Properties

Label 2208.2.n.b.367.13
Level $2208$
Weight $2$
Character 2208.367
Analytic conductor $17.631$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2208,2,Mod(367,2208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2208.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2208 = 2^{5} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2208.n (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6309687663\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 552)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 367.13
Character \(\chi\) \(=\) 2208.367
Dual form 2208.2.n.b.367.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +0.901487 q^{5} -1.56211 q^{7} +1.00000 q^{9} -3.69478i q^{11} +2.36562i q^{13} +0.901487 q^{15} +0.473035i q^{17} -7.66256i q^{19} -1.56211 q^{21} +(4.73018 - 0.790796i) q^{23} -4.18732 q^{25} +1.00000 q^{27} -4.29403i q^{29} +1.83523i q^{31} -3.69478i q^{33} -1.40822 q^{35} +5.81865 q^{37} +2.36562i q^{39} +2.62473 q^{41} -7.06267i q^{43} +0.901487 q^{45} -4.27804i q^{47} -4.55981 q^{49} +0.473035i q^{51} -4.64065 q^{53} -3.33080i q^{55} -7.66256i q^{57} +7.81205 q^{59} +11.9981 q^{61} -1.56211 q^{63} +2.13258i q^{65} -5.35433i q^{67} +(4.73018 - 0.790796i) q^{69} +6.95616i q^{71} +11.2808 q^{73} -4.18732 q^{75} +5.77167i q^{77} -15.8447 q^{79} +1.00000 q^{81} -7.33508i q^{83} +0.426435i q^{85} -4.29403i q^{87} -4.91384i q^{89} -3.69537i q^{91} +1.83523i q^{93} -6.90769i q^{95} -15.0308i q^{97} -3.69478i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{3} + 24 q^{9} + 24 q^{25} + 24 q^{27} + 56 q^{49} + 32 q^{73} + 24 q^{75} + 24 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2208\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(415\) \(737\) \(1381\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0.901487 0.403157 0.201579 0.979472i \(-0.435393\pi\)
0.201579 + 0.979472i \(0.435393\pi\)
\(6\) 0 0
\(7\) −1.56211 −0.590423 −0.295211 0.955432i \(-0.595390\pi\)
−0.295211 + 0.955432i \(0.595390\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.69478i 1.11402i −0.830506 0.557010i \(-0.811949\pi\)
0.830506 0.557010i \(-0.188051\pi\)
\(12\) 0 0
\(13\) 2.36562i 0.656106i 0.944659 + 0.328053i \(0.106392\pi\)
−0.944659 + 0.328053i \(0.893608\pi\)
\(14\) 0 0
\(15\) 0.901487 0.232763
\(16\) 0 0
\(17\) 0.473035i 0.114728i 0.998353 + 0.0573639i \(0.0182695\pi\)
−0.998353 + 0.0573639i \(0.981730\pi\)
\(18\) 0 0
\(19\) 7.66256i 1.75791i −0.476904 0.878955i \(-0.658241\pi\)
0.476904 0.878955i \(-0.341759\pi\)
\(20\) 0 0
\(21\) −1.56211 −0.340881
\(22\) 0 0
\(23\) 4.73018 0.790796i 0.986312 0.164892i
\(24\) 0 0
\(25\) −4.18732 −0.837464
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.29403i 0.797382i −0.917085 0.398691i \(-0.869465\pi\)
0.917085 0.398691i \(-0.130535\pi\)
\(30\) 0 0
\(31\) 1.83523i 0.329617i 0.986326 + 0.164809i \(0.0527006\pi\)
−0.986326 + 0.164809i \(0.947299\pi\)
\(32\) 0 0
\(33\) 3.69478i 0.643179i
\(34\) 0 0
\(35\) −1.40822 −0.238033
\(36\) 0 0
\(37\) 5.81865 0.956580 0.478290 0.878202i \(-0.341257\pi\)
0.478290 + 0.878202i \(0.341257\pi\)
\(38\) 0 0
\(39\) 2.36562i 0.378803i
\(40\) 0 0
\(41\) 2.62473 0.409913 0.204957 0.978771i \(-0.434295\pi\)
0.204957 + 0.978771i \(0.434295\pi\)
\(42\) 0 0
\(43\) 7.06267i 1.07705i −0.842610 0.538524i \(-0.818982\pi\)
0.842610 0.538524i \(-0.181018\pi\)
\(44\) 0 0
\(45\) 0.901487 0.134386
\(46\) 0 0
\(47\) 4.27804i 0.624016i −0.950079 0.312008i \(-0.898998\pi\)
0.950079 0.312008i \(-0.101002\pi\)
\(48\) 0 0
\(49\) −4.55981 −0.651401
\(50\) 0 0
\(51\) 0.473035i 0.0662381i
\(52\) 0 0
\(53\) −4.64065 −0.637442 −0.318721 0.947849i \(-0.603253\pi\)
−0.318721 + 0.947849i \(0.603253\pi\)
\(54\) 0 0
\(55\) 3.33080i 0.449125i
\(56\) 0 0
\(57\) 7.66256i 1.01493i
\(58\) 0 0
\(59\) 7.81205 1.01704 0.508521 0.861050i \(-0.330192\pi\)
0.508521 + 0.861050i \(0.330192\pi\)
\(60\) 0 0
\(61\) 11.9981 1.53620 0.768098 0.640332i \(-0.221203\pi\)
0.768098 + 0.640332i \(0.221203\pi\)
\(62\) 0 0
\(63\) −1.56211 −0.196808
\(64\) 0 0
\(65\) 2.13258i 0.264514i
\(66\) 0 0
\(67\) 5.35433i 0.654135i −0.945001 0.327068i \(-0.893939\pi\)
0.945001 0.327068i \(-0.106061\pi\)
\(68\) 0 0
\(69\) 4.73018 0.790796i 0.569447 0.0952006i
\(70\) 0 0
\(71\) 6.95616i 0.825544i 0.910834 + 0.412772i \(0.135439\pi\)
−0.910834 + 0.412772i \(0.864561\pi\)
\(72\) 0 0
\(73\) 11.2808 1.32032 0.660158 0.751127i \(-0.270489\pi\)
0.660158 + 0.751127i \(0.270489\pi\)
\(74\) 0 0
\(75\) −4.18732 −0.483510
\(76\) 0 0
\(77\) 5.77167i 0.657742i
\(78\) 0 0
\(79\) −15.8447 −1.78267 −0.891335 0.453345i \(-0.850230\pi\)
−0.891335 + 0.453345i \(0.850230\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.33508i 0.805129i −0.915392 0.402565i \(-0.868119\pi\)
0.915392 0.402565i \(-0.131881\pi\)
\(84\) 0 0
\(85\) 0.426435i 0.0462533i
\(86\) 0 0
\(87\) 4.29403i 0.460369i
\(88\) 0 0
\(89\) 4.91384i 0.520866i −0.965492 0.260433i \(-0.916135\pi\)
0.965492 0.260433i \(-0.0838653\pi\)
\(90\) 0 0
\(91\) 3.69537i 0.387380i
\(92\) 0 0
\(93\) 1.83523i 0.190305i
\(94\) 0 0
\(95\) 6.90769i 0.708714i
\(96\) 0 0
\(97\) 15.0308i 1.52614i −0.646314 0.763071i \(-0.723691\pi\)
0.646314 0.763071i \(-0.276309\pi\)
\(98\) 0 0
\(99\) 3.69478i 0.371340i
\(100\) 0 0
\(101\) 1.47763i 0.147030i −0.997294 0.0735149i \(-0.976578\pi\)
0.997294 0.0735149i \(-0.0234217\pi\)
\(102\) 0 0
\(103\) −3.82331 −0.376722 −0.188361 0.982100i \(-0.560317\pi\)
−0.188361 + 0.982100i \(0.560317\pi\)
\(104\) 0 0
\(105\) −1.40822 −0.137429
\(106\) 0 0
\(107\) 8.57550i 0.829024i 0.910044 + 0.414512i \(0.136048\pi\)
−0.910044 + 0.414512i \(0.863952\pi\)
\(108\) 0 0
\(109\) 15.2790 1.46346 0.731732 0.681592i \(-0.238712\pi\)
0.731732 + 0.681592i \(0.238712\pi\)
\(110\) 0 0
\(111\) 5.81865 0.552282
\(112\) 0 0
\(113\) 5.89000i 0.554085i 0.960858 + 0.277042i \(0.0893542\pi\)
−0.960858 + 0.277042i \(0.910646\pi\)
\(114\) 0 0
\(115\) 4.26420 0.712892i 0.397639 0.0664775i
\(116\) 0 0
\(117\) 2.36562i 0.218702i
\(118\) 0 0
\(119\) 0.738933i 0.0677379i
\(120\) 0 0
\(121\) −2.65143 −0.241039
\(122\) 0 0
\(123\) 2.62473 0.236664
\(124\) 0 0
\(125\) −8.28225 −0.740787
\(126\) 0 0
\(127\) 18.7735i 1.66588i 0.553364 + 0.832939i \(0.313344\pi\)
−0.553364 + 0.832939i \(0.686656\pi\)
\(128\) 0 0
\(129\) 7.06267i 0.621834i
\(130\) 0 0
\(131\) −6.40382 −0.559505 −0.279752 0.960072i \(-0.590252\pi\)
−0.279752 + 0.960072i \(0.590252\pi\)
\(132\) 0 0
\(133\) 11.9698i 1.03791i
\(134\) 0 0
\(135\) 0.901487 0.0775876
\(136\) 0 0
\(137\) 3.16726i 0.270597i 0.990805 + 0.135299i \(0.0431994\pi\)
−0.990805 + 0.135299i \(0.956801\pi\)
\(138\) 0 0
\(139\) −4.84346 −0.410817 −0.205408 0.978676i \(-0.565852\pi\)
−0.205408 + 0.978676i \(0.565852\pi\)
\(140\) 0 0
\(141\) 4.27804i 0.360276i
\(142\) 0 0
\(143\) 8.74047 0.730915
\(144\) 0 0
\(145\) 3.87102i 0.321470i
\(146\) 0 0
\(147\) −4.55981 −0.376087
\(148\) 0 0
\(149\) −3.34176 −0.273767 −0.136884 0.990587i \(-0.543709\pi\)
−0.136884 + 0.990587i \(0.543709\pi\)
\(150\) 0 0
\(151\) 17.3731i 1.41380i −0.707314 0.706900i \(-0.750093\pi\)
0.707314 0.706900i \(-0.249907\pi\)
\(152\) 0 0
\(153\) 0.473035i 0.0382426i
\(154\) 0 0
\(155\) 1.65444i 0.132888i
\(156\) 0 0
\(157\) 4.88151 0.389587 0.194793 0.980844i \(-0.437596\pi\)
0.194793 + 0.980844i \(0.437596\pi\)
\(158\) 0 0
\(159\) −4.64065 −0.368027
\(160\) 0 0
\(161\) −7.38908 + 1.23531i −0.582341 + 0.0973561i
\(162\) 0 0
\(163\) 22.1556 1.73536 0.867680 0.497124i \(-0.165611\pi\)
0.867680 + 0.497124i \(0.165611\pi\)
\(164\) 0 0
\(165\) 3.33080i 0.259302i
\(166\) 0 0
\(167\) 21.3490i 1.65203i 0.563645 + 0.826017i \(0.309399\pi\)
−0.563645 + 0.826017i \(0.690601\pi\)
\(168\) 0 0
\(169\) 7.40382 0.569525
\(170\) 0 0
\(171\) 7.66256i 0.585970i
\(172\) 0 0
\(173\) 16.6902i 1.26893i −0.772950 0.634467i \(-0.781219\pi\)
0.772950 0.634467i \(-0.218781\pi\)
\(174\) 0 0
\(175\) 6.54106 0.494458
\(176\) 0 0
\(177\) 7.81205 0.587189
\(178\) 0 0
\(179\) −13.5240 −1.01083 −0.505416 0.862876i \(-0.668661\pi\)
−0.505416 + 0.862876i \(0.668661\pi\)
\(180\) 0 0
\(181\) −15.6631 −1.16423 −0.582115 0.813106i \(-0.697775\pi\)
−0.582115 + 0.813106i \(0.697775\pi\)
\(182\) 0 0
\(183\) 11.9981 0.886924
\(184\) 0 0
\(185\) 5.24544 0.385652
\(186\) 0 0
\(187\) 1.74776 0.127809
\(188\) 0 0
\(189\) −1.56211 −0.113627
\(190\) 0 0
\(191\) −10.5542 −0.763677 −0.381839 0.924229i \(-0.624709\pi\)
−0.381839 + 0.924229i \(0.624709\pi\)
\(192\) 0 0
\(193\) 0.464113 0.0334076 0.0167038 0.999860i \(-0.494683\pi\)
0.0167038 + 0.999860i \(0.494683\pi\)
\(194\) 0 0
\(195\) 2.13258i 0.152717i
\(196\) 0 0
\(197\) 10.0657i 0.717151i 0.933501 + 0.358576i \(0.116738\pi\)
−0.933501 + 0.358576i \(0.883262\pi\)
\(198\) 0 0
\(199\) 8.22327 0.582932 0.291466 0.956581i \(-0.405857\pi\)
0.291466 + 0.956581i \(0.405857\pi\)
\(200\) 0 0
\(201\) 5.35433i 0.377665i
\(202\) 0 0
\(203\) 6.70776i 0.470792i
\(204\) 0 0
\(205\) 2.36616 0.165259
\(206\) 0 0
\(207\) 4.73018 0.790796i 0.328771 0.0549641i
\(208\) 0 0
\(209\) −28.3115 −1.95835
\(210\) 0 0
\(211\) −16.1286 −1.11034 −0.555168 0.831738i \(-0.687346\pi\)
−0.555168 + 0.831738i \(0.687346\pi\)
\(212\) 0 0
\(213\) 6.95616i 0.476628i
\(214\) 0 0
\(215\) 6.36691i 0.434220i
\(216\) 0 0
\(217\) 2.86683i 0.194613i
\(218\) 0 0
\(219\) 11.2808 0.762285
\(220\) 0 0
\(221\) −1.11902 −0.0752736
\(222\) 0 0
\(223\) 6.77440i 0.453647i −0.973936 0.226824i \(-0.927166\pi\)
0.973936 0.226824i \(-0.0728341\pi\)
\(224\) 0 0
\(225\) −4.18732 −0.279155
\(226\) 0 0
\(227\) 23.8069i 1.58012i 0.613030 + 0.790059i \(0.289950\pi\)
−0.613030 + 0.790059i \(0.710050\pi\)
\(228\) 0 0
\(229\) −10.4208 −0.688628 −0.344314 0.938854i \(-0.611889\pi\)
−0.344314 + 0.938854i \(0.611889\pi\)
\(230\) 0 0
\(231\) 5.77167i 0.379748i
\(232\) 0 0
\(233\) 2.52840 0.165641 0.0828205 0.996564i \(-0.473607\pi\)
0.0828205 + 0.996564i \(0.473607\pi\)
\(234\) 0 0
\(235\) 3.85660i 0.251577i
\(236\) 0 0
\(237\) −15.8447 −1.02922
\(238\) 0 0
\(239\) 12.3970i 0.801895i −0.916101 0.400948i \(-0.868681\pi\)
0.916101 0.400948i \(-0.131319\pi\)
\(240\) 0 0
\(241\) 6.64297i 0.427911i −0.976843 0.213956i \(-0.931365\pi\)
0.976843 0.213956i \(-0.0686348\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −4.11061 −0.262617
\(246\) 0 0
\(247\) 18.1267 1.15338
\(248\) 0 0
\(249\) 7.33508i 0.464842i
\(250\) 0 0
\(251\) 14.0093i 0.884259i 0.896951 + 0.442130i \(0.145777\pi\)
−0.896951 + 0.442130i \(0.854223\pi\)
\(252\) 0 0
\(253\) −2.92182 17.4770i −0.183693 1.09877i
\(254\) 0 0
\(255\) 0.426435i 0.0267044i
\(256\) 0 0
\(257\) 17.0620 1.06430 0.532150 0.846650i \(-0.321384\pi\)
0.532150 + 0.846650i \(0.321384\pi\)
\(258\) 0 0
\(259\) −9.08938 −0.564787
\(260\) 0 0
\(261\) 4.29403i 0.265794i
\(262\) 0 0
\(263\) 12.5846 0.775999 0.388000 0.921660i \(-0.373166\pi\)
0.388000 + 0.921660i \(0.373166\pi\)
\(264\) 0 0
\(265\) −4.18348 −0.256989
\(266\) 0 0
\(267\) 4.91384i 0.300722i
\(268\) 0 0
\(269\) 5.33445i 0.325247i 0.986688 + 0.162624i \(0.0519956\pi\)
−0.986688 + 0.162624i \(0.948004\pi\)
\(270\) 0 0
\(271\) 5.16603i 0.313814i −0.987613 0.156907i \(-0.949848\pi\)
0.987613 0.156907i \(-0.0501523\pi\)
\(272\) 0 0
\(273\) 3.69537i 0.223654i
\(274\) 0 0
\(275\) 15.4713i 0.932952i
\(276\) 0 0
\(277\) 26.4195i 1.58739i −0.608313 0.793697i \(-0.708154\pi\)
0.608313 0.793697i \(-0.291846\pi\)
\(278\) 0 0
\(279\) 1.83523i 0.109872i
\(280\) 0 0
\(281\) 20.8795i 1.24557i 0.782395 + 0.622783i \(0.213998\pi\)
−0.782395 + 0.622783i \(0.786002\pi\)
\(282\) 0 0
\(283\) 11.8930i 0.706966i −0.935441 0.353483i \(-0.884997\pi\)
0.935441 0.353483i \(-0.115003\pi\)
\(284\) 0 0
\(285\) 6.90769i 0.409176i
\(286\) 0 0
\(287\) −4.10011 −0.242022
\(288\) 0 0
\(289\) 16.7762 0.986838
\(290\) 0 0
\(291\) 15.0308i 0.881119i
\(292\) 0 0
\(293\) −29.0826 −1.69902 −0.849512 0.527570i \(-0.823103\pi\)
−0.849512 + 0.527570i \(0.823103\pi\)
\(294\) 0 0
\(295\) 7.04246 0.410028
\(296\) 0 0
\(297\) 3.69478i 0.214393i
\(298\) 0 0
\(299\) 1.87072 + 11.1898i 0.108187 + 0.647125i
\(300\) 0 0
\(301\) 11.0327i 0.635913i
\(302\) 0 0
\(303\) 1.47763i 0.0848877i
\(304\) 0 0
\(305\) 10.8161 0.619329
\(306\) 0 0
\(307\) −0.564207 −0.0322010 −0.0161005 0.999870i \(-0.505125\pi\)
−0.0161005 + 0.999870i \(0.505125\pi\)
\(308\) 0 0
\(309\) −3.82331 −0.217500
\(310\) 0 0
\(311\) 22.4646i 1.27385i 0.770924 + 0.636927i \(0.219795\pi\)
−0.770924 + 0.636927i \(0.780205\pi\)
\(312\) 0 0
\(313\) 5.00245i 0.282755i −0.989956 0.141378i \(-0.954847\pi\)
0.989956 0.141378i \(-0.0451532\pi\)
\(314\) 0 0
\(315\) −1.40822 −0.0793444
\(316\) 0 0
\(317\) 19.1167i 1.07370i 0.843678 + 0.536849i \(0.180386\pi\)
−0.843678 + 0.536849i \(0.819614\pi\)
\(318\) 0 0
\(319\) −15.8655 −0.888299
\(320\) 0 0
\(321\) 8.57550i 0.478638i
\(322\) 0 0
\(323\) 3.62465 0.201681
\(324\) 0 0
\(325\) 9.90563i 0.549465i
\(326\) 0 0
\(327\) 15.2790 0.844932
\(328\) 0 0
\(329\) 6.68277i 0.368433i
\(330\) 0 0
\(331\) 9.65359 0.530609 0.265305 0.964165i \(-0.414527\pi\)
0.265305 + 0.964165i \(0.414527\pi\)
\(332\) 0 0
\(333\) 5.81865 0.318860
\(334\) 0 0
\(335\) 4.82686i 0.263719i
\(336\) 0 0
\(337\) 15.5246i 0.845678i 0.906205 + 0.422839i \(0.138966\pi\)
−0.906205 + 0.422839i \(0.861034\pi\)
\(338\) 0 0
\(339\) 5.89000i 0.319901i
\(340\) 0 0
\(341\) 6.78078 0.367200
\(342\) 0 0
\(343\) 18.0577 0.975025
\(344\) 0 0
\(345\) 4.26420 0.712892i 0.229577 0.0383808i
\(346\) 0 0
\(347\) 24.2199 1.30019 0.650095 0.759853i \(-0.274729\pi\)
0.650095 + 0.759853i \(0.274729\pi\)
\(348\) 0 0
\(349\) 2.99062i 0.160084i 0.996791 + 0.0800421i \(0.0255055\pi\)
−0.996791 + 0.0800421i \(0.974495\pi\)
\(350\) 0 0
\(351\) 2.36562i 0.126268i
\(352\) 0 0
\(353\) 4.59122 0.244366 0.122183 0.992508i \(-0.461011\pi\)
0.122183 + 0.992508i \(0.461011\pi\)
\(354\) 0 0
\(355\) 6.27089i 0.332824i
\(356\) 0 0
\(357\) 0.738933i 0.0391085i
\(358\) 0 0
\(359\) 6.08015 0.320898 0.160449 0.987044i \(-0.448706\pi\)
0.160449 + 0.987044i \(0.448706\pi\)
\(360\) 0 0
\(361\) −39.7148 −2.09025
\(362\) 0 0
\(363\) −2.65143 −0.139164
\(364\) 0 0
\(365\) 10.1695 0.532295
\(366\) 0 0
\(367\) −21.8559 −1.14087 −0.570433 0.821344i \(-0.693225\pi\)
−0.570433 + 0.821344i \(0.693225\pi\)
\(368\) 0 0
\(369\) 2.62473 0.136638
\(370\) 0 0
\(371\) 7.24921 0.376360
\(372\) 0 0
\(373\) −6.69692 −0.346754 −0.173377 0.984856i \(-0.555468\pi\)
−0.173377 + 0.984856i \(0.555468\pi\)
\(374\) 0 0
\(375\) −8.28225 −0.427694
\(376\) 0 0
\(377\) 10.1581 0.523167
\(378\) 0 0
\(379\) 26.1881i 1.34519i −0.740011 0.672595i \(-0.765180\pi\)
0.740011 0.672595i \(-0.234820\pi\)
\(380\) 0 0
\(381\) 18.7735i 0.961796i
\(382\) 0 0
\(383\) −8.67994 −0.443524 −0.221762 0.975101i \(-0.571181\pi\)
−0.221762 + 0.975101i \(0.571181\pi\)
\(384\) 0 0
\(385\) 5.20308i 0.265174i
\(386\) 0 0
\(387\) 7.06267i 0.359016i
\(388\) 0 0
\(389\) 27.5178 1.39521 0.697604 0.716484i \(-0.254250\pi\)
0.697604 + 0.716484i \(0.254250\pi\)
\(390\) 0 0
\(391\) 0.374074 + 2.23754i 0.0189177 + 0.113157i
\(392\) 0 0
\(393\) −6.40382 −0.323030
\(394\) 0 0
\(395\) −14.2838 −0.718696
\(396\) 0 0
\(397\) 33.4878i 1.68070i 0.542042 + 0.840351i \(0.317651\pi\)
−0.542042 + 0.840351i \(0.682349\pi\)
\(398\) 0 0
\(399\) 11.9698i 0.599238i
\(400\) 0 0
\(401\) 27.6454i 1.38054i 0.723550 + 0.690272i \(0.242509\pi\)
−0.723550 + 0.690272i \(0.757491\pi\)
\(402\) 0 0
\(403\) −4.34147 −0.216264
\(404\) 0 0
\(405\) 0.901487 0.0447952
\(406\) 0 0
\(407\) 21.4987i 1.06565i
\(408\) 0 0
\(409\) −3.78504 −0.187158 −0.0935790 0.995612i \(-0.529831\pi\)
−0.0935790 + 0.995612i \(0.529831\pi\)
\(410\) 0 0
\(411\) 3.16726i 0.156229i
\(412\) 0 0
\(413\) −12.2033 −0.600485
\(414\) 0 0
\(415\) 6.61248i 0.324594i
\(416\) 0 0
\(417\) −4.84346 −0.237185
\(418\) 0 0
\(419\) 5.09760i 0.249034i 0.992217 + 0.124517i \(0.0397381\pi\)
−0.992217 + 0.124517i \(0.960262\pi\)
\(420\) 0 0
\(421\) 19.3072 0.940977 0.470489 0.882406i \(-0.344078\pi\)
0.470489 + 0.882406i \(0.344078\pi\)
\(422\) 0 0
\(423\) 4.27804i 0.208005i
\(424\) 0 0
\(425\) 1.98075i 0.0960804i
\(426\) 0 0
\(427\) −18.7423 −0.907005
\(428\) 0 0
\(429\) 8.74047 0.421994
\(430\) 0 0
\(431\) −38.3713 −1.84828 −0.924140 0.382054i \(-0.875217\pi\)
−0.924140 + 0.382054i \(0.875217\pi\)
\(432\) 0 0
\(433\) 4.61645i 0.221853i 0.993829 + 0.110926i \(0.0353817\pi\)
−0.993829 + 0.110926i \(0.964618\pi\)
\(434\) 0 0
\(435\) 3.87102i 0.185601i
\(436\) 0 0
\(437\) −6.05951 36.2453i −0.289866 1.73385i
\(438\) 0 0
\(439\) 5.78060i 0.275893i 0.990440 + 0.137946i \(0.0440502\pi\)
−0.990440 + 0.137946i \(0.955950\pi\)
\(440\) 0 0
\(441\) −4.55981 −0.217134
\(442\) 0 0
\(443\) −37.7822 −1.79508 −0.897542 0.440928i \(-0.854649\pi\)
−0.897542 + 0.440928i \(0.854649\pi\)
\(444\) 0 0
\(445\) 4.42976i 0.209991i
\(446\) 0 0
\(447\) −3.34176 −0.158060
\(448\) 0 0
\(449\) −18.7113 −0.883042 −0.441521 0.897251i \(-0.645561\pi\)
−0.441521 + 0.897251i \(0.645561\pi\)
\(450\) 0 0
\(451\) 9.69780i 0.456651i
\(452\) 0 0
\(453\) 17.3731i 0.816257i
\(454\) 0 0
\(455\) 3.33133i 0.156175i
\(456\) 0 0
\(457\) 17.6970i 0.827829i 0.910316 + 0.413915i \(0.135839\pi\)
−0.910316 + 0.413915i \(0.864161\pi\)
\(458\) 0 0
\(459\) 0.473035i 0.0220794i
\(460\) 0 0
\(461\) 4.75304i 0.221371i −0.993855 0.110686i \(-0.964695\pi\)
0.993855 0.110686i \(-0.0353047\pi\)
\(462\) 0 0
\(463\) 10.7668i 0.500378i 0.968197 + 0.250189i \(0.0804927\pi\)
−0.968197 + 0.250189i \(0.919507\pi\)
\(464\) 0 0
\(465\) 1.65444i 0.0767227i
\(466\) 0 0
\(467\) 38.6391i 1.78800i 0.448063 + 0.894002i \(0.352114\pi\)
−0.448063 + 0.894002i \(0.647886\pi\)
\(468\) 0 0
\(469\) 8.36406i 0.386216i
\(470\) 0 0
\(471\) 4.88151 0.224928
\(472\) 0 0
\(473\) −26.0951 −1.19985
\(474\) 0 0
\(475\) 32.0856i 1.47219i
\(476\) 0 0
\(477\) −4.64065 −0.212481
\(478\) 0 0
\(479\) −37.7337 −1.72410 −0.862049 0.506826i \(-0.830819\pi\)
−0.862049 + 0.506826i \(0.830819\pi\)
\(480\) 0 0
\(481\) 13.7647i 0.627618i
\(482\) 0 0
\(483\) −7.38908 + 1.23531i −0.336215 + 0.0562086i
\(484\) 0 0
\(485\) 13.5500i 0.615275i
\(486\) 0 0
\(487\) 12.5644i 0.569347i 0.958625 + 0.284673i \(0.0918851\pi\)
−0.958625 + 0.284673i \(0.908115\pi\)
\(488\) 0 0
\(489\) 22.1556 1.00191
\(490\) 0 0
\(491\) −24.1152 −1.08830 −0.544152 0.838987i \(-0.683149\pi\)
−0.544152 + 0.838987i \(0.683149\pi\)
\(492\) 0 0
\(493\) 2.03123 0.0914818
\(494\) 0 0
\(495\) 3.33080i 0.149708i
\(496\) 0 0
\(497\) 10.8663i 0.487420i
\(498\) 0 0
\(499\) 38.6256 1.72912 0.864560 0.502530i \(-0.167597\pi\)
0.864560 + 0.502530i \(0.167597\pi\)
\(500\) 0 0
\(501\) 21.3490i 0.953802i
\(502\) 0 0
\(503\) 28.0677 1.25148 0.625738 0.780033i \(-0.284798\pi\)
0.625738 + 0.780033i \(0.284798\pi\)
\(504\) 0 0
\(505\) 1.33207i 0.0592762i
\(506\) 0 0
\(507\) 7.40382 0.328815
\(508\) 0 0
\(509\) 27.0543i 1.19916i 0.800315 + 0.599580i \(0.204666\pi\)
−0.800315 + 0.599580i \(0.795334\pi\)
\(510\) 0 0
\(511\) −17.6218 −0.779545
\(512\) 0 0
\(513\) 7.66256i 0.338310i
\(514\) 0 0
\(515\) −3.44666 −0.151878
\(516\) 0 0
\(517\) −15.8064 −0.695166
\(518\) 0 0
\(519\) 16.6902i 0.732620i
\(520\) 0 0
\(521\) 13.8241i 0.605644i 0.953047 + 0.302822i \(0.0979287\pi\)
−0.953047 + 0.302822i \(0.902071\pi\)
\(522\) 0 0
\(523\) 8.04855i 0.351939i −0.984396 0.175969i \(-0.943694\pi\)
0.984396 0.175969i \(-0.0563060\pi\)
\(524\) 0 0
\(525\) 6.54106 0.285475
\(526\) 0 0
\(527\) −0.868128 −0.0378162
\(528\) 0 0
\(529\) 21.7493 7.48122i 0.945621 0.325270i
\(530\) 0 0
\(531\) 7.81205 0.339014
\(532\) 0 0
\(533\) 6.20911i 0.268947i
\(534\) 0 0
\(535\) 7.73070i 0.334227i
\(536\) 0 0
\(537\) −13.5240 −0.583604
\(538\) 0 0
\(539\) 16.8475i 0.725674i
\(540\) 0 0
\(541\) 4.11616i 0.176968i −0.996078 0.0884838i \(-0.971798\pi\)
0.996078 0.0884838i \(-0.0282022\pi\)
\(542\) 0 0
\(543\) −15.6631 −0.672169
\(544\) 0 0
\(545\) 13.7738 0.590006
\(546\) 0 0
\(547\) 6.49890 0.277873 0.138936 0.990301i \(-0.455632\pi\)
0.138936 + 0.990301i \(0.455632\pi\)
\(548\) 0 0
\(549\) 11.9981 0.512066
\(550\) 0 0
\(551\) −32.9033 −1.40173
\(552\) 0 0
\(553\) 24.7512 1.05253
\(554\) 0 0
\(555\) 5.24544 0.222656
\(556\) 0 0
\(557\) 18.6206 0.788980 0.394490 0.918900i \(-0.370921\pi\)
0.394490 + 0.918900i \(0.370921\pi\)
\(558\) 0 0
\(559\) 16.7076 0.706658
\(560\) 0 0
\(561\) 1.74776 0.0737905
\(562\) 0 0
\(563\) 3.49532i 0.147310i 0.997284 + 0.0736551i \(0.0234664\pi\)
−0.997284 + 0.0736551i \(0.976534\pi\)
\(564\) 0 0
\(565\) 5.30976i 0.223383i
\(566\) 0 0
\(567\) −1.56211 −0.0656025
\(568\) 0 0
\(569\) 21.8934i 0.917819i 0.888483 + 0.458909i \(0.151760\pi\)
−0.888483 + 0.458909i \(0.848240\pi\)
\(570\) 0 0
\(571\) 28.9265i 1.21053i 0.796022 + 0.605267i \(0.206934\pi\)
−0.796022 + 0.605267i \(0.793066\pi\)
\(572\) 0 0
\(573\) −10.5542 −0.440909
\(574\) 0 0
\(575\) −19.8068 + 3.31131i −0.826001 + 0.138091i
\(576\) 0 0
\(577\) −23.6246 −0.983507 −0.491753 0.870735i \(-0.663644\pi\)
−0.491753 + 0.870735i \(0.663644\pi\)
\(578\) 0 0
\(579\) 0.464113 0.0192879
\(580\) 0 0
\(581\) 11.4582i 0.475367i
\(582\) 0 0
\(583\) 17.1462i 0.710123i
\(584\) 0 0
\(585\) 2.13258i 0.0881713i
\(586\) 0 0
\(587\) 29.1236 1.20206 0.601030 0.799226i \(-0.294757\pi\)
0.601030 + 0.799226i \(0.294757\pi\)
\(588\) 0 0
\(589\) 14.0626 0.579438
\(590\) 0 0
\(591\) 10.0657i 0.414048i
\(592\) 0 0
\(593\) −10.2451 −0.420717 −0.210359 0.977624i \(-0.567463\pi\)
−0.210359 + 0.977624i \(0.567463\pi\)
\(594\) 0 0
\(595\) 0.666138i 0.0273090i
\(596\) 0 0
\(597\) 8.22327 0.336556
\(598\) 0 0
\(599\) 1.56887i 0.0641022i 0.999486 + 0.0320511i \(0.0102039\pi\)
−0.999486 + 0.0320511i \(0.989796\pi\)
\(600\) 0 0
\(601\) 7.22050 0.294530 0.147265 0.989097i \(-0.452953\pi\)
0.147265 + 0.989097i \(0.452953\pi\)
\(602\) 0 0
\(603\) 5.35433i 0.218045i
\(604\) 0 0
\(605\) −2.39023 −0.0971768
\(606\) 0 0
\(607\) 32.2388i 1.30853i −0.756264 0.654266i \(-0.772978\pi\)
0.756264 0.654266i \(-0.227022\pi\)
\(608\) 0 0
\(609\) 6.70776i 0.271812i
\(610\) 0 0
\(611\) 10.1202 0.409421
\(612\) 0 0
\(613\) −20.2345 −0.817262 −0.408631 0.912700i \(-0.633994\pi\)
−0.408631 + 0.912700i \(0.633994\pi\)
\(614\) 0 0
\(615\) 2.36616 0.0954126
\(616\) 0 0
\(617\) 7.12572i 0.286871i 0.989660 + 0.143435i \(0.0458149\pi\)
−0.989660 + 0.143435i \(0.954185\pi\)
\(618\) 0 0
\(619\) 41.0670i 1.65062i 0.564679 + 0.825311i \(0.309000\pi\)
−0.564679 + 0.825311i \(0.691000\pi\)
\(620\) 0 0
\(621\) 4.73018 0.790796i 0.189816 0.0317335i
\(622\) 0 0
\(623\) 7.67597i 0.307531i
\(624\) 0 0
\(625\) 13.4703 0.538811
\(626\) 0 0
\(627\) −28.3115 −1.13065
\(628\) 0 0
\(629\) 2.75242i 0.109746i
\(630\) 0 0
\(631\) 11.4174 0.454518 0.227259 0.973834i \(-0.427024\pi\)
0.227259 + 0.973834i \(0.427024\pi\)
\(632\) 0 0
\(633\) −16.1286 −0.641053
\(634\) 0 0
\(635\) 16.9241i 0.671611i
\(636\) 0 0
\(637\) 10.7868i 0.427388i
\(638\) 0 0
\(639\) 6.95616i 0.275181i
\(640\) 0 0
\(641\) 43.3405i 1.71185i 0.517103 + 0.855923i \(0.327010\pi\)
−0.517103 + 0.855923i \(0.672990\pi\)
\(642\) 0 0
\(643\) 26.6168i 1.04966i 0.851206 + 0.524832i \(0.175872\pi\)
−0.851206 + 0.524832i \(0.824128\pi\)
\(644\) 0 0
\(645\) 6.36691i 0.250697i
\(646\) 0 0
\(647\) 36.4289i 1.43217i −0.698014 0.716084i \(-0.745933\pi\)
0.698014 0.716084i \(-0.254067\pi\)
\(648\) 0 0
\(649\) 28.8638i 1.13300i
\(650\) 0 0
\(651\) 2.86683i 0.112360i
\(652\) 0 0
\(653\) 39.6850i 1.55300i −0.630120 0.776498i \(-0.716994\pi\)
0.630120 0.776498i \(-0.283006\pi\)
\(654\) 0 0
\(655\) −5.77296 −0.225568
\(656\) 0 0
\(657\) 11.2808 0.440105
\(658\) 0 0
\(659\) 28.1729i 1.09746i −0.836000 0.548730i \(-0.815112\pi\)
0.836000 0.548730i \(-0.184888\pi\)
\(660\) 0 0
\(661\) −6.71763 −0.261285 −0.130643 0.991430i \(-0.541704\pi\)
−0.130643 + 0.991430i \(0.541704\pi\)
\(662\) 0 0
\(663\) −1.11902 −0.0434592
\(664\) 0 0
\(665\) 10.7906i 0.418441i
\(666\) 0 0
\(667\) −3.39570 20.3116i −0.131482 0.786467i
\(668\) 0 0
\(669\) 6.77440i 0.261913i
\(670\) 0 0
\(671\) 44.3303i 1.71135i
\(672\) 0 0
\(673\) 6.37456 0.245721 0.122861 0.992424i \(-0.460793\pi\)
0.122861 + 0.992424i \(0.460793\pi\)
\(674\) 0 0
\(675\) −4.18732 −0.161170
\(676\) 0 0
\(677\) 51.0634 1.96252 0.981262 0.192678i \(-0.0617172\pi\)
0.981262 + 0.192678i \(0.0617172\pi\)
\(678\) 0 0
\(679\) 23.4797i 0.901069i
\(680\) 0 0
\(681\) 23.8069i 0.912282i
\(682\) 0 0
\(683\) 13.7454 0.525955 0.262977 0.964802i \(-0.415296\pi\)
0.262977 + 0.964802i \(0.415296\pi\)
\(684\) 0 0
\(685\) 2.85524i 0.109093i
\(686\) 0 0
\(687\) −10.4208 −0.397580
\(688\) 0 0
\(689\) 10.9780i 0.418229i
\(690\) 0 0
\(691\) −20.1619 −0.766995 −0.383497 0.923542i \(-0.625280\pi\)
−0.383497 + 0.923542i \(0.625280\pi\)
\(692\) 0 0
\(693\) 5.77167i 0.219247i
\(694\) 0 0
\(695\) −4.36631 −0.165624
\(696\) 0 0
\(697\) 1.24159i 0.0470284i
\(698\) 0 0
\(699\) 2.52840 0.0956328
\(700\) 0 0
\(701\) 5.51359 0.208246 0.104123 0.994564i \(-0.466797\pi\)
0.104123 + 0.994564i \(0.466797\pi\)
\(702\) 0 0
\(703\) 44.5857i 1.68158i
\(704\) 0 0
\(705\) 3.85660i 0.145248i
\(706\) 0 0
\(707\) 2.30823i 0.0868098i
\(708\) 0 0
\(709\) −24.3221 −0.913437 −0.456719 0.889611i \(-0.650975\pi\)
−0.456719 + 0.889611i \(0.650975\pi\)
\(710\) 0 0
\(711\) −15.8447 −0.594223
\(712\) 0 0
\(713\) 1.45129 + 8.68098i 0.0543513 + 0.325105i
\(714\) 0 0
\(715\) 7.87942 0.294674
\(716\) 0 0
\(717\) 12.3970i 0.462975i
\(718\) 0 0
\(719\) 48.2017i 1.79762i 0.438338 + 0.898810i \(0.355567\pi\)
−0.438338 + 0.898810i \(0.644433\pi\)
\(720\) 0 0
\(721\) 5.97243 0.222425
\(722\) 0 0
\(723\) 6.64297i 0.247055i
\(724\) 0 0
\(725\) 17.9805i 0.667779i
\(726\) 0 0
\(727\) 23.1995 0.860420 0.430210 0.902729i \(-0.358439\pi\)
0.430210 + 0.902729i \(0.358439\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 3.34089 0.123567
\(732\) 0 0
\(733\) −0.566445 −0.0209221 −0.0104611 0.999945i \(-0.503330\pi\)
−0.0104611 + 0.999945i \(0.503330\pi\)
\(734\) 0 0
\(735\) −4.11061 −0.151622
\(736\) 0 0
\(737\) −19.7831 −0.728720
\(738\) 0 0
\(739\) −26.9657 −0.991950 −0.495975 0.868337i \(-0.665189\pi\)
−0.495975 + 0.868337i \(0.665189\pi\)
\(740\) 0 0
\(741\) 18.1267 0.665902
\(742\) 0 0
\(743\) 37.7515 1.38497 0.692485 0.721433i \(-0.256516\pi\)
0.692485 + 0.721433i \(0.256516\pi\)
\(744\) 0 0
\(745\) −3.01255 −0.110371
\(746\) 0 0
\(747\) 7.33508i 0.268376i
\(748\) 0 0
\(749\) 13.3959i 0.489475i
\(750\) 0 0
\(751\) −17.1412 −0.625490 −0.312745 0.949837i \(-0.601248\pi\)
−0.312745 + 0.949837i \(0.601248\pi\)
\(752\) 0 0
\(753\) 14.0093i 0.510527i
\(754\) 0 0
\(755\) 15.6616i 0.569983i
\(756\) 0 0
\(757\) −32.8391 −1.19356 −0.596779 0.802406i \(-0.703553\pi\)
−0.596779 + 0.802406i \(0.703553\pi\)
\(758\) 0 0
\(759\) −2.92182 17.4770i −0.106055 0.634375i
\(760\) 0 0
\(761\) −21.8078 −0.790532 −0.395266 0.918567i \(-0.629348\pi\)
−0.395266 + 0.918567i \(0.629348\pi\)
\(762\) 0 0
\(763\) −23.8675 −0.864063
\(764\) 0 0
\(765\) 0.426435i 0.0154178i
\(766\) 0 0
\(767\) 18.4804i 0.667287i
\(768\) 0 0
\(769\) 5.34560i 0.192767i −0.995344 0.0963837i \(-0.969272\pi\)
0.995344 0.0963837i \(-0.0307276\pi\)
\(770\) 0 0
\(771\) 17.0620 0.614474
\(772\) 0 0
\(773\) −11.9945 −0.431413 −0.215707 0.976458i \(-0.569205\pi\)
−0.215707 + 0.976458i \(0.569205\pi\)
\(774\) 0 0
\(775\) 7.68470i 0.276043i
\(776\) 0 0
\(777\) −9.08938 −0.326080
\(778\) 0 0
\(779\) 20.1121i 0.720591i
\(780\) 0 0
\(781\) 25.7015 0.919673
\(782\) 0 0
\(783\) 4.29403i 0.153456i
\(784\) 0 0
\(785\) 4.40062 0.157065
\(786\) 0 0
\(787\) 14.2110i 0.506566i −0.967392 0.253283i \(-0.918490\pi\)
0.967392 0.253283i \(-0.0815104\pi\)
\(788\) 0 0
\(789\) 12.5846 0.448023
\(790\) 0 0
\(791\) 9.20084i 0.327144i
\(792\) 0 0
\(793\) 28.3829i 1.00791i
\(794\) 0 0
\(795\) −4.18348 −0.148373
\(796\) 0 0
\(797\) −51.6166 −1.82835 −0.914177 0.405315i \(-0.867162\pi\)
−0.914177 + 0.405315i \(0.867162\pi\)
\(798\) 0 0
\(799\) 2.02366 0.0715920
\(800\) 0 0
\(801\) 4.91384i 0.173622i
\(802\) 0 0
\(803\) 41.6801i 1.47086i
\(804\) 0 0
\(805\) −6.66115 + 1.11362i −0.234775 + 0.0392498i
\(806\) 0 0
\(807\) 5.33445i 0.187782i
\(808\) 0 0
\(809\) 29.5286 1.03817 0.519084 0.854723i \(-0.326273\pi\)
0.519084 + 0.854723i \(0.326273\pi\)
\(810\) 0 0
\(811\) −28.3984 −0.997203 −0.498602 0.866831i \(-0.666153\pi\)
−0.498602 + 0.866831i \(0.666153\pi\)
\(812\) 0 0
\(813\) 5.16603i 0.181181i
\(814\) 0 0
\(815\) 19.9730 0.699623
\(816\) 0 0
\(817\) −54.1181 −1.89335
\(818\) 0 0
\(819\) 3.69537i 0.129127i
\(820\) 0 0
\(821\) 2.10263i 0.0733822i −0.999327 0.0366911i \(-0.988318\pi\)
0.999327 0.0366911i \(-0.0116818\pi\)
\(822\) 0 0
\(823\) 46.6676i 1.62673i 0.581754 + 0.813365i \(0.302367\pi\)
−0.581754 + 0.813365i \(0.697633\pi\)
\(824\) 0 0
\(825\) 15.4713i 0.538640i
\(826\) 0 0
\(827\) 51.2016i 1.78046i −0.455515 0.890228i \(-0.650545\pi\)
0.455515 0.890228i \(-0.349455\pi\)
\(828\) 0 0
\(829\) 47.1124i 1.63628i −0.575017 0.818141i \(-0.695005\pi\)
0.575017 0.818141i \(-0.304995\pi\)
\(830\) 0 0
\(831\) 26.4195i 0.916483i
\(832\) 0 0
\(833\) 2.15695i 0.0747338i
\(834\) 0 0
\(835\) 19.2458i 0.666030i
\(836\) 0 0
\(837\) 1.83523i 0.0634348i
\(838\) 0 0
\(839\) 29.3728 1.01406 0.507031 0.861928i \(-0.330743\pi\)
0.507031 + 0.861928i \(0.330743\pi\)
\(840\) 0 0
\(841\) 10.5613 0.364182
\(842\) 0 0
\(843\) 20.8795i 0.719128i
\(844\) 0 0
\(845\) 6.67445 0.229608
\(846\) 0 0
\(847\) 4.14184 0.142315
\(848\) 0 0
\(849\) 11.8930i 0.408167i
\(850\) 0 0
\(851\) 27.5233 4.60136i 0.943486 0.157733i
\(852\) 0 0
\(853\) 11.6850i 0.400086i 0.979787 + 0.200043i \(0.0641082\pi\)
−0.979787 + 0.200043i \(0.935892\pi\)
\(854\) 0 0
\(855\) 6.90769i 0.236238i
\(856\) 0 0
\(857\) 30.6664 1.04754 0.523772 0.851859i \(-0.324525\pi\)
0.523772 + 0.851859i \(0.324525\pi\)
\(858\) 0 0
\(859\) 19.3065 0.658731 0.329365 0.944203i \(-0.393165\pi\)
0.329365 + 0.944203i \(0.393165\pi\)
\(860\) 0 0
\(861\) −4.10011 −0.139732
\(862\) 0 0
\(863\) 22.0488i 0.750550i 0.926913 + 0.375275i \(0.122452\pi\)
−0.926913 + 0.375275i \(0.877548\pi\)
\(864\) 0 0
\(865\) 15.0460i 0.511580i
\(866\) 0 0
\(867\) 16.7762 0.569751
\(868\) 0 0
\(869\) 58.5428i 1.98593i
\(870\) 0 0
\(871\) 12.6663 0.429182
\(872\) 0 0
\(873\) 15.0308i 0.508714i
\(874\) 0 0
\(875\) 12.9378 0.437377
\(876\) 0 0
\(877\) 38.7191i 1.30745i 0.756732 + 0.653725i \(0.226795\pi\)
−0.756732 + 0.653725i \(0.773205\pi\)
\(878\) 0 0
\(879\) −29.0826 −0.980931
\(880\) 0 0
\(881\) 34.6478i 1.16731i 0.812001 + 0.583656i \(0.198378\pi\)
−0.812001 + 0.583656i \(0.801622\pi\)
\(882\) 0 0
\(883\) 38.6865 1.30190 0.650952 0.759119i \(-0.274370\pi\)
0.650952 + 0.759119i \(0.274370\pi\)
\(884\) 0 0
\(885\) 7.04246 0.236730
\(886\) 0 0
\(887\) 16.9840i 0.570265i 0.958488 + 0.285133i \(0.0920377\pi\)
−0.958488 + 0.285133i \(0.907962\pi\)
\(888\) 0 0
\(889\) 29.3263i 0.983573i
\(890\) 0 0
\(891\) 3.69478i 0.123780i
\(892\) 0 0
\(893\) −32.7807 −1.09696
\(894\) 0 0
\(895\) −12.1917 −0.407524
\(896\) 0 0
\(897\) 1.87072 + 11.1898i 0.0624617 + 0.373618i
\(898\) 0 0
\(899\) 7.88054 0.262831
\(900\) 0 0
\(901\) 2.19519i 0.0731323i
\(902\) 0 0
\(903\) 11.0327i 0.367145i
\(904\) 0 0
\(905\) −14.1201 −0.469368
\(906\) 0 0
\(907\) 7.88616i 0.261856i −0.991392 0.130928i \(-0.958204\pi\)
0.991392 0.130928i \(-0.0417956\pi\)
\(908\) 0 0
\(909\) 1.47763i 0.0490100i
\(910\) 0 0
\(911\) −23.1173 −0.765909 −0.382954 0.923767i \(-0.625093\pi\)
−0.382954 + 0.923767i \(0.625093\pi\)
\(912\) 0 0
\(913\) −27.1015 −0.896930
\(914\) 0 0
\(915\) 10.8161 0.357570
\(916\) 0 0
\(917\) 10.0035 0.330344
\(918\) 0 0
\(919\) 40.9707 1.35150 0.675749 0.737132i \(-0.263820\pi\)
0.675749 + 0.737132i \(0.263820\pi\)
\(920\) 0 0
\(921\) −0.564207 −0.0185913
\(922\) 0 0
\(923\) −16.4557 −0.541645
\(924\) 0 0
\(925\) −24.3646 −0.801102
\(926\) 0 0
\(927\) −3.82331 −0.125574
\(928\) 0 0
\(929\) 32.6873 1.07243 0.536217 0.844080i \(-0.319853\pi\)
0.536217 + 0.844080i \(0.319853\pi\)
\(930\) 0 0
\(931\) 34.9398i 1.14511i
\(932\) 0 0
\(933\) 22.4646i 0.735459i
\(934\) 0 0
\(935\) 1.57558 0.0515271
\(936\) 0 0
\(937\) 34.2523i 1.11897i −0.828839 0.559487i \(-0.810998\pi\)
0.828839 0.559487i \(-0.189002\pi\)
\(938\) 0 0
\(939\) 5.00245i 0.163249i
\(940\) 0 0
\(941\) −1.43382 −0.0467413 −0.0233706 0.999727i \(-0.507440\pi\)
−0.0233706 + 0.999727i \(0.507440\pi\)
\(942\) 0 0
\(943\) 12.4154 2.07562i 0.404302 0.0675915i
\(944\) 0 0
\(945\) −1.40822 −0.0458095
\(946\) 0 0
\(947\) −38.9980 −1.26727 −0.633633 0.773634i \(-0.718437\pi\)
−0.633633 + 0.773634i \(0.718437\pi\)
\(948\) 0 0
\(949\) 26.6861i 0.866268i
\(950\) 0 0
\(951\) 19.1167i 0.619900i
\(952\) 0 0
\(953\) 57.9473i 1.87710i −0.345146 0.938549i \(-0.612171\pi\)
0.345146 0.938549i \(-0.387829\pi\)
\(954\) 0 0
\(955\) −9.51450 −0.307882
\(956\) 0 0
\(957\) −15.8655 −0.512860
\(958\) 0 0
\(959\) 4.94761i 0.159767i
\(960\) 0 0
\(961\) 27.6319 0.891353
\(962\) 0 0
\(963\) 8.57550i 0.276341i
\(964\) 0 0
\(965\) 0.418392 0.0134685
\(966\) 0 0
\(967\) 8.58256i 0.275997i −0.990432 0.137998i \(-0.955933\pi\)
0.990432 0.137998i \(-0.0440668\pi\)
\(968\) 0 0
\(969\) 3.62465 0.116441
\(970\) 0 0
\(971\) 2.14726i 0.0689089i −0.999406 0.0344545i \(-0.989031\pi\)
0.999406 0.0344545i \(-0.0109694\pi\)
\(972\) 0 0
\(973\) 7.56602 0.242555
\(974\) 0 0
\(975\) 9.90563i 0.317234i
\(976\) 0 0
\(977\) 38.6295i 1.23587i −0.786231 0.617933i \(-0.787970\pi\)
0.786231 0.617933i \(-0.212030\pi\)
\(978\) 0 0
\(979\) −18.1556 −0.580255
\(980\) 0 0
\(981\) 15.2790 0.487822
\(982\) 0 0
\(983\) 25.5149 0.813799 0.406899 0.913473i \(-0.366610\pi\)
0.406899 + 0.913473i \(0.366610\pi\)
\(984\) 0 0
\(985\) 9.07410i 0.289125i
\(986\) 0 0
\(987\) 6.68277i 0.212715i
\(988\) 0 0
\(989\) −5.58513 33.4078i −0.177597 1.06230i
\(990\) 0 0
\(991\) 26.3998i 0.838616i 0.907844 + 0.419308i \(0.137727\pi\)
−0.907844 + 0.419308i \(0.862273\pi\)
\(992\) 0 0
\(993\) 9.65359 0.306347
\(994\) 0 0
\(995\) 7.41317 0.235013
\(996\) 0 0
\(997\) 32.7755i 1.03801i −0.854771 0.519006i \(-0.826302\pi\)
0.854771 0.519006i \(-0.173698\pi\)
\(998\) 0 0
\(999\) 5.81865 0.184094
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2208.2.n.b.367.13 24
4.3 odd 2 552.2.n.b.91.16 yes 24
8.3 odd 2 inner 2208.2.n.b.367.11 24
8.5 even 2 552.2.n.b.91.13 24
23.22 odd 2 inner 2208.2.n.b.367.12 24
92.91 even 2 552.2.n.b.91.15 yes 24
184.45 odd 2 552.2.n.b.91.14 yes 24
184.91 even 2 inner 2208.2.n.b.367.14 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.n.b.91.13 24 8.5 even 2
552.2.n.b.91.14 yes 24 184.45 odd 2
552.2.n.b.91.15 yes 24 92.91 even 2
552.2.n.b.91.16 yes 24 4.3 odd 2
2208.2.n.b.367.11 24 8.3 odd 2 inner
2208.2.n.b.367.12 24 23.22 odd 2 inner
2208.2.n.b.367.13 24 1.1 even 1 trivial
2208.2.n.b.367.14 24 184.91 even 2 inner