Properties

Label 2209.2.a.m.1.5
Level $2209$
Weight $2$
Character 2209.1
Self dual yes
Analytic conductor $17.639$
Analytic rank $0$
Dimension $33$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2209,2,Mod(1,2209)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2209.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2209, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2209 = 47^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2209.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [33,1,2,25,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6389538065\)
Analytic rank: \(0\)
Dimension: \(33\)
Twist minimal: no (minimal twist has level 47)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 2209.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.97824 q^{2} -0.674958 q^{3} +1.91343 q^{4} -0.886577 q^{5} +1.33523 q^{6} +0.812871 q^{7} +0.171258 q^{8} -2.54443 q^{9} +1.75386 q^{10} -4.01129 q^{11} -1.29148 q^{12} -3.01783 q^{13} -1.60805 q^{14} +0.598403 q^{15} -4.16565 q^{16} -7.05262 q^{17} +5.03349 q^{18} -2.14336 q^{19} -1.69640 q^{20} -0.548654 q^{21} +7.93529 q^{22} +0.780791 q^{23} -0.115592 q^{24} -4.21398 q^{25} +5.96999 q^{26} +3.74226 q^{27} +1.55537 q^{28} +9.37850 q^{29} -1.18378 q^{30} -5.83699 q^{31} +7.89813 q^{32} +2.70745 q^{33} +13.9518 q^{34} -0.720673 q^{35} -4.86859 q^{36} -5.26898 q^{37} +4.24007 q^{38} +2.03691 q^{39} -0.151833 q^{40} +0.957187 q^{41} +1.08537 q^{42} +4.28723 q^{43} -7.67532 q^{44} +2.25584 q^{45} -1.54459 q^{46} +2.81164 q^{48} -6.33924 q^{49} +8.33626 q^{50} +4.76022 q^{51} -5.77441 q^{52} +9.00820 q^{53} -7.40308 q^{54} +3.55632 q^{55} +0.139211 q^{56} +1.44668 q^{57} -18.5529 q^{58} -4.24118 q^{59} +1.14500 q^{60} -4.14621 q^{61} +11.5470 q^{62} -2.06830 q^{63} -7.29309 q^{64} +2.67554 q^{65} -5.35599 q^{66} -11.9527 q^{67} -13.4947 q^{68} -0.527002 q^{69} +1.42566 q^{70} +2.88595 q^{71} -0.435754 q^{72} +5.56955 q^{73} +10.4233 q^{74} +2.84426 q^{75} -4.10116 q^{76} -3.26066 q^{77} -4.02950 q^{78} -8.06751 q^{79} +3.69317 q^{80} +5.10743 q^{81} -1.89354 q^{82} -16.6444 q^{83} -1.04981 q^{84} +6.25269 q^{85} -8.48116 q^{86} -6.33009 q^{87} -0.686965 q^{88} +1.12900 q^{89} -4.46258 q^{90} -2.45311 q^{91} +1.49399 q^{92} +3.93972 q^{93} +1.90025 q^{95} -5.33091 q^{96} +7.11379 q^{97} +12.5405 q^{98} +10.2065 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 33 q + q^{2} + 2 q^{3} + 25 q^{4} + 19 q^{5} + 10 q^{6} + 2 q^{7} + 9 q^{8} + 17 q^{9} + 10 q^{10} + 37 q^{11} - 38 q^{12} + 20 q^{13} - 43 q^{14} + 33 q^{15} + 13 q^{16} + 6 q^{17} - 46 q^{18} + 36 q^{19}+ \cdots + 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.97824 −1.39883 −0.699413 0.714718i \(-0.746555\pi\)
−0.699413 + 0.714718i \(0.746555\pi\)
\(3\) −0.674958 −0.389687 −0.194844 0.980834i \(-0.562420\pi\)
−0.194844 + 0.980834i \(0.562420\pi\)
\(4\) 1.91343 0.956715
\(5\) −0.886577 −0.396489 −0.198245 0.980153i \(-0.563524\pi\)
−0.198245 + 0.980153i \(0.563524\pi\)
\(6\) 1.33523 0.545105
\(7\) 0.812871 0.307237 0.153618 0.988130i \(-0.450907\pi\)
0.153618 + 0.988130i \(0.450907\pi\)
\(8\) 0.171258 0.0605488
\(9\) −2.54443 −0.848144
\(10\) 1.75386 0.554620
\(11\) −4.01129 −1.20945 −0.604725 0.796435i \(-0.706717\pi\)
−0.604725 + 0.796435i \(0.706717\pi\)
\(12\) −1.29148 −0.372819
\(13\) −3.01783 −0.836996 −0.418498 0.908218i \(-0.637443\pi\)
−0.418498 + 0.908218i \(0.637443\pi\)
\(14\) −1.60805 −0.429770
\(15\) 0.598403 0.154507
\(16\) −4.16565 −1.04141
\(17\) −7.05262 −1.71051 −0.855256 0.518207i \(-0.826600\pi\)
−0.855256 + 0.518207i \(0.826600\pi\)
\(18\) 5.03349 1.18641
\(19\) −2.14336 −0.491720 −0.245860 0.969305i \(-0.579070\pi\)
−0.245860 + 0.969305i \(0.579070\pi\)
\(20\) −1.69640 −0.379327
\(21\) −0.548654 −0.119726
\(22\) 7.93529 1.69181
\(23\) 0.780791 0.162806 0.0814031 0.996681i \(-0.474060\pi\)
0.0814031 + 0.996681i \(0.474060\pi\)
\(24\) −0.115592 −0.0235951
\(25\) −4.21398 −0.842796
\(26\) 5.96999 1.17081
\(27\) 3.74226 0.720198
\(28\) 1.55537 0.293938
\(29\) 9.37850 1.74154 0.870771 0.491688i \(-0.163620\pi\)
0.870771 + 0.491688i \(0.163620\pi\)
\(30\) −1.18378 −0.216128
\(31\) −5.83699 −1.04835 −0.524177 0.851609i \(-0.675627\pi\)
−0.524177 + 0.851609i \(0.675627\pi\)
\(32\) 7.89813 1.39621
\(33\) 2.70745 0.471307
\(34\) 13.9518 2.39271
\(35\) −0.720673 −0.121816
\(36\) −4.86859 −0.811432
\(37\) −5.26898 −0.866214 −0.433107 0.901342i \(-0.642583\pi\)
−0.433107 + 0.901342i \(0.642583\pi\)
\(38\) 4.24007 0.687831
\(39\) 2.03691 0.326167
\(40\) −0.151833 −0.0240070
\(41\) 0.957187 0.149487 0.0747437 0.997203i \(-0.476186\pi\)
0.0747437 + 0.997203i \(0.476186\pi\)
\(42\) 1.08537 0.167476
\(43\) 4.28723 0.653796 0.326898 0.945060i \(-0.393997\pi\)
0.326898 + 0.945060i \(0.393997\pi\)
\(44\) −7.67532 −1.15710
\(45\) 2.25584 0.336280
\(46\) −1.54459 −0.227738
\(47\) 0 0
\(48\) 2.81164 0.405825
\(49\) −6.33924 −0.905606
\(50\) 8.33626 1.17893
\(51\) 4.76022 0.666564
\(52\) −5.77441 −0.800766
\(53\) 9.00820 1.23737 0.618686 0.785639i \(-0.287665\pi\)
0.618686 + 0.785639i \(0.287665\pi\)
\(54\) −7.40308 −1.00743
\(55\) 3.55632 0.479534
\(56\) 0.139211 0.0186028
\(57\) 1.44668 0.191617
\(58\) −18.5529 −2.43612
\(59\) −4.24118 −0.552154 −0.276077 0.961135i \(-0.589035\pi\)
−0.276077 + 0.961135i \(0.589035\pi\)
\(60\) 1.14500 0.147819
\(61\) −4.14621 −0.530868 −0.265434 0.964129i \(-0.585515\pi\)
−0.265434 + 0.964129i \(0.585515\pi\)
\(62\) 11.5470 1.46647
\(63\) −2.06830 −0.260581
\(64\) −7.29309 −0.911637
\(65\) 2.67554 0.331860
\(66\) −5.35599 −0.659277
\(67\) −11.9527 −1.46026 −0.730129 0.683310i \(-0.760540\pi\)
−0.730129 + 0.683310i \(0.760540\pi\)
\(68\) −13.4947 −1.63647
\(69\) −0.527002 −0.0634435
\(70\) 1.42566 0.170399
\(71\) 2.88595 0.342499 0.171250 0.985228i \(-0.445220\pi\)
0.171250 + 0.985228i \(0.445220\pi\)
\(72\) −0.435754 −0.0513541
\(73\) 5.56955 0.651866 0.325933 0.945393i \(-0.394322\pi\)
0.325933 + 0.945393i \(0.394322\pi\)
\(74\) 10.4233 1.21168
\(75\) 2.84426 0.328427
\(76\) −4.10116 −0.470436
\(77\) −3.26066 −0.371587
\(78\) −4.02950 −0.456250
\(79\) −8.06751 −0.907666 −0.453833 0.891087i \(-0.649944\pi\)
−0.453833 + 0.891087i \(0.649944\pi\)
\(80\) 3.69317 0.412909
\(81\) 5.10743 0.567492
\(82\) −1.89354 −0.209107
\(83\) −16.6444 −1.82696 −0.913482 0.406880i \(-0.866617\pi\)
−0.913482 + 0.406880i \(0.866617\pi\)
\(84\) −1.04981 −0.114544
\(85\) 6.25269 0.678200
\(86\) −8.48116 −0.914547
\(87\) −6.33009 −0.678657
\(88\) −0.686965 −0.0732308
\(89\) 1.12900 0.119674 0.0598371 0.998208i \(-0.480942\pi\)
0.0598371 + 0.998208i \(0.480942\pi\)
\(90\) −4.46258 −0.470397
\(91\) −2.45311 −0.257156
\(92\) 1.49399 0.155759
\(93\) 3.93972 0.408530
\(94\) 0 0
\(95\) 1.90025 0.194962
\(96\) −5.33091 −0.544083
\(97\) 7.11379 0.722296 0.361148 0.932508i \(-0.382385\pi\)
0.361148 + 0.932508i \(0.382385\pi\)
\(98\) 12.5405 1.26678
\(99\) 10.2065 1.02579
\(100\) −8.06315 −0.806315
\(101\) 3.57625 0.355851 0.177925 0.984044i \(-0.443061\pi\)
0.177925 + 0.984044i \(0.443061\pi\)
\(102\) −9.41686 −0.932408
\(103\) 11.6041 1.14339 0.571695 0.820466i \(-0.306286\pi\)
0.571695 + 0.820466i \(0.306286\pi\)
\(104\) −0.516828 −0.0506791
\(105\) 0.486424 0.0474702
\(106\) −17.8204 −1.73087
\(107\) −3.45553 −0.334058 −0.167029 0.985952i \(-0.553417\pi\)
−0.167029 + 0.985952i \(0.553417\pi\)
\(108\) 7.16055 0.689024
\(109\) −6.16183 −0.590197 −0.295098 0.955467i \(-0.595352\pi\)
−0.295098 + 0.955467i \(0.595352\pi\)
\(110\) −7.03525 −0.670785
\(111\) 3.55634 0.337553
\(112\) −3.38614 −0.319960
\(113\) 15.7614 1.48271 0.741354 0.671114i \(-0.234184\pi\)
0.741354 + 0.671114i \(0.234184\pi\)
\(114\) −2.86187 −0.268039
\(115\) −0.692232 −0.0645510
\(116\) 17.9451 1.66616
\(117\) 7.67867 0.709893
\(118\) 8.39006 0.772368
\(119\) −5.73287 −0.525531
\(120\) 0.102481 0.00935521
\(121\) 5.09045 0.462768
\(122\) 8.20219 0.742592
\(123\) −0.646061 −0.0582533
\(124\) −11.1687 −1.00298
\(125\) 8.16891 0.730649
\(126\) 4.09158 0.364507
\(127\) −14.2831 −1.26742 −0.633711 0.773570i \(-0.718469\pi\)
−0.633711 + 0.773570i \(0.718469\pi\)
\(128\) −1.36878 −0.120984
\(129\) −2.89370 −0.254776
\(130\) −5.29286 −0.464215
\(131\) 11.6814 1.02061 0.510304 0.859994i \(-0.329533\pi\)
0.510304 + 0.859994i \(0.329533\pi\)
\(132\) 5.18052 0.450906
\(133\) −1.74227 −0.151074
\(134\) 23.6453 2.04265
\(135\) −3.31780 −0.285551
\(136\) −1.20782 −0.103569
\(137\) 14.3296 1.22426 0.612129 0.790758i \(-0.290313\pi\)
0.612129 + 0.790758i \(0.290313\pi\)
\(138\) 1.04253 0.0887465
\(139\) 22.0064 1.86656 0.933279 0.359153i \(-0.116934\pi\)
0.933279 + 0.359153i \(0.116934\pi\)
\(140\) −1.37896 −0.116543
\(141\) 0 0
\(142\) −5.70910 −0.479097
\(143\) 12.1054 1.01230
\(144\) 10.5992 0.883267
\(145\) −8.31476 −0.690503
\(146\) −11.0179 −0.911848
\(147\) 4.27872 0.352903
\(148\) −10.0818 −0.828720
\(149\) −1.69666 −0.138996 −0.0694980 0.997582i \(-0.522140\pi\)
−0.0694980 + 0.997582i \(0.522140\pi\)
\(150\) −5.62663 −0.459412
\(151\) −8.96582 −0.729628 −0.364814 0.931080i \(-0.618867\pi\)
−0.364814 + 0.931080i \(0.618867\pi\)
\(152\) −0.367067 −0.0297731
\(153\) 17.9449 1.45076
\(154\) 6.45037 0.519786
\(155\) 5.17494 0.415661
\(156\) 3.89748 0.312048
\(157\) −7.61965 −0.608115 −0.304057 0.952654i \(-0.598341\pi\)
−0.304057 + 0.952654i \(0.598341\pi\)
\(158\) 15.9595 1.26967
\(159\) −6.08016 −0.482188
\(160\) −7.00230 −0.553581
\(161\) 0.634683 0.0500200
\(162\) −10.1037 −0.793822
\(163\) −7.52324 −0.589266 −0.294633 0.955611i \(-0.595197\pi\)
−0.294633 + 0.955611i \(0.595197\pi\)
\(164\) 1.83151 0.143017
\(165\) −2.40037 −0.186868
\(166\) 32.9267 2.55560
\(167\) −3.91775 −0.303165 −0.151582 0.988445i \(-0.548437\pi\)
−0.151582 + 0.988445i \(0.548437\pi\)
\(168\) −0.0939614 −0.00724928
\(169\) −3.89269 −0.299438
\(170\) −12.3693 −0.948683
\(171\) 5.45363 0.417049
\(172\) 8.20331 0.625496
\(173\) −15.3122 −1.16416 −0.582082 0.813130i \(-0.697762\pi\)
−0.582082 + 0.813130i \(0.697762\pi\)
\(174\) 12.5224 0.949323
\(175\) −3.42542 −0.258938
\(176\) 16.7096 1.25953
\(177\) 2.86262 0.215168
\(178\) −2.23344 −0.167403
\(179\) 17.2902 1.29233 0.646164 0.763199i \(-0.276372\pi\)
0.646164 + 0.763199i \(0.276372\pi\)
\(180\) 4.31638 0.321724
\(181\) −13.4895 −1.00267 −0.501335 0.865254i \(-0.667157\pi\)
−0.501335 + 0.865254i \(0.667157\pi\)
\(182\) 4.85284 0.359716
\(183\) 2.79852 0.206872
\(184\) 0.133717 0.00985773
\(185\) 4.67135 0.343445
\(186\) −7.79372 −0.571463
\(187\) 28.2901 2.06878
\(188\) 0 0
\(189\) 3.04198 0.221271
\(190\) −3.75915 −0.272718
\(191\) −10.0199 −0.725018 −0.362509 0.931980i \(-0.618080\pi\)
−0.362509 + 0.931980i \(0.618080\pi\)
\(192\) 4.92253 0.355253
\(193\) −10.9760 −0.790072 −0.395036 0.918666i \(-0.629268\pi\)
−0.395036 + 0.918666i \(0.629268\pi\)
\(194\) −14.0728 −1.01037
\(195\) −1.80588 −0.129322
\(196\) −12.1297 −0.866406
\(197\) −6.64706 −0.473583 −0.236792 0.971560i \(-0.576096\pi\)
−0.236792 + 0.971560i \(0.576096\pi\)
\(198\) −20.1908 −1.43490
\(199\) 24.6854 1.74990 0.874951 0.484211i \(-0.160893\pi\)
0.874951 + 0.484211i \(0.160893\pi\)
\(200\) −0.721678 −0.0510303
\(201\) 8.06759 0.569044
\(202\) −7.07468 −0.497773
\(203\) 7.62351 0.535066
\(204\) 9.10835 0.637712
\(205\) −0.848620 −0.0592702
\(206\) −22.9558 −1.59940
\(207\) −1.98667 −0.138083
\(208\) 12.5712 0.871658
\(209\) 8.59763 0.594710
\(210\) −0.962264 −0.0664025
\(211\) 22.0841 1.52033 0.760165 0.649730i \(-0.225118\pi\)
0.760165 + 0.649730i \(0.225118\pi\)
\(212\) 17.2366 1.18381
\(213\) −1.94790 −0.133468
\(214\) 6.83586 0.467290
\(215\) −3.80096 −0.259223
\(216\) 0.640892 0.0436072
\(217\) −4.74472 −0.322093
\(218\) 12.1896 0.825583
\(219\) −3.75921 −0.254024
\(220\) 6.80476 0.458777
\(221\) 21.2836 1.43169
\(222\) −7.03529 −0.472178
\(223\) 14.6249 0.979356 0.489678 0.871903i \(-0.337114\pi\)
0.489678 + 0.871903i \(0.337114\pi\)
\(224\) 6.42016 0.428965
\(225\) 10.7222 0.714812
\(226\) −31.1798 −2.07405
\(227\) 21.7231 1.44181 0.720905 0.693034i \(-0.243726\pi\)
0.720905 + 0.693034i \(0.243726\pi\)
\(228\) 2.76811 0.183323
\(229\) 19.1403 1.26483 0.632415 0.774630i \(-0.282064\pi\)
0.632415 + 0.774630i \(0.282064\pi\)
\(230\) 1.36940 0.0902956
\(231\) 2.20081 0.144803
\(232\) 1.60614 0.105448
\(233\) 1.89820 0.124355 0.0621775 0.998065i \(-0.480196\pi\)
0.0621775 + 0.998065i \(0.480196\pi\)
\(234\) −15.1902 −0.993017
\(235\) 0 0
\(236\) −8.11519 −0.528254
\(237\) 5.44523 0.353706
\(238\) 11.3410 0.735127
\(239\) −22.9906 −1.48714 −0.743570 0.668658i \(-0.766869\pi\)
−0.743570 + 0.668658i \(0.766869\pi\)
\(240\) −2.49273 −0.160905
\(241\) 8.78729 0.566039 0.283019 0.959114i \(-0.408664\pi\)
0.283019 + 0.959114i \(0.408664\pi\)
\(242\) −10.0701 −0.647332
\(243\) −14.6741 −0.941342
\(244\) −7.93348 −0.507889
\(245\) 5.62023 0.359063
\(246\) 1.27806 0.0814863
\(247\) 6.46829 0.411568
\(248\) −0.999631 −0.0634766
\(249\) 11.2343 0.711944
\(250\) −16.1600 −1.02205
\(251\) 0.363357 0.0229349 0.0114675 0.999934i \(-0.496350\pi\)
0.0114675 + 0.999934i \(0.496350\pi\)
\(252\) −3.95754 −0.249301
\(253\) −3.13198 −0.196906
\(254\) 28.2554 1.77290
\(255\) −4.22030 −0.264286
\(256\) 17.2940 1.08087
\(257\) −8.40284 −0.524155 −0.262077 0.965047i \(-0.584408\pi\)
−0.262077 + 0.965047i \(0.584408\pi\)
\(258\) 5.72443 0.356387
\(259\) −4.28300 −0.266133
\(260\) 5.11946 0.317495
\(261\) −23.8629 −1.47708
\(262\) −23.1086 −1.42765
\(263\) −10.1035 −0.623007 −0.311504 0.950245i \(-0.600833\pi\)
−0.311504 + 0.950245i \(0.600833\pi\)
\(264\) 0.463673 0.0285371
\(265\) −7.98647 −0.490605
\(266\) 3.44663 0.211327
\(267\) −0.762031 −0.0466355
\(268\) −22.8707 −1.39705
\(269\) −11.1302 −0.678618 −0.339309 0.940675i \(-0.610193\pi\)
−0.339309 + 0.940675i \(0.610193\pi\)
\(270\) 6.56341 0.399436
\(271\) 26.8601 1.63164 0.815819 0.578308i \(-0.196287\pi\)
0.815819 + 0.578308i \(0.196287\pi\)
\(272\) 29.3787 1.78135
\(273\) 1.65575 0.100210
\(274\) −28.3473 −1.71252
\(275\) 16.9035 1.01932
\(276\) −1.00838 −0.0606974
\(277\) 0.811728 0.0487720 0.0243860 0.999703i \(-0.492237\pi\)
0.0243860 + 0.999703i \(0.492237\pi\)
\(278\) −43.5339 −2.61099
\(279\) 14.8518 0.889155
\(280\) −0.123421 −0.00737582
\(281\) 18.7418 1.11804 0.559021 0.829153i \(-0.311177\pi\)
0.559021 + 0.829153i \(0.311177\pi\)
\(282\) 0 0
\(283\) 6.53621 0.388537 0.194269 0.980948i \(-0.437767\pi\)
0.194269 + 0.980948i \(0.437767\pi\)
\(284\) 5.52206 0.327674
\(285\) −1.28259 −0.0759741
\(286\) −23.9474 −1.41604
\(287\) 0.778070 0.0459280
\(288\) −20.0962 −1.18418
\(289\) 32.7394 1.92585
\(290\) 16.4486 0.965894
\(291\) −4.80151 −0.281470
\(292\) 10.6569 0.623650
\(293\) 8.21316 0.479818 0.239909 0.970795i \(-0.422882\pi\)
0.239909 + 0.970795i \(0.422882\pi\)
\(294\) −8.46433 −0.493650
\(295\) 3.76013 0.218923
\(296\) −0.902354 −0.0524483
\(297\) −15.0113 −0.871043
\(298\) 3.35640 0.194431
\(299\) −2.35630 −0.136268
\(300\) 5.44229 0.314211
\(301\) 3.48497 0.200870
\(302\) 17.7365 1.02062
\(303\) −2.41382 −0.138670
\(304\) 8.92847 0.512083
\(305\) 3.67593 0.210483
\(306\) −35.4993 −2.02936
\(307\) 9.83386 0.561248 0.280624 0.959818i \(-0.409459\pi\)
0.280624 + 0.959818i \(0.409459\pi\)
\(308\) −6.23905 −0.355503
\(309\) −7.83231 −0.445565
\(310\) −10.2373 −0.581438
\(311\) 14.7011 0.833625 0.416812 0.908993i \(-0.363147\pi\)
0.416812 + 0.908993i \(0.363147\pi\)
\(312\) 0.348837 0.0197490
\(313\) −3.48577 −0.197027 −0.0985136 0.995136i \(-0.531409\pi\)
−0.0985136 + 0.995136i \(0.531409\pi\)
\(314\) 15.0735 0.850647
\(315\) 1.83370 0.103318
\(316\) −15.4366 −0.868377
\(317\) −0.287635 −0.0161552 −0.00807760 0.999967i \(-0.502571\pi\)
−0.00807760 + 0.999967i \(0.502571\pi\)
\(318\) 12.0280 0.674497
\(319\) −37.6199 −2.10631
\(320\) 6.46589 0.361454
\(321\) 2.33234 0.130178
\(322\) −1.25555 −0.0699693
\(323\) 15.1163 0.841092
\(324\) 9.77270 0.542928
\(325\) 12.7171 0.705417
\(326\) 14.8828 0.824280
\(327\) 4.15898 0.229992
\(328\) 0.163926 0.00905129
\(329\) 0 0
\(330\) 4.74850 0.261396
\(331\) −7.02027 −0.385869 −0.192934 0.981212i \(-0.561800\pi\)
−0.192934 + 0.981212i \(0.561800\pi\)
\(332\) −31.8479 −1.74788
\(333\) 13.4065 0.734674
\(334\) 7.75025 0.424075
\(335\) 10.5970 0.578977
\(336\) 2.28550 0.124684
\(337\) −3.84483 −0.209441 −0.104721 0.994502i \(-0.533395\pi\)
−0.104721 + 0.994502i \(0.533395\pi\)
\(338\) 7.70067 0.418861
\(339\) −10.6383 −0.577792
\(340\) 11.9641 0.648843
\(341\) 23.4139 1.26793
\(342\) −10.7886 −0.583379
\(343\) −10.8431 −0.585472
\(344\) 0.734222 0.0395866
\(345\) 0.467228 0.0251547
\(346\) 30.2912 1.62846
\(347\) 3.40161 0.182608 0.0913040 0.995823i \(-0.470897\pi\)
0.0913040 + 0.995823i \(0.470897\pi\)
\(348\) −12.1122 −0.649281
\(349\) −6.33762 −0.339245 −0.169623 0.985509i \(-0.554255\pi\)
−0.169623 + 0.985509i \(0.554255\pi\)
\(350\) 6.77631 0.362209
\(351\) −11.2935 −0.602803
\(352\) −31.6817 −1.68864
\(353\) −9.77559 −0.520302 −0.260151 0.965568i \(-0.583772\pi\)
−0.260151 + 0.965568i \(0.583772\pi\)
\(354\) −5.66294 −0.300982
\(355\) −2.55862 −0.135797
\(356\) 2.16027 0.114494
\(357\) 3.86945 0.204793
\(358\) −34.2041 −1.80774
\(359\) 20.1907 1.06563 0.532813 0.846233i \(-0.321135\pi\)
0.532813 + 0.846233i \(0.321135\pi\)
\(360\) 0.386330 0.0203614
\(361\) −14.4060 −0.758211
\(362\) 26.6855 1.40256
\(363\) −3.43584 −0.180335
\(364\) −4.69385 −0.246025
\(365\) −4.93784 −0.258458
\(366\) −5.53614 −0.289378
\(367\) −34.4605 −1.79883 −0.899413 0.437100i \(-0.856006\pi\)
−0.899413 + 0.437100i \(0.856006\pi\)
\(368\) −3.25250 −0.169548
\(369\) −2.43550 −0.126787
\(370\) −9.24106 −0.480420
\(371\) 7.32251 0.380166
\(372\) 7.53838 0.390847
\(373\) −25.6839 −1.32986 −0.664930 0.746906i \(-0.731539\pi\)
−0.664930 + 0.746906i \(0.731539\pi\)
\(374\) −55.9646 −2.89386
\(375\) −5.51367 −0.284725
\(376\) 0 0
\(377\) −28.3027 −1.45766
\(378\) −6.01775 −0.309520
\(379\) −10.9380 −0.561849 −0.280925 0.959730i \(-0.590641\pi\)
−0.280925 + 0.959730i \(0.590641\pi\)
\(380\) 3.63600 0.186523
\(381\) 9.64050 0.493898
\(382\) 19.8218 1.01417
\(383\) 6.96472 0.355881 0.177940 0.984041i \(-0.443057\pi\)
0.177940 + 0.984041i \(0.443057\pi\)
\(384\) 0.923869 0.0471460
\(385\) 2.89083 0.147330
\(386\) 21.7132 1.10517
\(387\) −10.9086 −0.554513
\(388\) 13.6117 0.691031
\(389\) 5.77134 0.292619 0.146309 0.989239i \(-0.453261\pi\)
0.146309 + 0.989239i \(0.453261\pi\)
\(390\) 3.57246 0.180898
\(391\) −5.50662 −0.278482
\(392\) −1.08565 −0.0548334
\(393\) −7.88446 −0.397718
\(394\) 13.1495 0.662461
\(395\) 7.15247 0.359880
\(396\) 19.5293 0.981385
\(397\) 22.9805 1.15336 0.576679 0.816971i \(-0.304348\pi\)
0.576679 + 0.816971i \(0.304348\pi\)
\(398\) −48.8336 −2.44781
\(399\) 1.17596 0.0588717
\(400\) 17.5540 0.877698
\(401\) −26.4176 −1.31923 −0.659615 0.751603i \(-0.729281\pi\)
−0.659615 + 0.751603i \(0.729281\pi\)
\(402\) −15.9596 −0.795993
\(403\) 17.6151 0.877468
\(404\) 6.84291 0.340447
\(405\) −4.52813 −0.225005
\(406\) −15.0811 −0.748464
\(407\) 21.1354 1.04764
\(408\) 0.815226 0.0403597
\(409\) −27.3412 −1.35193 −0.675967 0.736932i \(-0.736274\pi\)
−0.675967 + 0.736932i \(0.736274\pi\)
\(410\) 1.67877 0.0829087
\(411\) −9.67186 −0.477078
\(412\) 22.2037 1.09390
\(413\) −3.44753 −0.169642
\(414\) 3.93011 0.193154
\(415\) 14.7566 0.724372
\(416\) −23.8352 −1.16862
\(417\) −14.8534 −0.727374
\(418\) −17.0082 −0.831896
\(419\) 6.83824 0.334070 0.167035 0.985951i \(-0.446581\pi\)
0.167035 + 0.985951i \(0.446581\pi\)
\(420\) 0.930739 0.0454154
\(421\) 11.8050 0.575339 0.287669 0.957730i \(-0.407120\pi\)
0.287669 + 0.957730i \(0.407120\pi\)
\(422\) −43.6876 −2.12668
\(423\) 0 0
\(424\) 1.54273 0.0749214
\(425\) 29.7196 1.44161
\(426\) 3.85340 0.186698
\(427\) −3.37033 −0.163102
\(428\) −6.61191 −0.319599
\(429\) −8.17064 −0.394482
\(430\) 7.51921 0.362608
\(431\) 9.02187 0.434568 0.217284 0.976108i \(-0.430280\pi\)
0.217284 + 0.976108i \(0.430280\pi\)
\(432\) −15.5889 −0.750023
\(433\) −1.12252 −0.0539449 −0.0269725 0.999636i \(-0.508587\pi\)
−0.0269725 + 0.999636i \(0.508587\pi\)
\(434\) 9.38620 0.450552
\(435\) 5.61212 0.269080
\(436\) −11.7902 −0.564650
\(437\) −1.67352 −0.0800551
\(438\) 7.43662 0.355335
\(439\) 32.1171 1.53287 0.766433 0.642324i \(-0.222030\pi\)
0.766433 + 0.642324i \(0.222030\pi\)
\(440\) 0.609048 0.0290352
\(441\) 16.1298 0.768084
\(442\) −42.1041 −2.00269
\(443\) 4.63319 0.220130 0.110065 0.993924i \(-0.464894\pi\)
0.110065 + 0.993924i \(0.464894\pi\)
\(444\) 6.80480 0.322942
\(445\) −1.00095 −0.0474496
\(446\) −28.9315 −1.36995
\(447\) 1.14518 0.0541650
\(448\) −5.92835 −0.280088
\(449\) 7.49959 0.353927 0.176964 0.984217i \(-0.443372\pi\)
0.176964 + 0.984217i \(0.443372\pi\)
\(450\) −21.2110 −0.999898
\(451\) −3.83955 −0.180797
\(452\) 30.1583 1.41853
\(453\) 6.05156 0.284327
\(454\) −42.9734 −2.01684
\(455\) 2.17487 0.101960
\(456\) 0.247755 0.0116022
\(457\) 12.6295 0.590783 0.295392 0.955376i \(-0.404550\pi\)
0.295392 + 0.955376i \(0.404550\pi\)
\(458\) −37.8642 −1.76928
\(459\) −26.3927 −1.23191
\(460\) −1.32454 −0.0617569
\(461\) 22.6078 1.05295 0.526476 0.850190i \(-0.323513\pi\)
0.526476 + 0.850190i \(0.323513\pi\)
\(462\) −4.35373 −0.202554
\(463\) −25.4318 −1.18192 −0.590958 0.806702i \(-0.701250\pi\)
−0.590958 + 0.806702i \(0.701250\pi\)
\(464\) −39.0675 −1.81366
\(465\) −3.49287 −0.161978
\(466\) −3.75509 −0.173951
\(467\) 1.97374 0.0913336 0.0456668 0.998957i \(-0.485459\pi\)
0.0456668 + 0.998957i \(0.485459\pi\)
\(468\) 14.6926 0.679165
\(469\) −9.71603 −0.448644
\(470\) 0 0
\(471\) 5.14295 0.236974
\(472\) −0.726336 −0.0334323
\(473\) −17.1973 −0.790734
\(474\) −10.7720 −0.494773
\(475\) 9.03207 0.414420
\(476\) −10.9694 −0.502784
\(477\) −22.9207 −1.04947
\(478\) 45.4809 2.08025
\(479\) 21.4785 0.981376 0.490688 0.871335i \(-0.336745\pi\)
0.490688 + 0.871335i \(0.336745\pi\)
\(480\) 4.72626 0.215723
\(481\) 15.9009 0.725018
\(482\) −17.3834 −0.791790
\(483\) −0.428385 −0.0194922
\(484\) 9.74021 0.442737
\(485\) −6.30693 −0.286383
\(486\) 29.0288 1.31677
\(487\) −11.9771 −0.542733 −0.271367 0.962476i \(-0.587476\pi\)
−0.271367 + 0.962476i \(0.587476\pi\)
\(488\) −0.710071 −0.0321434
\(489\) 5.07787 0.229629
\(490\) −11.1182 −0.502267
\(491\) −27.3091 −1.23244 −0.616221 0.787573i \(-0.711337\pi\)
−0.616221 + 0.787573i \(0.711337\pi\)
\(492\) −1.23619 −0.0557318
\(493\) −66.1429 −2.97893
\(494\) −12.7958 −0.575712
\(495\) −9.04881 −0.406714
\(496\) 24.3148 1.09177
\(497\) 2.34591 0.105228
\(498\) −22.2241 −0.995886
\(499\) 37.1679 1.66386 0.831932 0.554878i \(-0.187235\pi\)
0.831932 + 0.554878i \(0.187235\pi\)
\(500\) 15.6306 0.699023
\(501\) 2.64432 0.118139
\(502\) −0.718808 −0.0320820
\(503\) −12.9258 −0.576334 −0.288167 0.957580i \(-0.593046\pi\)
−0.288167 + 0.957580i \(0.593046\pi\)
\(504\) −0.354212 −0.0157779
\(505\) −3.17063 −0.141091
\(506\) 6.19581 0.275437
\(507\) 2.62740 0.116687
\(508\) −27.3297 −1.21256
\(509\) −25.3342 −1.12292 −0.561459 0.827505i \(-0.689760\pi\)
−0.561459 + 0.827505i \(0.689760\pi\)
\(510\) 8.34877 0.369690
\(511\) 4.52733 0.200277
\(512\) −31.4740 −1.39097
\(513\) −8.02100 −0.354136
\(514\) 16.6228 0.733201
\(515\) −10.2880 −0.453342
\(516\) −5.53689 −0.243748
\(517\) 0 0
\(518\) 8.47280 0.372273
\(519\) 10.3351 0.453660
\(520\) 0.458208 0.0200937
\(521\) 36.6792 1.60695 0.803473 0.595342i \(-0.202983\pi\)
0.803473 + 0.595342i \(0.202983\pi\)
\(522\) 47.2066 2.06618
\(523\) −10.3469 −0.452441 −0.226220 0.974076i \(-0.572637\pi\)
−0.226220 + 0.974076i \(0.572637\pi\)
\(524\) 22.3515 0.976431
\(525\) 2.31202 0.100905
\(526\) 19.9871 0.871479
\(527\) 41.1661 1.79322
\(528\) −11.2783 −0.490825
\(529\) −22.3904 −0.973494
\(530\) 15.7991 0.686271
\(531\) 10.7914 0.468306
\(532\) −3.33372 −0.144535
\(533\) −2.88863 −0.125120
\(534\) 1.50748 0.0652350
\(535\) 3.06359 0.132451
\(536\) −2.04700 −0.0884169
\(537\) −11.6701 −0.503604
\(538\) 22.0181 0.949268
\(539\) 25.4285 1.09528
\(540\) −6.34838 −0.273191
\(541\) 1.20364 0.0517485 0.0258743 0.999665i \(-0.491763\pi\)
0.0258743 + 0.999665i \(0.491763\pi\)
\(542\) −53.1358 −2.28238
\(543\) 9.10487 0.390727
\(544\) −55.7025 −2.38822
\(545\) 5.46294 0.234007
\(546\) −3.27546 −0.140177
\(547\) −21.5364 −0.920831 −0.460415 0.887704i \(-0.652300\pi\)
−0.460415 + 0.887704i \(0.652300\pi\)
\(548\) 27.4186 1.17127
\(549\) 10.5497 0.450252
\(550\) −33.4392 −1.42585
\(551\) −20.1015 −0.856351
\(552\) −0.0902532 −0.00384143
\(553\) −6.55785 −0.278868
\(554\) −1.60579 −0.0682236
\(555\) −3.15297 −0.133836
\(556\) 42.1077 1.78576
\(557\) −10.2388 −0.433833 −0.216917 0.976190i \(-0.569600\pi\)
−0.216917 + 0.976190i \(0.569600\pi\)
\(558\) −29.3805 −1.24377
\(559\) −12.9381 −0.547225
\(560\) 3.00207 0.126861
\(561\) −19.0946 −0.806176
\(562\) −37.0758 −1.56395
\(563\) −22.8402 −0.962598 −0.481299 0.876556i \(-0.659835\pi\)
−0.481299 + 0.876556i \(0.659835\pi\)
\(564\) 0 0
\(565\) −13.9737 −0.587878
\(566\) −12.9302 −0.543496
\(567\) 4.15168 0.174354
\(568\) 0.494242 0.0207379
\(569\) 23.1176 0.969142 0.484571 0.874752i \(-0.338976\pi\)
0.484571 + 0.874752i \(0.338976\pi\)
\(570\) 2.53727 0.106275
\(571\) −20.2986 −0.849470 −0.424735 0.905318i \(-0.639633\pi\)
−0.424735 + 0.905318i \(0.639633\pi\)
\(572\) 23.1628 0.968486
\(573\) 6.76304 0.282530
\(574\) −1.53921 −0.0642453
\(575\) −3.29024 −0.137213
\(576\) 18.5568 0.773199
\(577\) −11.8325 −0.492593 −0.246297 0.969195i \(-0.579214\pi\)
−0.246297 + 0.969195i \(0.579214\pi\)
\(578\) −64.7664 −2.69393
\(579\) 7.40836 0.307881
\(580\) −15.9097 −0.660615
\(581\) −13.5298 −0.561310
\(582\) 9.49854 0.393727
\(583\) −36.1345 −1.49654
\(584\) 0.953830 0.0394697
\(585\) −6.80773 −0.281465
\(586\) −16.2476 −0.671182
\(587\) 20.3445 0.839709 0.419855 0.907591i \(-0.362081\pi\)
0.419855 + 0.907591i \(0.362081\pi\)
\(588\) 8.18703 0.337627
\(589\) 12.5108 0.515497
\(590\) −7.43844 −0.306236
\(591\) 4.48649 0.184549
\(592\) 21.9487 0.902086
\(593\) −22.0756 −0.906536 −0.453268 0.891374i \(-0.649742\pi\)
−0.453268 + 0.891374i \(0.649742\pi\)
\(594\) 29.6959 1.21844
\(595\) 5.08263 0.208368
\(596\) −3.24644 −0.132979
\(597\) −16.6616 −0.681915
\(598\) 4.66132 0.190616
\(599\) −41.1347 −1.68072 −0.840360 0.542029i \(-0.817656\pi\)
−0.840360 + 0.542029i \(0.817656\pi\)
\(600\) 0.487102 0.0198859
\(601\) −24.4056 −0.995525 −0.497763 0.867313i \(-0.665845\pi\)
−0.497763 + 0.867313i \(0.665845\pi\)
\(602\) −6.89410 −0.280982
\(603\) 30.4129 1.23851
\(604\) −17.1555 −0.698046
\(605\) −4.51308 −0.183483
\(606\) 4.77512 0.193976
\(607\) 7.54923 0.306414 0.153207 0.988194i \(-0.451040\pi\)
0.153207 + 0.988194i \(0.451040\pi\)
\(608\) −16.9285 −0.686542
\(609\) −5.14555 −0.208508
\(610\) −7.27188 −0.294430
\(611\) 0 0
\(612\) 34.3363 1.38796
\(613\) −29.4903 −1.19110 −0.595551 0.803317i \(-0.703066\pi\)
−0.595551 + 0.803317i \(0.703066\pi\)
\(614\) −19.4537 −0.785088
\(615\) 0.572783 0.0230968
\(616\) −0.558415 −0.0224992
\(617\) 9.59181 0.386152 0.193076 0.981184i \(-0.438154\pi\)
0.193076 + 0.981184i \(0.438154\pi\)
\(618\) 15.4942 0.623267
\(619\) 28.5555 1.14774 0.573871 0.818946i \(-0.305441\pi\)
0.573871 + 0.818946i \(0.305441\pi\)
\(620\) 9.90189 0.397669
\(621\) 2.92192 0.117253
\(622\) −29.0824 −1.16610
\(623\) 0.917736 0.0367683
\(624\) −8.48505 −0.339674
\(625\) 13.8275 0.553101
\(626\) 6.89568 0.275607
\(627\) −5.80304 −0.231751
\(628\) −14.5797 −0.581792
\(629\) 37.1601 1.48167
\(630\) −3.62750 −0.144523
\(631\) 18.8880 0.751919 0.375959 0.926636i \(-0.377313\pi\)
0.375959 + 0.926636i \(0.377313\pi\)
\(632\) −1.38163 −0.0549581
\(633\) −14.9058 −0.592453
\(634\) 0.569011 0.0225983
\(635\) 12.6631 0.502519
\(636\) −11.6340 −0.461316
\(637\) 19.1308 0.757988
\(638\) 74.4211 2.94636
\(639\) −7.34310 −0.290489
\(640\) 1.21353 0.0479690
\(641\) −5.62436 −0.222149 −0.111074 0.993812i \(-0.535429\pi\)
−0.111074 + 0.993812i \(0.535429\pi\)
\(642\) −4.61392 −0.182097
\(643\) −29.8913 −1.17880 −0.589399 0.807842i \(-0.700636\pi\)
−0.589399 + 0.807842i \(0.700636\pi\)
\(644\) 1.21442 0.0478549
\(645\) 2.56549 0.101016
\(646\) −29.9036 −1.17654
\(647\) 34.1394 1.34216 0.671078 0.741387i \(-0.265831\pi\)
0.671078 + 0.741387i \(0.265831\pi\)
\(648\) 0.874687 0.0343610
\(649\) 17.0126 0.667803
\(650\) −25.1574 −0.986756
\(651\) 3.20249 0.125515
\(652\) −14.3952 −0.563759
\(653\) 2.15421 0.0843007 0.0421503 0.999111i \(-0.486579\pi\)
0.0421503 + 0.999111i \(0.486579\pi\)
\(654\) −8.22746 −0.321719
\(655\) −10.3565 −0.404661
\(656\) −3.98730 −0.155678
\(657\) −14.1713 −0.552876
\(658\) 0 0
\(659\) 9.04882 0.352492 0.176246 0.984346i \(-0.443605\pi\)
0.176246 + 0.984346i \(0.443605\pi\)
\(660\) −4.59293 −0.178780
\(661\) −44.0751 −1.71432 −0.857161 0.515048i \(-0.827774\pi\)
−0.857161 + 0.515048i \(0.827774\pi\)
\(662\) 13.8878 0.539763
\(663\) −14.3655 −0.557912
\(664\) −2.85049 −0.110621
\(665\) 1.54466 0.0598994
\(666\) −26.5214 −1.02768
\(667\) 7.32265 0.283534
\(668\) −7.49634 −0.290042
\(669\) −9.87120 −0.381643
\(670\) −20.9634 −0.809888
\(671\) 16.6316 0.642058
\(672\) −4.33334 −0.167162
\(673\) 19.9387 0.768581 0.384291 0.923212i \(-0.374446\pi\)
0.384291 + 0.923212i \(0.374446\pi\)
\(674\) 7.60599 0.292972
\(675\) −15.7698 −0.606980
\(676\) −7.44839 −0.286476
\(677\) 4.28280 0.164601 0.0823007 0.996608i \(-0.473773\pi\)
0.0823007 + 0.996608i \(0.473773\pi\)
\(678\) 21.0451 0.808231
\(679\) 5.78260 0.221916
\(680\) 1.07082 0.0410642
\(681\) −14.6622 −0.561855
\(682\) −46.3182 −1.77362
\(683\) −9.80795 −0.375291 −0.187645 0.982237i \(-0.560086\pi\)
−0.187645 + 0.982237i \(0.560086\pi\)
\(684\) 10.4351 0.398997
\(685\) −12.7043 −0.485405
\(686\) 21.4502 0.818973
\(687\) −12.9189 −0.492888
\(688\) −17.8591 −0.680871
\(689\) −27.1852 −1.03567
\(690\) −0.924288 −0.0351870
\(691\) 9.81263 0.373290 0.186645 0.982427i \(-0.440239\pi\)
0.186645 + 0.982427i \(0.440239\pi\)
\(692\) −29.2988 −1.11377
\(693\) 8.29653 0.315159
\(694\) −6.72920 −0.255437
\(695\) −19.5104 −0.740070
\(696\) −1.08408 −0.0410919
\(697\) −6.75067 −0.255700
\(698\) 12.5373 0.474545
\(699\) −1.28120 −0.0484596
\(700\) −6.55431 −0.247730
\(701\) −27.2852 −1.03055 −0.515274 0.857026i \(-0.672310\pi\)
−0.515274 + 0.857026i \(0.672310\pi\)
\(702\) 22.3413 0.843216
\(703\) 11.2933 0.425935
\(704\) 29.2547 1.10258
\(705\) 0 0
\(706\) 19.3384 0.727812
\(707\) 2.90703 0.109330
\(708\) 5.47742 0.205854
\(709\) −3.12606 −0.117402 −0.0587008 0.998276i \(-0.518696\pi\)
−0.0587008 + 0.998276i \(0.518696\pi\)
\(710\) 5.06156 0.189957
\(711\) 20.5272 0.769831
\(712\) 0.193351 0.00724614
\(713\) −4.55747 −0.170679
\(714\) −7.65469 −0.286470
\(715\) −10.7324 −0.401368
\(716\) 33.0835 1.23639
\(717\) 15.5177 0.579519
\(718\) −39.9421 −1.49062
\(719\) 45.2712 1.68833 0.844165 0.536083i \(-0.180097\pi\)
0.844165 + 0.536083i \(0.180097\pi\)
\(720\) −9.39701 −0.350206
\(721\) 9.43268 0.351291
\(722\) 28.4985 1.06061
\(723\) −5.93105 −0.220578
\(724\) −25.8113 −0.959268
\(725\) −39.5208 −1.46777
\(726\) 6.79691 0.252257
\(727\) 23.0926 0.856456 0.428228 0.903671i \(-0.359138\pi\)
0.428228 + 0.903671i \(0.359138\pi\)
\(728\) −0.420115 −0.0155705
\(729\) −5.41789 −0.200663
\(730\) 9.76822 0.361538
\(731\) −30.2362 −1.11833
\(732\) 5.35476 0.197918
\(733\) −41.6671 −1.53901 −0.769504 0.638641i \(-0.779497\pi\)
−0.769504 + 0.638641i \(0.779497\pi\)
\(734\) 68.1712 2.51624
\(735\) −3.79342 −0.139922
\(736\) 6.16679 0.227311
\(737\) 47.9458 1.76611
\(738\) 4.81799 0.177353
\(739\) 18.9376 0.696631 0.348316 0.937377i \(-0.386754\pi\)
0.348316 + 0.937377i \(0.386754\pi\)
\(740\) 8.93831 0.328579
\(741\) −4.36583 −0.160383
\(742\) −14.4857 −0.531786
\(743\) −18.0104 −0.660739 −0.330370 0.943852i \(-0.607173\pi\)
−0.330370 + 0.943852i \(0.607173\pi\)
\(744\) 0.674709 0.0247360
\(745\) 1.50422 0.0551104
\(746\) 50.8088 1.86024
\(747\) 42.3506 1.54953
\(748\) 54.1311 1.97923
\(749\) −2.80890 −0.102635
\(750\) 10.9074 0.398280
\(751\) −30.8610 −1.12613 −0.563067 0.826411i \(-0.690379\pi\)
−0.563067 + 0.826411i \(0.690379\pi\)
\(752\) 0 0
\(753\) −0.245251 −0.00893744
\(754\) 55.9896 2.03902
\(755\) 7.94890 0.289290
\(756\) 5.82060 0.211693
\(757\) −47.7663 −1.73610 −0.868048 0.496480i \(-0.834625\pi\)
−0.868048 + 0.496480i \(0.834625\pi\)
\(758\) 21.6380 0.785929
\(759\) 2.11396 0.0767317
\(760\) 0.325433 0.0118047
\(761\) −45.1801 −1.63778 −0.818889 0.573952i \(-0.805410\pi\)
−0.818889 + 0.573952i \(0.805410\pi\)
\(762\) −19.0712 −0.690877
\(763\) −5.00878 −0.181330
\(764\) −19.1725 −0.693635
\(765\) −15.9095 −0.575211
\(766\) −13.7779 −0.497815
\(767\) 12.7992 0.462151
\(768\) −11.6727 −0.421202
\(769\) −3.75129 −0.135275 −0.0676375 0.997710i \(-0.521546\pi\)
−0.0676375 + 0.997710i \(0.521546\pi\)
\(770\) −5.71875 −0.206090
\(771\) 5.67156 0.204256
\(772\) −21.0019 −0.755873
\(773\) −1.54800 −0.0556777 −0.0278388 0.999612i \(-0.508863\pi\)
−0.0278388 + 0.999612i \(0.508863\pi\)
\(774\) 21.5797 0.775668
\(775\) 24.5970 0.883549
\(776\) 1.21829 0.0437342
\(777\) 2.89085 0.103709
\(778\) −11.4171 −0.409323
\(779\) −2.05159 −0.0735060
\(780\) −3.45542 −0.123724
\(781\) −11.5764 −0.414235
\(782\) 10.8934 0.389548
\(783\) 35.0968 1.25426
\(784\) 26.4070 0.943109
\(785\) 6.75541 0.241111
\(786\) 15.5973 0.556339
\(787\) −22.8115 −0.813141 −0.406571 0.913619i \(-0.633275\pi\)
−0.406571 + 0.913619i \(0.633275\pi\)
\(788\) −12.7187 −0.453084
\(789\) 6.81942 0.242778
\(790\) −14.1493 −0.503409
\(791\) 12.8120 0.455542
\(792\) 1.74794 0.0621102
\(793\) 12.5126 0.444334
\(794\) −45.4609 −1.61335
\(795\) 5.39053 0.191182
\(796\) 47.2338 1.67416
\(797\) −13.9919 −0.495618 −0.247809 0.968809i \(-0.579711\pi\)
−0.247809 + 0.968809i \(0.579711\pi\)
\(798\) −2.32633 −0.0823513
\(799\) 0 0
\(800\) −33.2826 −1.17672
\(801\) −2.87267 −0.101501
\(802\) 52.2603 1.84537
\(803\) −22.3411 −0.788399
\(804\) 15.4368 0.544412
\(805\) −0.562696 −0.0198324
\(806\) −34.8468 −1.22743
\(807\) 7.51239 0.264449
\(808\) 0.612462 0.0215463
\(809\) 17.1991 0.604688 0.302344 0.953199i \(-0.402231\pi\)
0.302344 + 0.953199i \(0.402231\pi\)
\(810\) 8.95772 0.314742
\(811\) −10.5928 −0.371963 −0.185982 0.982553i \(-0.559547\pi\)
−0.185982 + 0.982553i \(0.559547\pi\)
\(812\) 14.5870 0.511905
\(813\) −18.1295 −0.635828
\(814\) −41.8109 −1.46547
\(815\) 6.66993 0.233638
\(816\) −19.8294 −0.694168
\(817\) −9.18906 −0.321485
\(818\) 54.0874 1.89112
\(819\) 6.24177 0.218105
\(820\) −1.62377 −0.0567047
\(821\) −0.347933 −0.0121430 −0.00607148 0.999982i \(-0.501933\pi\)
−0.00607148 + 0.999982i \(0.501933\pi\)
\(822\) 19.1333 0.667349
\(823\) 29.5127 1.02875 0.514374 0.857566i \(-0.328024\pi\)
0.514374 + 0.857566i \(0.328024\pi\)
\(824\) 1.98730 0.0692309
\(825\) −11.4092 −0.397216
\(826\) 6.82004 0.237300
\(827\) 24.8879 0.865437 0.432718 0.901529i \(-0.357554\pi\)
0.432718 + 0.901529i \(0.357554\pi\)
\(828\) −3.80135 −0.132106
\(829\) 24.1143 0.837525 0.418762 0.908096i \(-0.362464\pi\)
0.418762 + 0.908096i \(0.362464\pi\)
\(830\) −29.1920 −1.01327
\(831\) −0.547882 −0.0190058
\(832\) 22.0093 0.763036
\(833\) 44.7082 1.54905
\(834\) 29.3836 1.01747
\(835\) 3.47339 0.120202
\(836\) 16.4510 0.568968
\(837\) −21.8435 −0.755023
\(838\) −13.5277 −0.467306
\(839\) 39.4019 1.36031 0.680153 0.733070i \(-0.261913\pi\)
0.680153 + 0.733070i \(0.261913\pi\)
\(840\) 0.0833041 0.00287426
\(841\) 58.9562 2.03297
\(842\) −23.3530 −0.804799
\(843\) −12.6499 −0.435687
\(844\) 42.2563 1.45452
\(845\) 3.45117 0.118724
\(846\) 0 0
\(847\) 4.13788 0.142179
\(848\) −37.5250 −1.28861
\(849\) −4.41167 −0.151408
\(850\) −58.7925 −2.01656
\(851\) −4.11397 −0.141025
\(852\) −3.72716 −0.127690
\(853\) 28.0980 0.962057 0.481029 0.876705i \(-0.340263\pi\)
0.481029 + 0.876705i \(0.340263\pi\)
\(854\) 6.66733 0.228151
\(855\) −4.83506 −0.165356
\(856\) −0.591787 −0.0202268
\(857\) 3.94799 0.134861 0.0674305 0.997724i \(-0.478520\pi\)
0.0674305 + 0.997724i \(0.478520\pi\)
\(858\) 16.1635 0.551812
\(859\) 17.2452 0.588397 0.294199 0.955744i \(-0.404947\pi\)
0.294199 + 0.955744i \(0.404947\pi\)
\(860\) −7.27287 −0.248003
\(861\) −0.525164 −0.0178976
\(862\) −17.8474 −0.607886
\(863\) 18.5654 0.631973 0.315987 0.948764i \(-0.397664\pi\)
0.315987 + 0.948764i \(0.397664\pi\)
\(864\) 29.5568 1.00554
\(865\) 13.5754 0.461579
\(866\) 2.22061 0.0754596
\(867\) −22.0977 −0.750478
\(868\) −9.07869 −0.308151
\(869\) 32.3611 1.09778
\(870\) −11.1021 −0.376397
\(871\) 36.0713 1.22223
\(872\) −1.05526 −0.0357357
\(873\) −18.1006 −0.612611
\(874\) 3.31061 0.111983
\(875\) 6.64027 0.224482
\(876\) −7.19299 −0.243028
\(877\) −40.2086 −1.35775 −0.678875 0.734254i \(-0.737532\pi\)
−0.678875 + 0.734254i \(0.737532\pi\)
\(878\) −63.5353 −2.14421
\(879\) −5.54354 −0.186979
\(880\) −14.8144 −0.499392
\(881\) 47.4491 1.59860 0.799301 0.600931i \(-0.205204\pi\)
0.799301 + 0.600931i \(0.205204\pi\)
\(882\) −31.9085 −1.07442
\(883\) −0.917146 −0.0308644 −0.0154322 0.999881i \(-0.504912\pi\)
−0.0154322 + 0.999881i \(0.504912\pi\)
\(884\) 40.7247 1.36972
\(885\) −2.53793 −0.0853116
\(886\) −9.16556 −0.307923
\(887\) 36.2772 1.21807 0.609035 0.793143i \(-0.291557\pi\)
0.609035 + 0.793143i \(0.291557\pi\)
\(888\) 0.609051 0.0204384
\(889\) −11.6103 −0.389398
\(890\) 1.98012 0.0663737
\(891\) −20.4874 −0.686353
\(892\) 27.9837 0.936964
\(893\) 0 0
\(894\) −2.26543 −0.0757674
\(895\) −15.3291 −0.512394
\(896\) −1.11264 −0.0371708
\(897\) 1.59040 0.0531020
\(898\) −14.8360 −0.495083
\(899\) −54.7422 −1.82575
\(900\) 20.5161 0.683871
\(901\) −63.5314 −2.11654
\(902\) 7.59555 0.252904
\(903\) −2.35221 −0.0782765
\(904\) 2.69927 0.0897762
\(905\) 11.9595 0.397548
\(906\) −11.9714 −0.397724
\(907\) −9.25814 −0.307412 −0.153706 0.988117i \(-0.549121\pi\)
−0.153706 + 0.988117i \(0.549121\pi\)
\(908\) 41.5655 1.37940
\(909\) −9.09953 −0.301812
\(910\) −4.30241 −0.142624
\(911\) −43.3886 −1.43753 −0.718765 0.695253i \(-0.755292\pi\)
−0.718765 + 0.695253i \(0.755292\pi\)
\(912\) −6.02634 −0.199552
\(913\) 66.7656 2.20962
\(914\) −24.9842 −0.826403
\(915\) −2.48110 −0.0820227
\(916\) 36.6237 1.21008
\(917\) 9.49548 0.313568
\(918\) 52.2111 1.72322
\(919\) 37.6670 1.24252 0.621259 0.783605i \(-0.286621\pi\)
0.621259 + 0.783605i \(0.286621\pi\)
\(920\) −0.118550 −0.00390849
\(921\) −6.63744 −0.218711
\(922\) −44.7237 −1.47290
\(923\) −8.70931 −0.286670
\(924\) 4.21110 0.138535
\(925\) 22.2034 0.730042
\(926\) 50.3102 1.65330
\(927\) −29.5259 −0.969759
\(928\) 74.0726 2.43155
\(929\) 39.2657 1.28826 0.644132 0.764914i \(-0.277219\pi\)
0.644132 + 0.764914i \(0.277219\pi\)
\(930\) 6.90973 0.226579
\(931\) 13.5873 0.445304
\(932\) 3.63206 0.118972
\(933\) −9.92265 −0.324853
\(934\) −3.90452 −0.127760
\(935\) −25.0814 −0.820248
\(936\) 1.31503 0.0429832
\(937\) −11.0658 −0.361503 −0.180752 0.983529i \(-0.557853\pi\)
−0.180752 + 0.983529i \(0.557853\pi\)
\(938\) 19.2206 0.627576
\(939\) 2.35275 0.0767790
\(940\) 0 0
\(941\) −19.9463 −0.650231 −0.325116 0.945674i \(-0.605403\pi\)
−0.325116 + 0.945674i \(0.605403\pi\)
\(942\) −10.1740 −0.331486
\(943\) 0.747363 0.0243375
\(944\) 17.6673 0.575020
\(945\) −2.69695 −0.0877317
\(946\) 34.0204 1.10610
\(947\) −54.1860 −1.76081 −0.880405 0.474223i \(-0.842729\pi\)
−0.880405 + 0.474223i \(0.842729\pi\)
\(948\) 10.4191 0.338395
\(949\) −16.8080 −0.545609
\(950\) −17.8676 −0.579701
\(951\) 0.194142 0.00629548
\(952\) −0.981800 −0.0318203
\(953\) 37.8125 1.22487 0.612434 0.790522i \(-0.290191\pi\)
0.612434 + 0.790522i \(0.290191\pi\)
\(954\) 45.3427 1.46802
\(955\) 8.88346 0.287462
\(956\) −43.9909 −1.42277
\(957\) 25.3918 0.820801
\(958\) −42.4895 −1.37277
\(959\) 11.6481 0.376137
\(960\) −4.36421 −0.140854
\(961\) 3.07046 0.0990471
\(962\) −31.4557 −1.01417
\(963\) 8.79235 0.283330
\(964\) 16.8138 0.541538
\(965\) 9.73110 0.313255
\(966\) 0.847447 0.0272662
\(967\) 15.4930 0.498222 0.249111 0.968475i \(-0.419862\pi\)
0.249111 + 0.968475i \(0.419862\pi\)
\(968\) 0.871780 0.0280201
\(969\) −10.2029 −0.327763
\(970\) 12.4766 0.400600
\(971\) 21.0305 0.674900 0.337450 0.941344i \(-0.390436\pi\)
0.337450 + 0.941344i \(0.390436\pi\)
\(972\) −28.0778 −0.900596
\(973\) 17.8884 0.573475
\(974\) 23.6935 0.759189
\(975\) −8.58350 −0.274892
\(976\) 17.2716 0.552852
\(977\) 42.1181 1.34748 0.673739 0.738969i \(-0.264687\pi\)
0.673739 + 0.738969i \(0.264687\pi\)
\(978\) −10.0452 −0.321211
\(979\) −4.52876 −0.144740
\(980\) 10.7539 0.343521
\(981\) 15.6784 0.500572
\(982\) 54.0239 1.72397
\(983\) −17.7295 −0.565484 −0.282742 0.959196i \(-0.591244\pi\)
−0.282742 + 0.959196i \(0.591244\pi\)
\(984\) −0.110643 −0.00352717
\(985\) 5.89313 0.187771
\(986\) 130.847 4.16700
\(987\) 0 0
\(988\) 12.3766 0.393753
\(989\) 3.34743 0.106442
\(990\) 17.9007 0.568922
\(991\) 30.1594 0.958045 0.479023 0.877803i \(-0.340991\pi\)
0.479023 + 0.877803i \(0.340991\pi\)
\(992\) −46.1013 −1.46372
\(993\) 4.73839 0.150368
\(994\) −4.64076 −0.147196
\(995\) −21.8855 −0.693818
\(996\) 21.4960 0.681128
\(997\) 22.1158 0.700413 0.350207 0.936672i \(-0.386111\pi\)
0.350207 + 0.936672i \(0.386111\pi\)
\(998\) −73.5270 −2.32746
\(999\) −19.7179 −0.623846
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2209.2.a.m.1.5 33
47.31 odd 46 47.2.c.a.21.1 yes 66
47.44 odd 46 47.2.c.a.9.1 66
47.46 odd 2 2209.2.a.l.1.5 33
141.44 even 46 423.2.i.a.244.3 66
141.125 even 46 423.2.i.a.397.3 66
188.31 even 46 752.2.m.c.209.1 66
188.91 even 46 752.2.m.c.385.1 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
47.2.c.a.9.1 66 47.44 odd 46
47.2.c.a.21.1 yes 66 47.31 odd 46
423.2.i.a.244.3 66 141.44 even 46
423.2.i.a.397.3 66 141.125 even 46
752.2.m.c.209.1 66 188.31 even 46
752.2.m.c.385.1 66 188.91 even 46
2209.2.a.l.1.5 33 47.46 odd 2
2209.2.a.m.1.5 33 1.1 even 1 trivial