Properties

Label 2214.2.a.o.1.2
Level $2214$
Weight $2$
Character 2214.1
Self dual yes
Analytic conductor $17.679$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2214,2,Mod(1,2214)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2214.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2214, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2214 = 2 \cdot 3^{3} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2214.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,-3,0,-3,3,0,-3,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6788790075\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.86620\) of defining polynomial
Character \(\chi\) \(=\) 2214.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -0.482696 q^{5} -1.51730 q^{7} +1.00000 q^{8} -0.482696 q^{10} -6.21509 q^{11} +0.831590 q^{13} -1.51730 q^{14} +1.00000 q^{16} +1.73240 q^{17} +5.08129 q^{19} -0.482696 q^{20} -6.21509 q^{22} -1.86620 q^{23} -4.76700 q^{25} +0.831590 q^{26} -1.51730 q^{28} -4.51730 q^{29} -1.13380 q^{31} +1.00000 q^{32} +1.73240 q^{34} +0.732397 q^{35} -4.04668 q^{37} +5.08129 q^{38} -0.482696 q^{40} -1.00000 q^{41} -7.73240 q^{43} -6.21509 q^{44} -1.86620 q^{46} -6.31429 q^{47} -4.69779 q^{49} -4.76700 q^{50} +0.831590 q^{52} -3.83159 q^{53} +3.00000 q^{55} -1.51730 q^{56} -4.51730 q^{58} -3.73240 q^{59} +2.38350 q^{61} -1.13380 q^{62} +1.00000 q^{64} -0.401405 q^{65} -4.00000 q^{67} +1.73240 q^{68} +0.732397 q^{70} -9.41811 q^{71} +6.03461 q^{73} -4.04668 q^{74} +5.08129 q^{76} +9.43018 q^{77} +1.55191 q^{79} -0.482696 q^{80} -1.00000 q^{82} -4.41811 q^{83} -0.836221 q^{85} -7.73240 q^{86} -6.21509 q^{88} -18.1626 q^{89} -1.26178 q^{91} -1.86620 q^{92} -6.31429 q^{94} -2.45272 q^{95} +9.54608 q^{97} -4.69779 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 3 q^{5} - 3 q^{7} + 3 q^{8} - 3 q^{10} - 5 q^{11} - 2 q^{13} - 3 q^{14} + 3 q^{16} - 10 q^{17} - 6 q^{19} - 3 q^{20} - 5 q^{22} + 2 q^{23} + 4 q^{25} - 2 q^{26} - 3 q^{28} - 12 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.482696 −0.215868 −0.107934 0.994158i \(-0.534424\pi\)
−0.107934 + 0.994158i \(0.534424\pi\)
\(6\) 0 0
\(7\) −1.51730 −0.573487 −0.286744 0.958007i \(-0.592573\pi\)
−0.286744 + 0.958007i \(0.592573\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.482696 −0.152642
\(11\) −6.21509 −1.87392 −0.936960 0.349435i \(-0.886373\pi\)
−0.936960 + 0.349435i \(0.886373\pi\)
\(12\) 0 0
\(13\) 0.831590 0.230642 0.115321 0.993328i \(-0.463210\pi\)
0.115321 + 0.993328i \(0.463210\pi\)
\(14\) −1.51730 −0.405517
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.73240 0.420168 0.210084 0.977683i \(-0.432626\pi\)
0.210084 + 0.977683i \(0.432626\pi\)
\(18\) 0 0
\(19\) 5.08129 1.16573 0.582864 0.812570i \(-0.301932\pi\)
0.582864 + 0.812570i \(0.301932\pi\)
\(20\) −0.482696 −0.107934
\(21\) 0 0
\(22\) −6.21509 −1.32506
\(23\) −1.86620 −0.389129 −0.194565 0.980890i \(-0.562329\pi\)
−0.194565 + 0.980890i \(0.562329\pi\)
\(24\) 0 0
\(25\) −4.76700 −0.953401
\(26\) 0.831590 0.163088
\(27\) 0 0
\(28\) −1.51730 −0.286744
\(29\) −4.51730 −0.838842 −0.419421 0.907792i \(-0.637767\pi\)
−0.419421 + 0.907792i \(0.637767\pi\)
\(30\) 0 0
\(31\) −1.13380 −0.203637 −0.101818 0.994803i \(-0.532466\pi\)
−0.101818 + 0.994803i \(0.532466\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.73240 0.297104
\(35\) 0.732397 0.123798
\(36\) 0 0
\(37\) −4.04668 −0.665271 −0.332635 0.943056i \(-0.607938\pi\)
−0.332635 + 0.943056i \(0.607938\pi\)
\(38\) 5.08129 0.824294
\(39\) 0 0
\(40\) −0.482696 −0.0763209
\(41\) −1.00000 −0.156174
\(42\) 0 0
\(43\) −7.73240 −1.17918 −0.589590 0.807703i \(-0.700711\pi\)
−0.589590 + 0.807703i \(0.700711\pi\)
\(44\) −6.21509 −0.936960
\(45\) 0 0
\(46\) −1.86620 −0.275156
\(47\) −6.31429 −0.921033 −0.460517 0.887651i \(-0.652336\pi\)
−0.460517 + 0.887651i \(0.652336\pi\)
\(48\) 0 0
\(49\) −4.69779 −0.671113
\(50\) −4.76700 −0.674156
\(51\) 0 0
\(52\) 0.831590 0.115321
\(53\) −3.83159 −0.526309 −0.263155 0.964754i \(-0.584763\pi\)
−0.263155 + 0.964754i \(0.584763\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) −1.51730 −0.202758
\(57\) 0 0
\(58\) −4.51730 −0.593151
\(59\) −3.73240 −0.485917 −0.242958 0.970037i \(-0.578118\pi\)
−0.242958 + 0.970037i \(0.578118\pi\)
\(60\) 0 0
\(61\) 2.38350 0.305176 0.152588 0.988290i \(-0.451239\pi\)
0.152588 + 0.988290i \(0.451239\pi\)
\(62\) −1.13380 −0.143993
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.401405 −0.0497882
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 1.73240 0.210084
\(69\) 0 0
\(70\) 0.732397 0.0875381
\(71\) −9.41811 −1.11772 −0.558862 0.829261i \(-0.688762\pi\)
−0.558862 + 0.829261i \(0.688762\pi\)
\(72\) 0 0
\(73\) 6.03461 0.706297 0.353149 0.935567i \(-0.385111\pi\)
0.353149 + 0.935567i \(0.385111\pi\)
\(74\) −4.04668 −0.470417
\(75\) 0 0
\(76\) 5.08129 0.582864
\(77\) 9.43018 1.07467
\(78\) 0 0
\(79\) 1.55191 0.174604 0.0873019 0.996182i \(-0.472176\pi\)
0.0873019 + 0.996182i \(0.472176\pi\)
\(80\) −0.482696 −0.0539670
\(81\) 0 0
\(82\) −1.00000 −0.110432
\(83\) −4.41811 −0.484951 −0.242475 0.970158i \(-0.577959\pi\)
−0.242475 + 0.970158i \(0.577959\pi\)
\(84\) 0 0
\(85\) −0.836221 −0.0907009
\(86\) −7.73240 −0.833806
\(87\) 0 0
\(88\) −6.21509 −0.662531
\(89\) −18.1626 −1.92523 −0.962615 0.270874i \(-0.912687\pi\)
−0.962615 + 0.270874i \(0.912687\pi\)
\(90\) 0 0
\(91\) −1.26178 −0.132270
\(92\) −1.86620 −0.194565
\(93\) 0 0
\(94\) −6.31429 −0.651269
\(95\) −2.45272 −0.251644
\(96\) 0 0
\(97\) 9.54608 0.969258 0.484629 0.874720i \(-0.338955\pi\)
0.484629 + 0.874720i \(0.338955\pi\)
\(98\) −4.69779 −0.474548
\(99\) 0 0
\(100\) −4.76700 −0.476700
\(101\) 11.5461 1.14888 0.574439 0.818547i \(-0.305220\pi\)
0.574439 + 0.818547i \(0.305220\pi\)
\(102\) 0 0
\(103\) −5.66318 −0.558010 −0.279005 0.960290i \(-0.590005\pi\)
−0.279005 + 0.960290i \(0.590005\pi\)
\(104\) 0.831590 0.0815441
\(105\) 0 0
\(106\) −3.83159 −0.372157
\(107\) −3.56399 −0.344544 −0.172272 0.985049i \(-0.555111\pi\)
−0.172272 + 0.985049i \(0.555111\pi\)
\(108\) 0 0
\(109\) 16.3656 1.56754 0.783770 0.621051i \(-0.213294\pi\)
0.783770 + 0.621051i \(0.213294\pi\)
\(110\) 3.00000 0.286039
\(111\) 0 0
\(112\) −1.51730 −0.143372
\(113\) 9.03461 0.849904 0.424952 0.905216i \(-0.360291\pi\)
0.424952 + 0.905216i \(0.360291\pi\)
\(114\) 0 0
\(115\) 0.900806 0.0840006
\(116\) −4.51730 −0.419421
\(117\) 0 0
\(118\) −3.73240 −0.343595
\(119\) −2.62857 −0.240961
\(120\) 0 0
\(121\) 27.6274 2.51158
\(122\) 2.38350 0.215792
\(123\) 0 0
\(124\) −1.13380 −0.101818
\(125\) 4.71449 0.421677
\(126\) 0 0
\(127\) 10.7791 0.956489 0.478244 0.878227i \(-0.341273\pi\)
0.478244 + 0.878227i \(0.341273\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −0.401405 −0.0352056
\(131\) 14.9596 1.30702 0.653512 0.756917i \(-0.273295\pi\)
0.653512 + 0.756917i \(0.273295\pi\)
\(132\) 0 0
\(133\) −7.70986 −0.668530
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 1.73240 0.148552
\(137\) −1.79698 −0.153527 −0.0767633 0.997049i \(-0.524459\pi\)
−0.0767633 + 0.997049i \(0.524459\pi\)
\(138\) 0 0
\(139\) 0.0645856 0.00547808 0.00273904 0.999996i \(-0.499128\pi\)
0.00273904 + 0.999996i \(0.499128\pi\)
\(140\) 0.732397 0.0618988
\(141\) 0 0
\(142\) −9.41811 −0.790350
\(143\) −5.16841 −0.432204
\(144\) 0 0
\(145\) 2.18048 0.181079
\(146\) 6.03461 0.499428
\(147\) 0 0
\(148\) −4.04668 −0.332635
\(149\) −7.54608 −0.618199 −0.309100 0.951030i \(-0.600028\pi\)
−0.309100 + 0.951030i \(0.600028\pi\)
\(150\) 0 0
\(151\) −9.06922 −0.738042 −0.369021 0.929421i \(-0.620307\pi\)
−0.369021 + 0.929421i \(0.620307\pi\)
\(152\) 5.08129 0.412147
\(153\) 0 0
\(154\) 9.43018 0.759906
\(155\) 0.547282 0.0439587
\(156\) 0 0
\(157\) 1.56982 0.125285 0.0626424 0.998036i \(-0.480047\pi\)
0.0626424 + 0.998036i \(0.480047\pi\)
\(158\) 1.55191 0.123464
\(159\) 0 0
\(160\) −0.482696 −0.0381605
\(161\) 2.83159 0.223161
\(162\) 0 0
\(163\) −1.93541 −0.151593 −0.0757967 0.997123i \(-0.524150\pi\)
−0.0757967 + 0.997123i \(0.524150\pi\)
\(164\) −1.00000 −0.0780869
\(165\) 0 0
\(166\) −4.41811 −0.342912
\(167\) 5.19719 0.402171 0.201085 0.979574i \(-0.435553\pi\)
0.201085 + 0.979574i \(0.435553\pi\)
\(168\) 0 0
\(169\) −12.3085 −0.946804
\(170\) −0.836221 −0.0641352
\(171\) 0 0
\(172\) −7.73240 −0.589590
\(173\) 7.36097 0.559644 0.279822 0.960052i \(-0.409725\pi\)
0.279822 + 0.960052i \(0.409725\pi\)
\(174\) 0 0
\(175\) 7.23300 0.546763
\(176\) −6.21509 −0.468480
\(177\) 0 0
\(178\) −18.1626 −1.36134
\(179\) −14.1459 −1.05731 −0.528656 0.848836i \(-0.677304\pi\)
−0.528656 + 0.848836i \(0.677304\pi\)
\(180\) 0 0
\(181\) 6.40141 0.475813 0.237906 0.971288i \(-0.423539\pi\)
0.237906 + 0.971288i \(0.423539\pi\)
\(182\) −1.26178 −0.0935290
\(183\) 0 0
\(184\) −1.86620 −0.137578
\(185\) 1.95332 0.143611
\(186\) 0 0
\(187\) −10.7670 −0.787361
\(188\) −6.31429 −0.460517
\(189\) 0 0
\(190\) −2.45272 −0.177939
\(191\) −14.4994 −1.04914 −0.524570 0.851367i \(-0.675774\pi\)
−0.524570 + 0.851367i \(0.675774\pi\)
\(192\) 0 0
\(193\) 18.3310 1.31949 0.659747 0.751488i \(-0.270664\pi\)
0.659747 + 0.751488i \(0.270664\pi\)
\(194\) 9.54608 0.685369
\(195\) 0 0
\(196\) −4.69779 −0.335556
\(197\) −18.7145 −1.33335 −0.666676 0.745347i \(-0.732284\pi\)
−0.666676 + 0.745347i \(0.732284\pi\)
\(198\) 0 0
\(199\) 5.00000 0.354441 0.177220 0.984171i \(-0.443289\pi\)
0.177220 + 0.984171i \(0.443289\pi\)
\(200\) −4.76700 −0.337078
\(201\) 0 0
\(202\) 11.5461 0.812380
\(203\) 6.85412 0.481065
\(204\) 0 0
\(205\) 0.482696 0.0337129
\(206\) −5.66318 −0.394572
\(207\) 0 0
\(208\) 0.831590 0.0576604
\(209\) −31.5807 −2.18448
\(210\) 0 0
\(211\) −18.5461 −1.27677 −0.638383 0.769719i \(-0.720396\pi\)
−0.638383 + 0.769719i \(0.720396\pi\)
\(212\) −3.83159 −0.263155
\(213\) 0 0
\(214\) −3.56399 −0.243629
\(215\) 3.73240 0.254547
\(216\) 0 0
\(217\) 1.72032 0.116783
\(218\) 16.3656 1.10842
\(219\) 0 0
\(220\) 3.00000 0.202260
\(221\) 1.44064 0.0969082
\(222\) 0 0
\(223\) 3.32636 0.222750 0.111375 0.993778i \(-0.464475\pi\)
0.111375 + 0.993778i \(0.464475\pi\)
\(224\) −1.51730 −0.101379
\(225\) 0 0
\(226\) 9.03461 0.600973
\(227\) 22.2738 1.47837 0.739184 0.673504i \(-0.235212\pi\)
0.739184 + 0.673504i \(0.235212\pi\)
\(228\) 0 0
\(229\) 20.7670 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(230\) 0.900806 0.0593974
\(231\) 0 0
\(232\) −4.51730 −0.296576
\(233\) −15.1280 −0.991066 −0.495533 0.868589i \(-0.665027\pi\)
−0.495533 + 0.868589i \(0.665027\pi\)
\(234\) 0 0
\(235\) 3.04788 0.198822
\(236\) −3.73240 −0.242958
\(237\) 0 0
\(238\) −2.62857 −0.170385
\(239\) −12.2318 −0.791209 −0.395605 0.918421i \(-0.629465\pi\)
−0.395605 + 0.918421i \(0.629465\pi\)
\(240\) 0 0
\(241\) 21.2151 1.36658 0.683292 0.730145i \(-0.260548\pi\)
0.683292 + 0.730145i \(0.260548\pi\)
\(242\) 27.6274 1.77595
\(243\) 0 0
\(244\) 2.38350 0.152588
\(245\) 2.26760 0.144872
\(246\) 0 0
\(247\) 4.22555 0.268865
\(248\) −1.13380 −0.0719965
\(249\) 0 0
\(250\) 4.71449 0.298171
\(251\) 1.71449 0.108218 0.0541089 0.998535i \(-0.482768\pi\)
0.0541089 + 0.998535i \(0.482768\pi\)
\(252\) 0 0
\(253\) 11.5986 0.729197
\(254\) 10.7791 0.676340
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.2272 −1.13698 −0.568490 0.822690i \(-0.692472\pi\)
−0.568490 + 0.822690i \(0.692472\pi\)
\(258\) 0 0
\(259\) 6.14005 0.381524
\(260\) −0.401405 −0.0248941
\(261\) 0 0
\(262\) 14.9596 0.924205
\(263\) 1.44064 0.0888339 0.0444170 0.999013i \(-0.485857\pi\)
0.0444170 + 0.999013i \(0.485857\pi\)
\(264\) 0 0
\(265\) 1.84949 0.113613
\(266\) −7.70986 −0.472722
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) 23.7386 1.44737 0.723685 0.690130i \(-0.242447\pi\)
0.723685 + 0.690130i \(0.242447\pi\)
\(270\) 0 0
\(271\) 11.3835 0.691499 0.345749 0.938327i \(-0.387625\pi\)
0.345749 + 0.938327i \(0.387625\pi\)
\(272\) 1.73240 0.105042
\(273\) 0 0
\(274\) −1.79698 −0.108560
\(275\) 29.6274 1.78660
\(276\) 0 0
\(277\) 22.1400 1.33027 0.665133 0.746725i \(-0.268375\pi\)
0.665133 + 0.746725i \(0.268375\pi\)
\(278\) 0.0645856 0.00387358
\(279\) 0 0
\(280\) 0.732397 0.0437691
\(281\) 2.49477 0.148826 0.0744128 0.997228i \(-0.476292\pi\)
0.0744128 + 0.997228i \(0.476292\pi\)
\(282\) 0 0
\(283\) −16.4948 −0.980512 −0.490256 0.871578i \(-0.663097\pi\)
−0.490256 + 0.871578i \(0.663097\pi\)
\(284\) −9.41811 −0.558862
\(285\) 0 0
\(286\) −5.16841 −0.305614
\(287\) 1.51730 0.0895636
\(288\) 0 0
\(289\) −13.9988 −0.823459
\(290\) 2.18048 0.128042
\(291\) 0 0
\(292\) 6.03461 0.353149
\(293\) 1.50060 0.0876659 0.0438330 0.999039i \(-0.486043\pi\)
0.0438330 + 0.999039i \(0.486043\pi\)
\(294\) 0 0
\(295\) 1.80161 0.104894
\(296\) −4.04668 −0.235209
\(297\) 0 0
\(298\) −7.54608 −0.437133
\(299\) −1.55191 −0.0897494
\(300\) 0 0
\(301\) 11.7324 0.676244
\(302\) −9.06922 −0.521875
\(303\) 0 0
\(304\) 5.08129 0.291432
\(305\) −1.15051 −0.0658778
\(306\) 0 0
\(307\) 1.93541 0.110460 0.0552300 0.998474i \(-0.482411\pi\)
0.0552300 + 0.998474i \(0.482411\pi\)
\(308\) 9.43018 0.537335
\(309\) 0 0
\(310\) 0.547282 0.0310835
\(311\) −11.5565 −0.655311 −0.327656 0.944797i \(-0.606259\pi\)
−0.327656 + 0.944797i \(0.606259\pi\)
\(312\) 0 0
\(313\) −28.8662 −1.63161 −0.815807 0.578324i \(-0.803707\pi\)
−0.815807 + 0.578324i \(0.803707\pi\)
\(314\) 1.56982 0.0885898
\(315\) 0 0
\(316\) 1.55191 0.0873019
\(317\) −32.9238 −1.84918 −0.924591 0.380961i \(-0.875593\pi\)
−0.924591 + 0.380961i \(0.875593\pi\)
\(318\) 0 0
\(319\) 28.0755 1.57192
\(320\) −0.482696 −0.0269835
\(321\) 0 0
\(322\) 2.83159 0.157798
\(323\) 8.80281 0.489801
\(324\) 0 0
\(325\) −3.96419 −0.219894
\(326\) −1.93541 −0.107193
\(327\) 0 0
\(328\) −1.00000 −0.0552158
\(329\) 9.58069 0.528201
\(330\) 0 0
\(331\) −7.37143 −0.405170 −0.202585 0.979265i \(-0.564934\pi\)
−0.202585 + 0.979265i \(0.564934\pi\)
\(332\) −4.41811 −0.242475
\(333\) 0 0
\(334\) 5.19719 0.284378
\(335\) 1.93078 0.105490
\(336\) 0 0
\(337\) 18.1113 0.986584 0.493292 0.869864i \(-0.335793\pi\)
0.493292 + 0.869864i \(0.335793\pi\)
\(338\) −12.3085 −0.669492
\(339\) 0 0
\(340\) −0.836221 −0.0453504
\(341\) 7.04668 0.381599
\(342\) 0 0
\(343\) 17.7491 0.958361
\(344\) −7.73240 −0.416903
\(345\) 0 0
\(346\) 7.36097 0.395728
\(347\) 22.8258 1.22535 0.612676 0.790335i \(-0.290093\pi\)
0.612676 + 0.790335i \(0.290093\pi\)
\(348\) 0 0
\(349\) 23.9175 1.28028 0.640138 0.768260i \(-0.278877\pi\)
0.640138 + 0.768260i \(0.278877\pi\)
\(350\) 7.23300 0.386620
\(351\) 0 0
\(352\) −6.21509 −0.331266
\(353\) 17.7791 0.946285 0.473142 0.880986i \(-0.343120\pi\)
0.473142 + 0.880986i \(0.343120\pi\)
\(354\) 0 0
\(355\) 4.54608 0.241281
\(356\) −18.1626 −0.962615
\(357\) 0 0
\(358\) −14.1459 −0.747633
\(359\) 26.1914 1.38233 0.691164 0.722698i \(-0.257098\pi\)
0.691164 + 0.722698i \(0.257098\pi\)
\(360\) 0 0
\(361\) 6.81952 0.358922
\(362\) 6.40141 0.336450
\(363\) 0 0
\(364\) −1.26178 −0.0661350
\(365\) −2.91288 −0.152467
\(366\) 0 0
\(367\) −19.1159 −0.997842 −0.498921 0.866648i \(-0.666270\pi\)
−0.498921 + 0.866648i \(0.666270\pi\)
\(368\) −1.86620 −0.0972823
\(369\) 0 0
\(370\) 1.95332 0.101548
\(371\) 5.81369 0.301832
\(372\) 0 0
\(373\) −33.0696 −1.71228 −0.856140 0.516743i \(-0.827144\pi\)
−0.856140 + 0.516743i \(0.827144\pi\)
\(374\) −10.7670 −0.556749
\(375\) 0 0
\(376\) −6.31429 −0.325634
\(377\) −3.75655 −0.193472
\(378\) 0 0
\(379\) −6.76700 −0.347598 −0.173799 0.984781i \(-0.555604\pi\)
−0.173799 + 0.984781i \(0.555604\pi\)
\(380\) −2.45272 −0.125822
\(381\) 0 0
\(382\) −14.4994 −0.741854
\(383\) −14.2559 −0.728445 −0.364222 0.931312i \(-0.618665\pi\)
−0.364222 + 0.931312i \(0.618665\pi\)
\(384\) 0 0
\(385\) −4.55191 −0.231987
\(386\) 18.3310 0.933023
\(387\) 0 0
\(388\) 9.54608 0.484629
\(389\) −24.4648 −1.24041 −0.620207 0.784438i \(-0.712951\pi\)
−0.620207 + 0.784438i \(0.712951\pi\)
\(390\) 0 0
\(391\) −3.23300 −0.163500
\(392\) −4.69779 −0.237274
\(393\) 0 0
\(394\) −18.7145 −0.942823
\(395\) −0.749102 −0.0376914
\(396\) 0 0
\(397\) −8.49477 −0.426340 −0.213170 0.977015i \(-0.568379\pi\)
−0.213170 + 0.977015i \(0.568379\pi\)
\(398\) 5.00000 0.250627
\(399\) 0 0
\(400\) −4.76700 −0.238350
\(401\) 38.4636 1.92078 0.960390 0.278659i \(-0.0898899\pi\)
0.960390 + 0.278659i \(0.0898899\pi\)
\(402\) 0 0
\(403\) −0.942858 −0.0469671
\(404\) 11.5461 0.574439
\(405\) 0 0
\(406\) 6.85412 0.340164
\(407\) 25.1505 1.24666
\(408\) 0 0
\(409\) −1.51730 −0.0750259 −0.0375129 0.999296i \(-0.511944\pi\)
−0.0375129 + 0.999296i \(0.511944\pi\)
\(410\) 0.482696 0.0238387
\(411\) 0 0
\(412\) −5.66318 −0.279005
\(413\) 5.66318 0.278667
\(414\) 0 0
\(415\) 2.13260 0.104685
\(416\) 0.831590 0.0407721
\(417\) 0 0
\(418\) −31.5807 −1.54466
\(419\) 1.07666 0.0525983 0.0262991 0.999654i \(-0.491628\pi\)
0.0262991 + 0.999654i \(0.491628\pi\)
\(420\) 0 0
\(421\) −18.4948 −0.901380 −0.450690 0.892681i \(-0.648822\pi\)
−0.450690 + 0.892681i \(0.648822\pi\)
\(422\) −18.5461 −0.902809
\(423\) 0 0
\(424\) −3.83159 −0.186078
\(425\) −8.25834 −0.400588
\(426\) 0 0
\(427\) −3.61650 −0.175015
\(428\) −3.56399 −0.172272
\(429\) 0 0
\(430\) 3.73240 0.179992
\(431\) 22.6332 1.09020 0.545102 0.838370i \(-0.316491\pi\)
0.545102 + 0.838370i \(0.316491\pi\)
\(432\) 0 0
\(433\) 10.5340 0.506232 0.253116 0.967436i \(-0.418545\pi\)
0.253116 + 0.967436i \(0.418545\pi\)
\(434\) 1.72032 0.0825781
\(435\) 0 0
\(436\) 16.3656 0.783770
\(437\) −9.48270 −0.453619
\(438\) 0 0
\(439\) −30.0230 −1.43292 −0.716459 0.697630i \(-0.754238\pi\)
−0.716459 + 0.697630i \(0.754238\pi\)
\(440\) 3.00000 0.143019
\(441\) 0 0
\(442\) 1.44064 0.0685244
\(443\) 37.7658 1.79431 0.897154 0.441718i \(-0.145631\pi\)
0.897154 + 0.441718i \(0.145631\pi\)
\(444\) 0 0
\(445\) 8.76700 0.415596
\(446\) 3.32636 0.157508
\(447\) 0 0
\(448\) −1.51730 −0.0716859
\(449\) 33.9191 1.60074 0.800371 0.599505i \(-0.204636\pi\)
0.800371 + 0.599505i \(0.204636\pi\)
\(450\) 0 0
\(451\) 6.21509 0.292657
\(452\) 9.03461 0.424952
\(453\) 0 0
\(454\) 22.2738 1.04536
\(455\) 0.609054 0.0285529
\(456\) 0 0
\(457\) −34.8304 −1.62930 −0.814649 0.579955i \(-0.803070\pi\)
−0.814649 + 0.579955i \(0.803070\pi\)
\(458\) 20.7670 0.970378
\(459\) 0 0
\(460\) 0.900806 0.0420003
\(461\) 11.9988 0.558840 0.279420 0.960169i \(-0.409858\pi\)
0.279420 + 0.960169i \(0.409858\pi\)
\(462\) 0 0
\(463\) −29.2318 −1.35852 −0.679258 0.733899i \(-0.737698\pi\)
−0.679258 + 0.733899i \(0.737698\pi\)
\(464\) −4.51730 −0.209711
\(465\) 0 0
\(466\) −15.1280 −0.700790
\(467\) −17.4077 −0.805530 −0.402765 0.915303i \(-0.631951\pi\)
−0.402765 + 0.915303i \(0.631951\pi\)
\(468\) 0 0
\(469\) 6.06922 0.280250
\(470\) 3.04788 0.140588
\(471\) 0 0
\(472\) −3.73240 −0.171797
\(473\) 48.0576 2.20969
\(474\) 0 0
\(475\) −24.2225 −1.11141
\(476\) −2.62857 −0.120480
\(477\) 0 0
\(478\) −12.2318 −0.559469
\(479\) −16.1159 −0.736354 −0.368177 0.929756i \(-0.620018\pi\)
−0.368177 + 0.929756i \(0.620018\pi\)
\(480\) 0 0
\(481\) −3.36518 −0.153439
\(482\) 21.2151 0.966321
\(483\) 0 0
\(484\) 27.6274 1.25579
\(485\) −4.60786 −0.209232
\(486\) 0 0
\(487\) 33.8529 1.53402 0.767011 0.641634i \(-0.221743\pi\)
0.767011 + 0.641634i \(0.221743\pi\)
\(488\) 2.38350 0.107896
\(489\) 0 0
\(490\) 2.26760 0.102440
\(491\) 6.12636 0.276479 0.138239 0.990399i \(-0.455856\pi\)
0.138239 + 0.990399i \(0.455856\pi\)
\(492\) 0 0
\(493\) −7.82576 −0.352455
\(494\) 4.22555 0.190117
\(495\) 0 0
\(496\) −1.13380 −0.0509092
\(497\) 14.2901 0.641000
\(498\) 0 0
\(499\) −13.7549 −0.615755 −0.307878 0.951426i \(-0.599619\pi\)
−0.307878 + 0.951426i \(0.599619\pi\)
\(500\) 4.71449 0.210839
\(501\) 0 0
\(502\) 1.71449 0.0765216
\(503\) −29.1521 −1.29983 −0.649914 0.760007i \(-0.725195\pi\)
−0.649914 + 0.760007i \(0.725195\pi\)
\(504\) 0 0
\(505\) −5.57325 −0.248006
\(506\) 11.5986 0.515620
\(507\) 0 0
\(508\) 10.7791 0.478244
\(509\) 25.2030 1.11710 0.558552 0.829469i \(-0.311357\pi\)
0.558552 + 0.829469i \(0.311357\pi\)
\(510\) 0 0
\(511\) −9.15634 −0.405052
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −18.2272 −0.803966
\(515\) 2.73359 0.120457
\(516\) 0 0
\(517\) 39.2439 1.72594
\(518\) 6.14005 0.269778
\(519\) 0 0
\(520\) −0.401405 −0.0176028
\(521\) −31.7900 −1.39274 −0.696372 0.717681i \(-0.745203\pi\)
−0.696372 + 0.717681i \(0.745203\pi\)
\(522\) 0 0
\(523\) −10.4753 −0.458051 −0.229025 0.973420i \(-0.573554\pi\)
−0.229025 + 0.973420i \(0.573554\pi\)
\(524\) 14.9596 0.653512
\(525\) 0 0
\(526\) 1.44064 0.0628151
\(527\) −1.96419 −0.0855616
\(528\) 0 0
\(529\) −19.5173 −0.848578
\(530\) 1.84949 0.0803368
\(531\) 0 0
\(532\) −7.70986 −0.334265
\(533\) −0.831590 −0.0360202
\(534\) 0 0
\(535\) 1.72032 0.0743760
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) 23.7386 1.02345
\(539\) 29.1972 1.25761
\(540\) 0 0
\(541\) 30.4877 1.31077 0.655385 0.755295i \(-0.272506\pi\)
0.655385 + 0.755295i \(0.272506\pi\)
\(542\) 11.3835 0.488963
\(543\) 0 0
\(544\) 1.73240 0.0742759
\(545\) −7.89961 −0.338382
\(546\) 0 0
\(547\) 13.5940 0.581236 0.290618 0.956839i \(-0.406139\pi\)
0.290618 + 0.956839i \(0.406139\pi\)
\(548\) −1.79698 −0.0767633
\(549\) 0 0
\(550\) 29.6274 1.26332
\(551\) −22.9537 −0.977862
\(552\) 0 0
\(553\) −2.35472 −0.100133
\(554\) 22.1400 0.940641
\(555\) 0 0
\(556\) 0.0645856 0.00273904
\(557\) 20.3823 0.863626 0.431813 0.901963i \(-0.357874\pi\)
0.431813 + 0.901963i \(0.357874\pi\)
\(558\) 0 0
\(559\) −6.43018 −0.271968
\(560\) 0.732397 0.0309494
\(561\) 0 0
\(562\) 2.49477 0.105236
\(563\) −0.906635 −0.0382101 −0.0191050 0.999817i \(-0.506082\pi\)
−0.0191050 + 0.999817i \(0.506082\pi\)
\(564\) 0 0
\(565\) −4.36097 −0.183467
\(566\) −16.4948 −0.693327
\(567\) 0 0
\(568\) −9.41811 −0.395175
\(569\) −19.3730 −0.812160 −0.406080 0.913837i \(-0.633105\pi\)
−0.406080 + 0.913837i \(0.633105\pi\)
\(570\) 0 0
\(571\) 8.25433 0.345433 0.172717 0.984972i \(-0.444746\pi\)
0.172717 + 0.984972i \(0.444746\pi\)
\(572\) −5.16841 −0.216102
\(573\) 0 0
\(574\) 1.51730 0.0633310
\(575\) 8.89618 0.370996
\(576\) 0 0
\(577\) −9.19719 −0.382884 −0.191442 0.981504i \(-0.561316\pi\)
−0.191442 + 0.981504i \(0.561316\pi\)
\(578\) −13.9988 −0.582273
\(579\) 0 0
\(580\) 2.18048 0.0905397
\(581\) 6.70362 0.278113
\(582\) 0 0
\(583\) 23.8137 0.986262
\(584\) 6.03461 0.249714
\(585\) 0 0
\(586\) 1.50060 0.0619892
\(587\) 4.07666 0.168262 0.0841309 0.996455i \(-0.473189\pi\)
0.0841309 + 0.996455i \(0.473189\pi\)
\(588\) 0 0
\(589\) −5.76118 −0.237385
\(590\) 1.80161 0.0741712
\(591\) 0 0
\(592\) −4.04668 −0.166318
\(593\) 0.812072 0.0333478 0.0166739 0.999861i \(-0.494692\pi\)
0.0166739 + 0.999861i \(0.494692\pi\)
\(594\) 0 0
\(595\) 1.26880 0.0520158
\(596\) −7.54608 −0.309100
\(597\) 0 0
\(598\) −1.55191 −0.0634624
\(599\) 7.23300 0.295532 0.147766 0.989022i \(-0.452792\pi\)
0.147766 + 0.989022i \(0.452792\pi\)
\(600\) 0 0
\(601\) −10.1505 −0.414048 −0.207024 0.978336i \(-0.566378\pi\)
−0.207024 + 0.978336i \(0.566378\pi\)
\(602\) 11.7324 0.478177
\(603\) 0 0
\(604\) −9.06922 −0.369021
\(605\) −13.3356 −0.542170
\(606\) 0 0
\(607\) −40.6861 −1.65140 −0.825700 0.564110i \(-0.809219\pi\)
−0.825700 + 0.564110i \(0.809219\pi\)
\(608\) 5.08129 0.206074
\(609\) 0 0
\(610\) −1.15051 −0.0465827
\(611\) −5.25090 −0.212429
\(612\) 0 0
\(613\) 9.30221 0.375713 0.187856 0.982197i \(-0.439846\pi\)
0.187856 + 0.982197i \(0.439846\pi\)
\(614\) 1.93541 0.0781070
\(615\) 0 0
\(616\) 9.43018 0.379953
\(617\) −10.9054 −0.439036 −0.219518 0.975608i \(-0.570449\pi\)
−0.219518 + 0.975608i \(0.570449\pi\)
\(618\) 0 0
\(619\) −0.0645856 −0.00259591 −0.00129796 0.999999i \(-0.500413\pi\)
−0.00129796 + 0.999999i \(0.500413\pi\)
\(620\) 0.547282 0.0219794
\(621\) 0 0
\(622\) −11.5565 −0.463375
\(623\) 27.5582 1.10409
\(624\) 0 0
\(625\) 21.5594 0.862374
\(626\) −28.8662 −1.15373
\(627\) 0 0
\(628\) 1.56982 0.0626424
\(629\) −7.01046 −0.279525
\(630\) 0 0
\(631\) −29.3835 −1.16974 −0.584869 0.811127i \(-0.698854\pi\)
−0.584869 + 0.811127i \(0.698854\pi\)
\(632\) 1.55191 0.0617318
\(633\) 0 0
\(634\) −32.9238 −1.30757
\(635\) −5.20302 −0.206475
\(636\) 0 0
\(637\) −3.90663 −0.154787
\(638\) 28.0755 1.11152
\(639\) 0 0
\(640\) −0.482696 −0.0190802
\(641\) 8.09337 0.319669 0.159834 0.987144i \(-0.448904\pi\)
0.159834 + 0.987144i \(0.448904\pi\)
\(642\) 0 0
\(643\) 36.6036 1.44351 0.721753 0.692150i \(-0.243336\pi\)
0.721753 + 0.692150i \(0.243336\pi\)
\(644\) 2.83159 0.111580
\(645\) 0 0
\(646\) 8.80281 0.346342
\(647\) −22.3656 −0.879282 −0.439641 0.898173i \(-0.644894\pi\)
−0.439641 + 0.898173i \(0.644894\pi\)
\(648\) 0 0
\(649\) 23.1972 0.910569
\(650\) −3.96419 −0.155488
\(651\) 0 0
\(652\) −1.93541 −0.0757967
\(653\) 15.2451 0.596586 0.298293 0.954474i \(-0.403583\pi\)
0.298293 + 0.954474i \(0.403583\pi\)
\(654\) 0 0
\(655\) −7.22092 −0.282145
\(656\) −1.00000 −0.0390434
\(657\) 0 0
\(658\) 9.58069 0.373494
\(659\) −13.2855 −0.517530 −0.258765 0.965940i \(-0.583315\pi\)
−0.258765 + 0.965940i \(0.583315\pi\)
\(660\) 0 0
\(661\) −25.4873 −0.991342 −0.495671 0.868510i \(-0.665078\pi\)
−0.495671 + 0.868510i \(0.665078\pi\)
\(662\) −7.37143 −0.286499
\(663\) 0 0
\(664\) −4.41811 −0.171456
\(665\) 3.72152 0.144314
\(666\) 0 0
\(667\) 8.43018 0.326418
\(668\) 5.19719 0.201085
\(669\) 0 0
\(670\) 1.93078 0.0745927
\(671\) −14.8137 −0.571876
\(672\) 0 0
\(673\) 23.2364 0.895698 0.447849 0.894109i \(-0.352190\pi\)
0.447849 + 0.894109i \(0.352190\pi\)
\(674\) 18.1113 0.697620
\(675\) 0 0
\(676\) −12.3085 −0.473402
\(677\) −2.29477 −0.0881951 −0.0440975 0.999027i \(-0.514041\pi\)
−0.0440975 + 0.999027i \(0.514041\pi\)
\(678\) 0 0
\(679\) −14.4843 −0.555857
\(680\) −0.836221 −0.0320676
\(681\) 0 0
\(682\) 7.04668 0.269831
\(683\) −18.9475 −0.725006 −0.362503 0.931983i \(-0.618078\pi\)
−0.362503 + 0.931983i \(0.618078\pi\)
\(684\) 0 0
\(685\) 0.867396 0.0331415
\(686\) 17.7491 0.677664
\(687\) 0 0
\(688\) −7.73240 −0.294795
\(689\) −3.18631 −0.121389
\(690\) 0 0
\(691\) −38.9071 −1.48009 −0.740047 0.672555i \(-0.765197\pi\)
−0.740047 + 0.672555i \(0.765197\pi\)
\(692\) 7.36097 0.279822
\(693\) 0 0
\(694\) 22.8258 0.866454
\(695\) −0.0311752 −0.00118254
\(696\) 0 0
\(697\) −1.73240 −0.0656192
\(698\) 23.9175 0.905291
\(699\) 0 0
\(700\) 7.23300 0.273382
\(701\) 23.6348 0.892675 0.446337 0.894865i \(-0.352728\pi\)
0.446337 + 0.894865i \(0.352728\pi\)
\(702\) 0 0
\(703\) −20.5624 −0.775525
\(704\) −6.21509 −0.234240
\(705\) 0 0
\(706\) 17.7791 0.669124
\(707\) −17.5189 −0.658867
\(708\) 0 0
\(709\) 37.2859 1.40030 0.700151 0.713995i \(-0.253116\pi\)
0.700151 + 0.713995i \(0.253116\pi\)
\(710\) 4.54608 0.170611
\(711\) 0 0
\(712\) −18.1626 −0.680672
\(713\) 2.11590 0.0792410
\(714\) 0 0
\(715\) 2.49477 0.0932991
\(716\) −14.1459 −0.528656
\(717\) 0 0
\(718\) 26.1914 0.977453
\(719\) 19.3022 0.719851 0.359926 0.932981i \(-0.382802\pi\)
0.359926 + 0.932981i \(0.382802\pi\)
\(720\) 0 0
\(721\) 8.59277 0.320011
\(722\) 6.81952 0.253796
\(723\) 0 0
\(724\) 6.40141 0.237906
\(725\) 21.5340 0.799753
\(726\) 0 0
\(727\) 1.69779 0.0629675 0.0314837 0.999504i \(-0.489977\pi\)
0.0314837 + 0.999504i \(0.489977\pi\)
\(728\) −1.26178 −0.0467645
\(729\) 0 0
\(730\) −2.91288 −0.107811
\(731\) −13.3956 −0.495453
\(732\) 0 0
\(733\) −6.07083 −0.224231 −0.112116 0.993695i \(-0.535763\pi\)
−0.112116 + 0.993695i \(0.535763\pi\)
\(734\) −19.1159 −0.705581
\(735\) 0 0
\(736\) −1.86620 −0.0687890
\(737\) 24.8604 0.915743
\(738\) 0 0
\(739\) −3.93541 −0.144767 −0.0723833 0.997377i \(-0.523060\pi\)
−0.0723833 + 0.997377i \(0.523060\pi\)
\(740\) 1.95332 0.0718054
\(741\) 0 0
\(742\) 5.81369 0.213427
\(743\) −10.1431 −0.372113 −0.186056 0.982539i \(-0.559571\pi\)
−0.186056 + 0.982539i \(0.559571\pi\)
\(744\) 0 0
\(745\) 3.64246 0.133450
\(746\) −33.0696 −1.21077
\(747\) 0 0
\(748\) −10.7670 −0.393681
\(749\) 5.40765 0.197591
\(750\) 0 0
\(751\) −54.2906 −1.98109 −0.990545 0.137186i \(-0.956194\pi\)
−0.990545 + 0.137186i \(0.956194\pi\)
\(752\) −6.31429 −0.230258
\(753\) 0 0
\(754\) −3.75655 −0.136805
\(755\) 4.37767 0.159320
\(756\) 0 0
\(757\) −33.8950 −1.23193 −0.615967 0.787772i \(-0.711235\pi\)
−0.615967 + 0.787772i \(0.711235\pi\)
\(758\) −6.76700 −0.245789
\(759\) 0 0
\(760\) −2.45272 −0.0889695
\(761\) −17.6950 −0.641442 −0.320721 0.947174i \(-0.603925\pi\)
−0.320721 + 0.947174i \(0.603925\pi\)
\(762\) 0 0
\(763\) −24.8316 −0.898964
\(764\) −14.4994 −0.524570
\(765\) 0 0
\(766\) −14.2559 −0.515088
\(767\) −3.10382 −0.112073
\(768\) 0 0
\(769\) −32.0743 −1.15663 −0.578314 0.815814i \(-0.696289\pi\)
−0.578314 + 0.815814i \(0.696289\pi\)
\(770\) −4.55191 −0.164040
\(771\) 0 0
\(772\) 18.3310 0.659747
\(773\) 28.6044 1.02883 0.514415 0.857541i \(-0.328009\pi\)
0.514415 + 0.857541i \(0.328009\pi\)
\(774\) 0 0
\(775\) 5.40484 0.194148
\(776\) 9.54608 0.342684
\(777\) 0 0
\(778\) −24.4648 −0.877105
\(779\) −5.08129 −0.182056
\(780\) 0 0
\(781\) 58.5344 2.09453
\(782\) −3.23300 −0.115612
\(783\) 0 0
\(784\) −4.69779 −0.167778
\(785\) −0.757743 −0.0270450
\(786\) 0 0
\(787\) −22.4660 −0.800826 −0.400413 0.916335i \(-0.631133\pi\)
−0.400413 + 0.916335i \(0.631133\pi\)
\(788\) −18.7145 −0.666676
\(789\) 0 0
\(790\) −0.749102 −0.0266518
\(791\) −13.7082 −0.487409
\(792\) 0 0
\(793\) 1.98210 0.0703863
\(794\) −8.49477 −0.301468
\(795\) 0 0
\(796\) 5.00000 0.177220
\(797\) 29.8845 1.05856 0.529282 0.848446i \(-0.322461\pi\)
0.529282 + 0.848446i \(0.322461\pi\)
\(798\) 0 0
\(799\) −10.9388 −0.386989
\(800\) −4.76700 −0.168539
\(801\) 0 0
\(802\) 38.4636 1.35820
\(803\) −37.5056 −1.32355
\(804\) 0 0
\(805\) −1.36680 −0.0481733
\(806\) −0.942858 −0.0332108
\(807\) 0 0
\(808\) 11.5461 0.406190
\(809\) −0.401405 −0.0141127 −0.00705633 0.999975i \(-0.502246\pi\)
−0.00705633 + 0.999975i \(0.502246\pi\)
\(810\) 0 0
\(811\) −14.6978 −0.516109 −0.258055 0.966130i \(-0.583081\pi\)
−0.258055 + 0.966130i \(0.583081\pi\)
\(812\) 6.85412 0.240533
\(813\) 0 0
\(814\) 25.1505 0.881525
\(815\) 0.934217 0.0327242
\(816\) 0 0
\(817\) −39.2906 −1.37460
\(818\) −1.51730 −0.0530513
\(819\) 0 0
\(820\) 0.482696 0.0168565
\(821\) −23.3956 −0.816511 −0.408256 0.912868i \(-0.633863\pi\)
−0.408256 + 0.912868i \(0.633863\pi\)
\(822\) 0 0
\(823\) 25.6378 0.893679 0.446839 0.894614i \(-0.352550\pi\)
0.446839 + 0.894614i \(0.352550\pi\)
\(824\) −5.66318 −0.197286
\(825\) 0 0
\(826\) 5.66318 0.197047
\(827\) −10.1354 −0.352443 −0.176221 0.984351i \(-0.556387\pi\)
−0.176221 + 0.984351i \(0.556387\pi\)
\(828\) 0 0
\(829\) 51.1054 1.77497 0.887483 0.460841i \(-0.152452\pi\)
0.887483 + 0.460841i \(0.152452\pi\)
\(830\) 2.13260 0.0740238
\(831\) 0 0
\(832\) 0.831590 0.0288302
\(833\) −8.13843 −0.281980
\(834\) 0 0
\(835\) −2.50866 −0.0868158
\(836\) −31.5807 −1.09224
\(837\) 0 0
\(838\) 1.07666 0.0371926
\(839\) 9.86157 0.340459 0.170230 0.985404i \(-0.445549\pi\)
0.170230 + 0.985404i \(0.445549\pi\)
\(840\) 0 0
\(841\) −8.59396 −0.296344
\(842\) −18.4948 −0.637372
\(843\) 0 0
\(844\) −18.5461 −0.638383
\(845\) 5.94124 0.204385
\(846\) 0 0
\(847\) −41.9191 −1.44036
\(848\) −3.83159 −0.131577
\(849\) 0 0
\(850\) −8.25834 −0.283259
\(851\) 7.55191 0.258876
\(852\) 0 0
\(853\) 27.2797 0.934038 0.467019 0.884247i \(-0.345328\pi\)
0.467019 + 0.884247i \(0.345328\pi\)
\(854\) −3.61650 −0.123754
\(855\) 0 0
\(856\) −3.56399 −0.121815
\(857\) −25.6857 −0.877407 −0.438704 0.898632i \(-0.644562\pi\)
−0.438704 + 0.898632i \(0.644562\pi\)
\(858\) 0 0
\(859\) −5.75655 −0.196411 −0.0982054 0.995166i \(-0.531310\pi\)
−0.0982054 + 0.995166i \(0.531310\pi\)
\(860\) 3.73240 0.127274
\(861\) 0 0
\(862\) 22.6332 0.770890
\(863\) −10.5352 −0.358623 −0.179311 0.983792i \(-0.557387\pi\)
−0.179311 + 0.983792i \(0.557387\pi\)
\(864\) 0 0
\(865\) −3.55311 −0.120809
\(866\) 10.5340 0.357960
\(867\) 0 0
\(868\) 1.72032 0.0583915
\(869\) −9.64528 −0.327194
\(870\) 0 0
\(871\) −3.32636 −0.112709
\(872\) 16.3656 0.554209
\(873\) 0 0
\(874\) −9.48270 −0.320757
\(875\) −7.15332 −0.241826
\(876\) 0 0
\(877\) −13.1972 −0.445637 −0.222819 0.974860i \(-0.571526\pi\)
−0.222819 + 0.974860i \(0.571526\pi\)
\(878\) −30.0230 −1.01323
\(879\) 0 0
\(880\) 3.00000 0.101130
\(881\) 23.9400 0.806561 0.403280 0.915076i \(-0.367870\pi\)
0.403280 + 0.915076i \(0.367870\pi\)
\(882\) 0 0
\(883\) −23.7682 −0.799864 −0.399932 0.916545i \(-0.630966\pi\)
−0.399932 + 0.916545i \(0.630966\pi\)
\(884\) 1.44064 0.0484541
\(885\) 0 0
\(886\) 37.7658 1.26877
\(887\) 4.06922 0.136631 0.0683155 0.997664i \(-0.478238\pi\)
0.0683155 + 0.997664i \(0.478238\pi\)
\(888\) 0 0
\(889\) −16.3551 −0.548534
\(890\) 8.76700 0.293871
\(891\) 0 0
\(892\) 3.32636 0.111375
\(893\) −32.0847 −1.07367
\(894\) 0 0
\(895\) 6.82816 0.228240
\(896\) −1.51730 −0.0506896
\(897\) 0 0
\(898\) 33.9191 1.13190
\(899\) 5.12173 0.170819
\(900\) 0 0
\(901\) −6.63783 −0.221138
\(902\) 6.21509 0.206940
\(903\) 0 0
\(904\) 9.03461 0.300487
\(905\) −3.08993 −0.102713
\(906\) 0 0
\(907\) −27.2167 −0.903716 −0.451858 0.892090i \(-0.649239\pi\)
−0.451858 + 0.892090i \(0.649239\pi\)
\(908\) 22.2738 0.739184
\(909\) 0 0
\(910\) 0.609054 0.0201899
\(911\) 39.0922 1.29518 0.647591 0.761988i \(-0.275777\pi\)
0.647591 + 0.761988i \(0.275777\pi\)
\(912\) 0 0
\(913\) 27.4590 0.908759
\(914\) −34.8304 −1.15209
\(915\) 0 0
\(916\) 20.7670 0.686161
\(917\) −22.6982 −0.749561
\(918\) 0 0
\(919\) −51.8067 −1.70894 −0.854472 0.519497i \(-0.826119\pi\)
−0.854472 + 0.519497i \(0.826119\pi\)
\(920\) 0.900806 0.0296987
\(921\) 0 0
\(922\) 11.9988 0.395160
\(923\) −7.83201 −0.257794
\(924\) 0 0
\(925\) 19.2906 0.634270
\(926\) −29.2318 −0.960616
\(927\) 0 0
\(928\) −4.51730 −0.148288
\(929\) −49.0634 −1.60972 −0.804859 0.593466i \(-0.797759\pi\)
−0.804859 + 0.593466i \(0.797759\pi\)
\(930\) 0 0
\(931\) −23.8708 −0.782335
\(932\) −15.1280 −0.495533
\(933\) 0 0
\(934\) −17.4077 −0.569596
\(935\) 5.19719 0.169966
\(936\) 0 0
\(937\) −31.4232 −1.02655 −0.513275 0.858224i \(-0.671568\pi\)
−0.513275 + 0.858224i \(0.671568\pi\)
\(938\) 6.06922 0.198167
\(939\) 0 0
\(940\) 3.04788 0.0994109
\(941\) −45.1205 −1.47089 −0.735444 0.677586i \(-0.763026\pi\)
−0.735444 + 0.677586i \(0.763026\pi\)
\(942\) 0 0
\(943\) 1.86620 0.0607718
\(944\) −3.73240 −0.121479
\(945\) 0 0
\(946\) 48.0576 1.56249
\(947\) −3.49779 −0.113663 −0.0568314 0.998384i \(-0.518100\pi\)
−0.0568314 + 0.998384i \(0.518100\pi\)
\(948\) 0 0
\(949\) 5.01832 0.162902
\(950\) −24.2225 −0.785883
\(951\) 0 0
\(952\) −2.62857 −0.0851925
\(953\) 45.6157 1.47764 0.738819 0.673904i \(-0.235384\pi\)
0.738819 + 0.673904i \(0.235384\pi\)
\(954\) 0 0
\(955\) 6.99880 0.226476
\(956\) −12.2318 −0.395605
\(957\) 0 0
\(958\) −16.1159 −0.520681
\(959\) 2.72657 0.0880455
\(960\) 0 0
\(961\) −29.7145 −0.958532
\(962\) −3.36518 −0.108498
\(963\) 0 0
\(964\) 21.2151 0.683292
\(965\) −8.84830 −0.284837
\(966\) 0 0
\(967\) 43.9179 1.41231 0.706153 0.708060i \(-0.250429\pi\)
0.706153 + 0.708060i \(0.250429\pi\)
\(968\) 27.6274 0.887977
\(969\) 0 0
\(970\) −4.60786 −0.147949
\(971\) −15.2676 −0.489961 −0.244980 0.969528i \(-0.578782\pi\)
−0.244980 + 0.969528i \(0.578782\pi\)
\(972\) 0 0
\(973\) −0.0979959 −0.00314161
\(974\) 33.8529 1.08472
\(975\) 0 0
\(976\) 2.38350 0.0762940
\(977\) 26.3539 0.843137 0.421569 0.906796i \(-0.361480\pi\)
0.421569 + 0.906796i \(0.361480\pi\)
\(978\) 0 0
\(979\) 112.882 3.60773
\(980\) 2.26760 0.0724359
\(981\) 0 0
\(982\) 6.12636 0.195500
\(983\) 18.9700 0.605050 0.302525 0.953141i \(-0.402170\pi\)
0.302525 + 0.953141i \(0.402170\pi\)
\(984\) 0 0
\(985\) 9.03341 0.287828
\(986\) −7.82576 −0.249223
\(987\) 0 0
\(988\) 4.22555 0.134433
\(989\) 14.4302 0.458853
\(990\) 0 0
\(991\) −37.1688 −1.18071 −0.590353 0.807145i \(-0.701012\pi\)
−0.590353 + 0.807145i \(0.701012\pi\)
\(992\) −1.13380 −0.0359982
\(993\) 0 0
\(994\) 14.2901 0.453256
\(995\) −2.41348 −0.0765125
\(996\) 0 0
\(997\) 50.5523 1.60101 0.800504 0.599327i \(-0.204565\pi\)
0.800504 + 0.599327i \(0.204565\pi\)
\(998\) −13.7549 −0.435405
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2214.2.a.o.1.2 yes 3
3.2 odd 2 2214.2.a.n.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2214.2.a.n.1.2 3 3.2 odd 2
2214.2.a.o.1.2 yes 3 1.1 even 1 trivial