 0.910403 0.455201 0.890388i \(-0.349567\pi\)
0.455201 + 0.890388i \(0.349567\pi\)
\(284\) −12.2036 −0.724152
\(285\) 0 0
\(286\) 6.28684 0.371749
\(287\) −0.624556 −0.0368664
\(288\) 0 0
\(289\) 14.8239 0.871992
\(290\) 5.10040 0.299506
\(291\) 0 0
\(292\) 1.94704 0.113942
\(293\) −31.0619 −1.81466 −0.907329 0.420422i \(-0.861882\pi\)
−0.907329 + 0.420422i \(0.861882\pi\)
\(294\) 0 0
\(295\) −7.31636 −0.425975
\(296\) 9.47241 0.550572
\(297\) 0 0
\(298\) −16.1827 −0.937441
\(299\) −7.63068 −0.441294
\(300\) 0 0
\(301\) −3.62875 −0.209157
\(302\) 10.9114 0.627880
\(303\) 0 0
\(304\) 6.03268 0.345998
\(305\) 5.71404 0.327185
\(306\) 0 0
\(307\) −3.18738 −0.181914 −0.0909568 0.995855i \(-0.528993\pi\)
−0.0909568 + 0.995855i \(0.528993\pi\)
\(308\) 0.740453 0.0421912
\(309\) 0 0
\(310\) 16.3904 0.930913
\(311\) 18.9872 1.07667 0.538333 0.842732i \(-0.319054\pi\)
0.538333 + 0.842732i \(0.319054\pi\)
\(312\) 0 0
\(313\) 3.51432 0.198641 0.0993207 0.995055i \(-0.468333\pi\)
0.0993207 + 0.995055i \(0.468333\pi\)
\(314\) −11.7955 −0.665658
\(315\) 0 0
\(316\) 12.6899 0.713864
\(317\) −26.8067 −1.50561 −0.752807 0.658242i \(-0.771301\pi\)
−0.752807 + 0.658242i \(0.771301\pi\)
\(318\) 0 0
\(319\) −3.63930 −0.203762
\(320\) 1.66155 0.0928832
\(321\) 0 0
\(322\) −0.898728 −0.0500842
\(323\) 34.0319 1.89359
\(324\) 0 0
\(325\) 11.8744 0.658673
\(326\) 9.14365 0.506420
\(327\) 0 0
\(328\) 1.00000 0.0552158
\(329\) 0.974939 0.0537501
\(330\) 0 0
\(331\) −8.97925 −0.493544 −0.246772 0.969074i \(-0.579370\pi\)
−0.246772 + 0.969074i \(0.579370\pi\)
\(332\) 2.74180 0.150476
\(333\) 0 0
\(334\) −22.5991 −1.23657
\(335\) −13.5415 −0.739849
\(336\) 0 0
\(337\) 0.964486 0.0525389 0.0262694 0.999655i \(-0.491637\pi\)
0.0262694 + 0.999655i \(0.491637\pi\)
\(338\) 15.1198 0.822409
\(339\) 0 0
\(340\) 9.37322 0.508334
\(341\) −11.6951 −0.633325
\(342\) 0 0
\(343\) 8.50016 0.458965
\(344\) 5.81012 0.313261
\(345\) 0 0
\(346\) −18.7912 −1.01022
\(347\) −29.4553 −1.58124 −0.790621 0.612305i \(-0.790242\pi\)
−0.790621 + 0.612305i \(0.790242\pi\)
\(348\) 0 0
\(349\) 23.3606 1.25046 0.625231 0.780440i \(-0.285005\pi\)
0.625231 + 0.780440i \(0.285005\pi\)
\(350\) 1.39855 0.0747555
\(351\) 0 0
\(352\) −1.18557 −0.0631910
\(353\) 15.8665 0.844490 0.422245 0.906482i \(-0.361242\pi\)
0.422245 + 0.906482i \(0.361242\pi\)
\(354\) 0 0
\(355\) −20.2769 −1.07618
\(356\) −12.1507 −0.643984
\(357\) 0 0
\(358\) 16.4176 0.867695
\(359\) −18.7360 −0.988848 −0.494424 0.869221i \(-0.664621\pi\)
−0.494424 + 0.869221i \(0.664621\pi\)
\(360\) 0 0
\(361\) 17.3932 0.915433
\(362\) 23.1771 1.21816
\(363\) 0 0
\(364\) 3.31190 0.173591
\(365\) 3.23509 0.169333
\(366\) 0 0
\(367\) 11.0567 0.577157 0.288579 0.957456i \(-0.406817\pi\)
0.288579 + 0.957456i \(0.406817\pi\)
\(368\) 1.43899 0.0750124
\(369\) 0 0
\(370\) 15.7388 0.818223
\(371\) −6.79596 −0.352829
\(372\) 0 0
\(373\) −20.3705 −1.05475 −0.527373 0.849634i \(-0.676823\pi\)
−0.527373 + 0.849634i \(0.676823\pi\)
\(374\) −6.68810 −0.345833
\(375\) 0 0
\(376\) −1.56101 −0.0805030
\(377\) −16.2779 −0.838353
\(378\) 0 0
\(379\) 3.10067 0.159271 0.0796354 0.996824i \(-0.474624\pi\)
0.0796354 + 0.996824i \(0.474624\pi\)
\(380\) 10.0236 0.514198
\(381\) 0 0
\(382\) 11.5439 0.590637
\(383\) 13.2399 0.676526 0.338263 0.941052i \(-0.390161\pi\)
0.338263 + 0.941052i \(0.390161\pi\)
\(384\) 0 0
\(385\) 1.23030 0.0627017
\(386\) 14.8407 0.755372
\(387\) 0 0
\(388\) 4.47672 0.227271
\(389\) −15.2282 −0.772101 −0.386051 0.922478i \(-0.626161\pi\)
−0.386051 + 0.922478i \(0.626161\pi\)
\(390\) 0 0
\(391\) 8.11771 0.410530
\(392\) −6.60993 −0.333852
\(393\) 0 0
\(394\) 25.1902 1.26907
\(395\) 21.0849 1.06090
\(396\) 0 0
\(397\) −14.7646 −0.741016 −0.370508 0.928829i \(-0.620816\pi\)
−0.370508 + 0.928829i \(0.620816\pi\)
\(398\) 24.5421 1.23018
\(399\) 0 0
\(400\) −2.23927 −0.111963
\(401\) 15.1156 0.754839 0.377419 0.926042i \(-0.376812\pi\)
0.377419 + 0.926042i \(0.376812\pi\)
\(402\) 0 0
\(403\) −52.3099 −2.60574
\(404\) −12.6357 −0.628652
\(405\) 0 0
\(406\) −1.91718 −0.0951480
\(407\) −11.2302 −0.556659
\(408\) 0 0
\(409\) −16.7673 −0.829091 −0.414545 0.910029i \(-0.636059\pi\)
−0.414545 + 0.910029i \(0.636059\pi\)
\(410\) 1.66155 0.0820579
\(411\) 0 0
\(412\) −4.61471 −0.227350
\(413\) 2.75013 0.135325
\(414\) 0 0
\(415\) 4.55562 0.223627
\(416\) −5.30281 −0.259992
\(417\) 0 0
\(418\) −7.15215 −0.349823
\(419\) 30.9245 1.51076 0.755381 0.655286i \(-0.227452\pi\)
0.755381 + 0.655286i \(0.227452\pi\)
\(420\) 0 0
\(421\) −18.4812 −0.900719 −0.450360 0.892847i \(-0.648704\pi\)
−0.450360 + 0.892847i \(0.648704\pi\)
\(422\) 5.67395 0.276203
\(423\) 0 0
\(424\) 10.8813 0.528441
\(425\) −12.6323 −0.612756
\(426\) 0 0
\(427\) −2.14784 −0.103941
\(428\) −15.4738 −0.747952
\(429\) 0 0
\(430\) 9.65378 0.465547
\(431\) −26.6535 −1.28385 −0.641927 0.766765i \(-0.721865\pi\)
−0.641927 + 0.766765i \(0.721865\pi\)
\(432\) 0 0
\(433\) −31.6022 −1.51870 −0.759352 0.650679i \(-0.774484\pi\)
−0.759352 + 0.650679i \(0.774484\pi\)
\(434\) −6.16097 −0.295736
\(435\) 0 0
\(436\) −9.23018 −0.442045
\(437\) 8.68096 0.415266
\(438\) 0 0
\(439\) −27.8868 −1.33096 −0.665482 0.746414i \(-0.731774\pi\)
−0.665482 + 0.746414i \(0.731774\pi\)
\(440\) −1.96987 −0.0939101
\(441\) 0 0
\(442\) −29.9146 −1.42289
\(443\) 9.20646 0.437412 0.218706 0.975791i \(-0.429816\pi\)
0.218706 + 0.975791i \(0.429816\pi\)
\(444\) 0 0
\(445\) −20.1889 −0.957045
\(446\) −10.2036 −0.483156
\(447\) 0 0
\(448\) −0.624556 −0.0295075
\(449\) 25.8346 1.21921 0.609605 0.792706i \(-0.291328\pi\)
0.609605 + 0.792706i \(0.291328\pi\)
\(450\) 0 0
\(451\) −1.18557 −0.0558262
\(452\) 10.3410 0.486400
\(453\) 0 0
\(454\) −14.2233 −0.667532
\(455\) 5.50287 0.257979
\(456\) 0 0
\(457\) −24.8590 −1.16286 −0.581428 0.813598i \(-0.697506\pi\)
−0.581428 + 0.813598i \(0.697506\pi\)
\(458\) −20.0188 −0.935417
\(459\) 0 0
\(460\) 2.39094 0.111478
\(461\) −3.22390 −0.150152 −0.0750759 0.997178i \(-0.523920\pi\)
−0.0750759 + 0.997178i \(0.523920\pi\)
\(462\) 0 0
\(463\) −16.6985 −0.776047 −0.388023 0.921650i \(-0.626842\pi\)
−0.388023 + 0.921650i \(0.626842\pi\)
\(464\) 3.06967 0.142506
\(465\) 0 0
\(466\) −15.2622 −0.707010
\(467\) −3.18752 −0.147501 −0.0737504 0.997277i \(-0.523497\pi\)
−0.0737504 + 0.997277i \(0.523497\pi\)
\(468\) 0 0
\(469\) 5.09008 0.235038
\(470\) −2.59369 −0.119638
\(471\) 0 0
\(472\) −4.40334 −0.202680
\(473\) −6.88829 −0.316724
\(474\) 0 0
\(475\) −13.5088 −0.619825
\(476\) −3.52328 −0.161489
\(477\) 0 0
\(478\) −0.200801 −0.00918441
\(479\) 21.8671 0.999135 0.499567 0.866275i \(-0.333492\pi\)
0.499567 + 0.866275i \(0.333492\pi\)
\(480\) 0 0
\(481\) −50.2304 −2.29031
\(482\) −17.8239 −0.811855
\(483\) 0 0
\(484\) −9.59443 −0.436110
\(485\) 7.43827 0.337754
\(486\) 0 0
\(487\) 20.0372 0.907972 0.453986 0.891009i \(-0.350002\pi\)
0.453986 + 0.891009i \(0.350002\pi\)
\(488\) 3.43899 0.155676
\(489\) 0 0
\(490\) −10.9827 −0.496148
\(491\) −1.00641 −0.0454187 −0.0227093 0.999742i \(-0.507229\pi\)
−0.0227093 + 0.999742i \(0.507229\pi\)
\(492\) 0 0
\(493\) 17.3168 0.779910
\(494\) −31.9902 −1.43931
\(495\) 0 0
\(496\) 9.86456 0.442932
\(497\) 7.62184 0.341886
\(498\) 0 0
\(499\) 17.5170 0.784169 0.392084 0.919929i \(-0.371754\pi\)
0.392084 + 0.919929i \(0.371754\pi\)
\(500\) −12.0284 −0.537925
\(501\) 0 0
\(502\) 9.14871 0.408327
\(503\) 5.36170 0.239066 0.119533 0.992830i \(-0.461860\pi\)
0.119533 + 0.992830i \(0.461860\pi\)
\(504\) 0 0
\(505\) −20.9949 −0.934259
\(506\) −1.70602 −0.0758417
\(507\) 0 0
\(508\) 2.52894 0.112204
\(509\) −31.3580 −1.38992 −0.694959 0.719049i \(-0.744578\pi\)
−0.694959 + 0.719049i \(0.744578\pi\)
\(510\) 0 0
\(511\) −1.21603 −0.0537942
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 14.3522 0.633048
\(515\) −7.66755 −0.337873
\(516\) 0 0
\(517\) 1.85068 0.0813930
\(518\) −5.91605 −0.259936
\(519\) 0 0
\(520\) −8.81086 −0.386382
\(521\) 31.8750 1.39647 0.698234 0.715869i \(-0.253969\pi\)
0.698234 + 0.715869i \(0.253969\pi\)
\(522\) 0 0
\(523\) 14.6589 0.640990 0.320495 0.947250i \(-0.396151\pi\)
0.320495 + 0.947250i \(0.396151\pi\)
\(524\) 16.7069 0.729844
\(525\) 0 0
\(526\) −11.8219 −0.515460
\(527\) 55.6486 2.42409
\(528\) 0 0
\(529\) −20.9293 −0.909970
\(530\) 18.0797 0.785333
\(531\) 0 0
\(532\) −3.76774 −0.163352
\(533\) −5.30281 −0.229690
\(534\) 0 0
\(535\) −25.7103 −1.11156
\(536\) −8.14992 −0.352023
\(537\) 0 0
\(538\) −21.8129 −0.940423
\(539\) 7.83652 0.337543
\(540\) 0 0
\(541\) 5.47059 0.235199 0.117600 0.993061i \(-0.462480\pi\)
0.117600 + 0.993061i \(0.462480\pi\)
\(542\) 7.44330 0.319717
\(543\) 0 0
\(544\) 5.64126 0.241867
\(545\) −15.3364 −0.656937
\(546\) 0 0
\(547\) 30.0931 1.28669 0.643344 0.765577i \(-0.277546\pi\)
0.643344 + 0.765577i \(0.277546\pi\)
\(548\) −17.8497 −0.762500
\(549\) 0 0
\(550\) 2.65480 0.113201
\(551\) 18.5183 0.788908
\(552\) 0 0
\(553\) −7.92556 −0.337029
\(554\) −15.2205 −0.646655
\(555\) 0 0
\(556\) 1.16334 0.0493366
\(557\) 31.1517 1.31994 0.659971 0.751291i \(-0.270569\pi\)
0.659971 + 0.751291i \(0.270569\pi\)
\(558\) 0 0
\(559\) −30.8100 −1.30312
\(560\) −1.03773 −0.0438520
\(561\) 0 0
\(562\) 2.28758 0.0964956
\(563\) −31.0326 −1.30787 −0.653933 0.756552i \(-0.726882\pi\)
−0.653933 + 0.756552i \(0.726882\pi\)
\(564\) 0 0
\(565\) 17.1821 0.722855
\(566\) 15.3153 0.643752
\(567\) 0 0
\(568\) −12.2036 −0.512053
\(569\) 14.8594 0.622938 0.311469 0.950256i \(-0.399179\pi\)
0.311469 + 0.950256i \(0.399179\pi\)
\(570\) 0 0
\(571\) −27.2837 −1.14179 −0.570895 0.821023i \(-0.693404\pi\)
−0.570895 + 0.821023i \(0.693404\pi\)
\(572\) 6.28684 0.262866
\(573\) 0 0
\(574\) −0.624556 −0.0260685
\(575\) −3.22228 −0.134378
\(576\) 0 0
\(577\) 12.7967 0.532734 0.266367 0.963872i \(-0.414177\pi\)
0.266367 + 0.963872i \(0.414177\pi\)
\(578\) 14.8239 0.616592
\(579\) 0 0
\(580\) 5.10040 0.211782
\(581\) −1.71241 −0.0710426
\(582\) 0 0
\(583\) −12.9005 −0.534283
\(584\) 1.94704 0.0805690
\(585\) 0 0
\(586\) −31.0619 −1.28316
\(587\) −13.5909 −0.560955 −0.280478 0.959861i \(-0.590493\pi\)
−0.280478 + 0.959861i \(0.590493\pi\)
\(588\) 0 0
\(589\) 59.5097 2.45206
\(590\) −7.31636 −0.301210
\(591\) 0 0
\(592\) 9.47241 0.389314
\(593\) 7.88349 0.323736 0.161868 0.986812i \(-0.448248\pi\)
0.161868 + 0.986812i \(0.448248\pi\)
\(594\) 0 0
\(595\) −5.85410 −0.239995
\(596\) −16.1827 −0.662871
\(597\) 0 0
\(598\) −7.63068 −0.312042
\(599\) 13.6972 0.559651 0.279826 0.960051i \(-0.409723\pi\)
0.279826 + 0.960051i \(0.409723\pi\)
\(600\) 0 0
\(601\) 11.3146 0.461532 0.230766 0.973009i \(-0.425877\pi\)
0.230766 + 0.973009i \(0.425877\pi\)
\(602\) −3.62875 −0.147897
\(603\) 0 0
\(604\) 10.9114 0.443978
\(605\) −15.9416 −0.648117
\(606\) 0 0
\(607\) −0.578589 −0.0234842 −0.0117421 0.999931i \(-0.503738\pi\)
−0.0117421 + 0.999931i \(0.503738\pi\)
\(608\) 6.03268 0.244657
\(609\) 0 0
\(610\) 5.71404 0.231355
\(611\) 8.27775 0.334882
\(612\) 0 0
\(613\) −29.4201 −1.18826 −0.594132 0.804367i \(-0.702504\pi\)
−0.594132 + 0.804367i \(0.702504\pi\)
\(614\) −3.18738 −0.128632
\(615\) 0 0
\(616\) 0.740453 0.0298337
\(617\) 27.8164 1.11985 0.559924 0.828544i \(-0.310830\pi\)
0.559924 + 0.828544i \(0.310830\pi\)
\(618\) 0 0
\(619\) −33.8146 −1.35912 −0.679562 0.733618i \(-0.737830\pi\)
−0.679562 + 0.733618i \(0.737830\pi\)
\(620\) 16.3904 0.658255
\(621\) 0 0
\(622\) 18.9872 0.761318
\(623\) 7.58876 0.304037
\(624\) 0 0
\(625\) −8.78935 −0.351574
\(626\) 3.51432 0.140461
\(627\) 0 0
\(628\) −11.7955 −0.470692
\(629\) 53.4364 2.13065
\(630\) 0 0
\(631\) −27.6911 −1.10237 −0.551183 0.834384i \(-0.685823\pi\)
−0.551183 + 0.834384i \(0.685823\pi\)
\(632\) 12.6899 0.504778
\(633\) 0 0
\(634\) −26.8067 −1.06463
\(635\) 4.20195 0.166749
\(636\) 0 0
\(637\) 35.0512 1.38878
\(638\) −3.63930 −0.144081
\(639\) 0 0
\(640\) 1.66155 0.0656784
\(641\) −6.05058 −0.238984 −0.119492 0.992835i \(-0.538127\pi\)
−0.119492 + 0.992835i \(0.538127\pi\)
\(642\) 0 0
\(643\) 30.0701 1.18585 0.592925 0.805258i \(-0.297973\pi\)
0.592925 + 0.805258i \(0.297973\pi\)
\(644\) −0.898728 −0.0354149
\(645\) 0 0
\(646\) 34.0319 1.33897
\(647\) −23.3893 −0.919529 −0.459765 0.888041i \(-0.652066\pi\)
−0.459765 + 0.888041i \(0.652066\pi\)
\(648\) 0 0
\(649\) 5.22046 0.204921
\(650\) 11.8744 0.465752
\(651\) 0 0
\(652\) 9.14365 0.358093
\(653\) −28.0066 −1.09598 −0.547991 0.836484i \(-0.684607\pi\)
−0.547991 + 0.836484i \(0.684607\pi\)
\(654\) 0 0
\(655\) 27.7593 1.08464
\(656\) 1.00000 0.0390434
\(657\) 0 0
\(658\) 0.974939 0.0380071
\(659\) 39.1796 1.52622 0.763111 0.646267i \(-0.223671\pi\)
0.763111 + 0.646267i \(0.223671\pi\)
\(660\) 0 0
\(661\) 32.0681 1.24730 0.623651 0.781703i \(-0.285649\pi\)
0.623651 + 0.781703i \(0.285649\pi\)
\(662\) −8.97925 −0.348988
\(663\) 0 0
\(664\) 2.74180 0.106402
\(665\) −6.26028 −0.242763
\(666\) 0 0
\(667\) 4.41722 0.171035
\(668\) −22.5991 −0.874385
\(669\) 0 0
\(670\) −13.5415 −0.523153
\(671\) −4.07715 −0.157397
\(672\) 0 0
\(673\) −4.32982 −0.166902 −0.0834511 0.996512i \(-0.526594\pi\)
−0.0834511 + 0.996512i \(0.526594\pi\)
\(674\) 0.964486 0.0371506
\(675\) 0 0
\(676\) 15.1198 0.581531
\(677\) 25.3887 0.975768 0.487884 0.872908i \(-0.337769\pi\)
0.487884 + 0.872908i \(0.337769\pi\)
\(678\) 0 0
\(679\) −2.79596 −0.107299
\(680\) 9.37322 0.359447
\(681\) 0 0
\(682\) −11.6951 −0.447829
\(683\) −1.89771 −0.0726139 −0.0363070 0.999341i \(-0.511559\pi\)
−0.0363070 + 0.999341i \(0.511559\pi\)
\(684\) 0 0
\(685\) −29.6580 −1.13318
\(686\) 8.50016 0.324538
\(687\) 0 0
\(688\) 5.81012 0.221509
\(689\) −57.7013 −2.19824
\(690\) 0 0
\(691\) 23.3194 0.887111 0.443556 0.896247i \(-0.353717\pi\)
0.443556 + 0.896247i \(0.353717\pi\)
\(692\) −18.7912 −0.714334
\(693\) 0 0
\(694\) −29.4553 −1.11811
\(695\) 1.93294 0.0733207
\(696\) 0 0
\(697\) 5.64126 0.213678
\(698\) 23.3606 0.884210
\(699\) 0 0
\(700\) 1.39855 0.0528601
\(701\) −39.3874 −1.48764 −0.743821 0.668378i \(-0.766989\pi\)
−0.743821 + 0.668378i \(0.766989\pi\)
\(702\) 0 0
\(703\) 57.1440 2.15523
\(704\) −1.18557 −0.0446828
\(705\) 0 0
\(706\) 15.8665 0.597144
\(707\) 7.89173 0.296799
\(708\) 0 0
\(709\) −38.9598 −1.46316 −0.731582 0.681753i \(-0.761218\pi\)
−0.731582 + 0.681753i \(0.761218\pi\)
\(710\) −20.2769 −0.760978
\(711\) 0 0
\(712\) −12.1507 −0.455365
\(713\) 14.1950 0.531606
\(714\) 0 0
\(715\) 10.4459 0.390653
\(716\) 16.4176 0.613553
\(717\) 0 0
\(718\) −18.7360 −0.699221
\(719\) −8.64692 −0.322476 −0.161238 0.986916i \(-0.551549\pi\)
−0.161238 + 0.986916i \(0.551549\pi\)
\(720\) 0 0
\(721\) 2.88214 0.107337
\(722\) 17.3932 0.647309
\(723\) 0 0
\(724\) 23.1771 0.861370
\(725\) −6.87381 −0.255287
\(726\) 0 0
\(727\) −7.30861 −0.271061 −0.135531 0.990773i \(-0.543274\pi\)
−0.135531 + 0.990773i \(0.543274\pi\)
\(728\) 3.31190 0.122747
\(729\) 0 0
\(730\) 3.23509 0.119736
\(731\) 32.7764 1.21228
\(732\) 0 0
\(733\) 25.0208 0.924163 0.462081 0.886837i \(-0.347103\pi\)
0.462081 + 0.886837i \(0.347103\pi\)
\(734\) 11.0567 0.408112
\(735\) 0 0
\(736\) 1.43899 0.0530418
\(737\) 9.66228 0.355915
\(738\) 0 0
\(739\) 8.31621 0.305917 0.152958 0.988233i \(-0.451120\pi\)
0.152958 + 0.988233i \(0.451120\pi\)
\(740\) 15.7388 0.578571
\(741\) 0 0
\(742\) −6.79596 −0.249487
\(743\) 22.7109 0.833184 0.416592 0.909094i \(-0.363224\pi\)
0.416592 + 0.909094i \(0.363224\pi\)
\(744\) 0 0
\(745\) −26.8883 −0.985113
\(746\) −20.3705 −0.745818
\(747\) 0 0
\(748\) −6.68810 −0.244541
\(749\) 9.66422 0.353123
\(750\) 0 0
\(751\) −49.0495 −1.78984 −0.894920 0.446227i \(-0.852768\pi\)
−0.894920 + 0.446227i \(0.852768\pi\)
\(752\) −1.56101 −0.0569242
\(753\) 0 0
\(754\) −16.2779 −0.592805
\(755\) 18.1298 0.659810
\(756\) 0 0
\(757\) 1.54673 0.0562168 0.0281084 0.999605i \(-0.491052\pi\)
0.0281084 + 0.999605i \(0.491052\pi\)
\(758\) 3.10067 0.112621
\(759\) 0 0
\(760\) 10.0236 0.363593
\(761\) 24.8410 0.900487 0.450244 0.892906i \(-0.351337\pi\)
0.450244 + 0.892906i \(0.351337\pi\)
\(762\) 0 0
\(763\) 5.76476 0.208698
\(764\) 11.5439 0.417643
\(765\) 0 0
\(766\) 13.2399 0.478376
\(767\) 23.3501 0.843123
\(768\) 0 0
\(769\) 10.7601 0.388020 0.194010 0.981000i \(-0.437851\pi\)
0.194010 + 0.981000i \(0.437851\pi\)
\(770\) 1.23030 0.0443368
\(771\) 0 0
\(772\) 14.8407 0.534129
\(773\) −30.0712 −1.08159 −0.540793 0.841155i \(-0.681876\pi\)
−0.540793 + 0.841155i \(0.681876\pi\)
\(774\) 0 0
\(775\) −22.0894 −0.793474
\(776\) 4.47672 0.160705
\(777\) 0 0
\(778\) −15.2282 −0.545958
\(779\) 6.03268 0.216143
\(780\) 0 0
\(781\) 14.4682 0.517714
\(782\) 8.11771 0.290289
\(783\) 0 0
\(784\) −6.60993 −0.236069
\(785\) −19.5988 −0.699510
\(786\) 0 0
\(787\) 48.8635 1.74180 0.870899 0.491463i \(-0.163538\pi\)
0.870899 + 0.491463i \(0.163538\pi\)
\(788\) 25.1902 0.897365
\(789\) 0 0
\(790\) 21.0849 0.750166
\(791\) −6.45854 −0.229639
\(792\) 0 0
\(793\) −18.2363 −0.647590
\(794\) −14.7646 −0.523977
\(795\) 0 0
\(796\) 24.5421 0.869871
\(797\) −14.1065 −0.499680 −0.249840 0.968287i \(-0.580378\pi\)
−0.249840 + 0.968287i \(0.580378\pi\)
\(798\) 0 0
\(799\) −8.80608 −0.311537
\(800\) −2.23927 −0.0791700
\(801\) 0 0
\(802\) 15.1156 0.533752
\(803\) −2.30835 −0.0814598
\(804\) 0 0
\(805\) −1.49328 −0.0526311
\(806\) −52.3099 −1.84254
\(807\) 0 0
\(808\) −12.6357 −0.444524
\(809\) 14.7037 0.516953 0.258477 0.966018i \(-0.416780\pi\)
0.258477 + 0.966018i \(0.416780\pi\)
\(810\) 0 0
\(811\) −8.12649 −0.285360 −0.142680 0.989769i \(-0.545572\pi\)
−0.142680 + 0.989769i \(0.545572\pi\)
\(812\) −1.91718 −0.0672798
\(813\) 0 0
\(814\) −11.2302 −0.393617
\(815\) 15.1926 0.532173
\(816\) 0 0
\(817\) 35.0506 1.22627
\(818\) −16.7673 −0.586256
\(819\) 0 0
\(820\) 1.66155 0.0580237
\(821\) 20.8934 0.729185 0.364592 0.931167i \(-0.381208\pi\)
0.364592 + 0.931167i \(0.381208\pi\)
\(822\) 0 0
\(823\) −29.2963 −1.02120 −0.510602 0.859817i \(-0.670577\pi\)
−0.510602 + 0.859817i \(0.670577\pi\)
\(824\) −4.61471 −0.160761
\(825\) 0 0
\(826\) 2.75013 0.0956894
\(827\) −42.6398 −1.48273 −0.741365 0.671102i \(-0.765821\pi\)
−0.741365 + 0.671102i \(0.765821\pi\)
\(828\) 0 0
\(829\) −11.8692 −0.412235 −0.206117 0.978527i \(-0.566083\pi\)
−0.206117 + 0.978527i \(0.566083\pi\)
\(830\) 4.55562 0.158128
\(831\) 0 0
\(832\) −5.30281 −0.183842
\(833\) −37.2884 −1.29197
\(834\) 0 0
\(835\) −37.5494 −1.29945
\(836\) −7.15215 −0.247362
\(837\) 0 0
\(838\) 30.9245 1.06827
\(839\) −12.3808 −0.427431 −0.213716 0.976896i \(-0.568557\pi\)
−0.213716 + 0.976896i \(0.568557\pi\)
\(840\) 0 0
\(841\) −19.5771 −0.675073
\(842\) −18.4812 −0.636905
\(843\) 0 0
\(844\) 5.67395 0.195305
\(845\) 25.1222 0.864231
\(846\) 0 0
\(847\) 5.99226 0.205896
\(848\) 10.8813 0.373664
\(849\) 0 0
\(850\) −12.6323 −0.433284
\(851\) 13.6307 0.467254
\(852\) 0 0
\(853\) 23.6736 0.810568 0.405284 0.914191i \(-0.367173\pi\)
0.405284 + 0.914191i \(0.367173\pi\)
\(854\) −2.14784 −0.0734976
\(855\) 0 0
\(856\) −15.4738 −0.528882
\(857\) −14.3623 −0.490607 −0.245303 0.969446i \(-0.578888\pi\)
−0.245303 + 0.969446i \(0.578888\pi\)
\(858\) 0 0
\(859\) 38.5591 1.31562 0.657810 0.753184i \(-0.271483\pi\)
0.657810 + 0.753184i \(0.271483\pi\)
\(860\) 9.65378 0.329191
\(861\) 0 0
\(862\) −26.6535 −0.907823
\(863\) 12.8607 0.437783 0.218892 0.975749i \(-0.429756\pi\)
0.218892 + 0.975749i \(0.429756\pi\)
\(864\) 0 0
\(865\) −31.2224 −1.06159
\(866\) −31.6022 −1.07389
\(867\) 0 0
\(868\) −6.16097 −0.209117
\(869\) −15.0448 −0.510358
\(870\) 0 0
\(871\) 43.2175 1.46437
\(872\) −9.23018 −0.312573
\(873\) 0 0
\(874\) 8.68096 0.293638
\(875\) 7.51239 0.253965
\(876\) 0 0
\(877\) 33.3161 1.12500 0.562502 0.826796i \(-0.309839\pi\)
0.562502 + 0.826796i \(0.309839\pi\)
\(878\) −27.8868 −0.941134
\(879\) 0 0
\(880\) −1.96987 −0.0664044
\(881\) 2.18138 0.0734925 0.0367462 0.999325i \(-0.488301\pi\)
0.0367462 + 0.999325i \(0.488301\pi\)
\(882\) 0 0
\(883\) −41.9639 −1.41220 −0.706099 0.708113i \(-0.749547\pi\)
−0.706099 + 0.708113i \(0.749547\pi\)
\(884\) −29.9146 −1.00614
\(885\) 0 0
\(886\) 9.20646 0.309297
\(887\) −31.4222 −1.05505 −0.527526 0.849539i \(-0.676880\pi\)
−0.527526 + 0.849539i \(0.676880\pi\)
\(888\) 0 0
\(889\) −1.57946 −0.0529735
\(890\) −20.1889 −0.676733
\(891\) 0 0
\(892\) −10.2036 −0.341643
\(893\) −9.41708 −0.315131
\(894\) 0 0
\(895\) 27.2785 0.911821
\(896\) −0.624556 −0.0208649
\(897\) 0 0
\(898\) 25.8346 0.862111
\(899\) 30.2809 1.00993
\(900\) 0 0
\(901\) 61.3841 2.04500
\(902\) −1.18557 −0.0394751
\(903\) 0 0
\(904\) 10.3410 0.343937
\(905\) 38.5098 1.28011
\(906\) 0 0
\(907\) −29.5341 −0.980663 −0.490331 0.871536i \(-0.663124\pi\)
−0.490331 + 0.871536i \(0.663124\pi\)
\(908\) −14.2233 −0.472017
\(909\) 0 0
\(910\) 5.50287 0.182418
\(911\) 45.9390 1.52203 0.761014 0.648736i \(-0.224702\pi\)
0.761014 + 0.648736i \(0.224702\pi\)
\(912\) 0 0
\(913\) −3.25059 −0.107579
\(914\) −24.8590 −0.822264
\(915\) 0 0
\(916\) −20.0188 −0.661440
\(917\) −10.4344 −0.344574
\(918\) 0 0
\(919\) 34.4360 1.13594 0.567970 0.823049i \(-0.307729\pi\)
0.567970 + 0.823049i \(0.307729\pi\)
\(920\) 2.39094 0.0788271
\(921\) 0 0
\(922\) −3.22390 −0.106173
\(923\) 64.7135 2.13007
\(924\) 0 0
\(925\) −21.2112 −0.697421
\(926\) −16.6985 −0.548748
\(927\) 0 0
\(928\) 3.06967 0.100767
\(929\) −23.2946 −0.764273 −0.382136 0.924106i \(-0.624812\pi\)
−0.382136 + 0.924106i \(0.624812\pi\)
\(930\) 0 0
\(931\) −39.8756 −1.30687
\(932\) −15.2622 −0.499932
\(933\) 0 0
\(934\) −3.18752 −0.104299
\(935\) −11.1126 −0.363420
\(936\) 0 0
\(937\) 9.30052 0.303835 0.151917 0.988393i \(-0.451455\pi\)
0.151917 + 0.988393i \(0.451455\pi\)
\(938\) 5.09008 0.166197
\(939\) 0 0
\(940\) −2.59369 −0.0845969
\(941\) 10.9894 0.358245 0.179122 0.983827i \(-0.442674\pi\)
0.179122 + 0.983827i \(0.442674\pi\)
\(942\) 0 0
\(943\) 1.43899 0.0468599
\(944\) −4.40334 −0.143317
\(945\) 0 0
\(946\) −6.88829 −0.223958
\(947\) −44.9162 −1.45958 −0.729791 0.683671i \(-0.760383\pi\)
−0.729791 + 0.683671i \(0.760383\pi\)
\(948\) 0 0
\(949\) −10.3248 −0.335156
\(950\) −13.5088 −0.438283
\(951\) 0 0
\(952\) −3.52328 −0.114190
\(953\) 0.799194 0.0258884 0.0129442 0.999916i \(-0.495880\pi\)
0.0129442 + 0.999916i \(0.495880\pi\)
\(954\) 0 0
\(955\) 19.1807 0.620673
\(956\) −0.200801 −0.00649436
\(957\) 0 0
\(958\) 21.8671 0.706495
\(959\) 11.1481 0.359991
\(960\) 0 0
\(961\) 66.3095 2.13902
\(962\) −50.2304 −1.61949
\(963\) 0 0
\(964\) −17.8239 −0.574068
\(965\) 24.6585 0.793786
\(966\) 0 0
\(967\) −22.8706 −0.735468 −0.367734 0.929931i \(-0.619866\pi\)
−0.367734 + 0.929931i \(0.619866\pi\)
\(968\) −9.59443 −0.308377
\(969\) 0 0
\(970\) 7.43827 0.238828
\(971\) 0.825350 0.0264867 0.0132434 0.999912i \(-0.495784\pi\)
0.0132434 + 0.999912i \(0.495784\pi\)
\(972\) 0 0
\(973\) −0.726571 −0.0232928
\(974\) 20.0372 0.642033
\(975\) 0 0
\(976\) 3.43899 0.110079
\(977\) −47.9034 −1.53256 −0.766282 0.642504i \(-0.777896\pi\)
−0.766282 + 0.642504i \(0.777896\pi\)
\(978\) 0 0
\(979\) 14.4054 0.460399
\(980\) −10.9827 −0.350829
\(981\) 0 0
\(982\) −1.00641 −0.0321158
\(983\) −0.310883 −0.00991564 −0.00495782 0.999988i \(-0.501578\pi\)
−0.00495782 + 0.999988i \(0.501578\pi\)
\(984\) 0 0
\(985\) 41.8547 1.33360
\(986\) 17.3168 0.551480
\(987\) 0 0
\(988\) −31.9902 −1.01774
\(989\) 8.36070 0.265855
\(990\) 0 0
\(991\) 55.1840 1.75298 0.876488 0.481423i \(-0.159880\pi\)
0.876488 + 0.481423i \(0.159880\pi\)
\(992\) 9.86456 0.313200
\(993\) 0 0
\(994\) 7.62184 0.241750
\(995\) 40.7778 1.29274
\(996\) 0 0
\(997\) 54.5181 1.72660 0.863302 0.504687i \(-0.168392\pi\)
0.863302 + 0.504687i \(0.168392\pi\)
\(998\) 17.5170 0.554491
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2214.2.a.t.1.4 yes 5
3.2 odd 2 2214.2.a.q.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2214.2.a.q.1.2 5 3.2 odd 2
2214.2.a.t.1.4 yes 5 1.1 even 1 trivial