Properties

Label 2208.2.j.d.47.20
Level $2208$
Weight $2$
Character 2208.47
Analytic conductor $17.631$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2208,2,Mod(47,2208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2208.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2208 = 2^{5} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2208.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42,0,-2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6309687663\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: no (minimal twist has level 552)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 47.20
Character \(\chi\) \(=\) 2208.47
Dual form 2208.2.j.d.47.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.262136 + 1.71210i) q^{3} -0.130526 q^{5} -3.77863i q^{7} +(-2.86257 - 0.897607i) q^{9} -4.36656i q^{11} +5.50350i q^{13} +(0.0342155 - 0.223473i) q^{15} -0.402065i q^{17} +2.08168 q^{19} +(6.46939 + 0.990517i) q^{21} -1.00000 q^{23} -4.98296 q^{25} +(2.28718 - 4.66571i) q^{27} -8.77100 q^{29} +7.75722i q^{31} +(7.47599 + 1.14463i) q^{33} +0.493208i q^{35} +10.1015i q^{37} +(-9.42255 - 1.44267i) q^{39} -2.80694i q^{41} -3.07905 q^{43} +(0.373638 + 0.117161i) q^{45} -3.41142 q^{47} -7.27804 q^{49} +(0.688374 + 0.105396i) q^{51} -0.336698 q^{53} +0.569948i q^{55} +(-0.545685 + 3.56405i) q^{57} +9.68031i q^{59} +2.78101i q^{61} +(-3.39173 + 10.8166i) q^{63} -0.718348i q^{65} -12.8230 q^{67} +(0.262136 - 1.71210i) q^{69} -8.19053 q^{71} +0.417051 q^{73} +(1.30622 - 8.53133i) q^{75} -16.4996 q^{77} -3.09607i q^{79} +(7.38860 + 5.13893i) q^{81} +3.59045i q^{83} +0.0524797i q^{85} +(2.29920 - 15.0168i) q^{87} +11.1036i q^{89} +20.7957 q^{91} +(-13.2811 - 2.03345i) q^{93} -0.271713 q^{95} +4.53325 q^{97} +(-3.91946 + 12.4996i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 2 q^{3} + 8 q^{5} + 2 q^{9} + 8 q^{15} - 4 q^{19} + 8 q^{21} - 42 q^{23} + 22 q^{25} + 16 q^{27} + 12 q^{33} - 8 q^{39} - 28 q^{43} - 8 q^{45} - 50 q^{49} - 28 q^{51} + 24 q^{53} - 8 q^{57} + 16 q^{63}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2208\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(415\) \(737\) \(1381\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.262136 + 1.71210i −0.151345 + 0.988481i
\(4\) 0 0
\(5\) −0.130526 −0.0583728 −0.0291864 0.999574i \(-0.509292\pi\)
−0.0291864 + 0.999574i \(0.509292\pi\)
\(6\) 0 0
\(7\) 3.77863i 1.42819i −0.700050 0.714094i \(-0.746839\pi\)
0.700050 0.714094i \(-0.253161\pi\)
\(8\) 0 0
\(9\) −2.86257 0.897607i −0.954190 0.299202i
\(10\) 0 0
\(11\) 4.36656i 1.31657i −0.752770 0.658284i \(-0.771283\pi\)
0.752770 0.658284i \(-0.228717\pi\)
\(12\) 0 0
\(13\) 5.50350i 1.52640i 0.646164 + 0.763199i \(0.276372\pi\)
−0.646164 + 0.763199i \(0.723628\pi\)
\(14\) 0 0
\(15\) 0.0342155 0.223473i 0.00883441 0.0577004i
\(16\) 0 0
\(17\) 0.402065i 0.0975150i −0.998811 0.0487575i \(-0.984474\pi\)
0.998811 0.0487575i \(-0.0155261\pi\)
\(18\) 0 0
\(19\) 2.08168 0.477571 0.238785 0.971072i \(-0.423251\pi\)
0.238785 + 0.971072i \(0.423251\pi\)
\(20\) 0 0
\(21\) 6.46939 + 0.990517i 1.41174 + 0.216148i
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) −4.98296 −0.996593
\(26\) 0 0
\(27\) 2.28718 4.66571i 0.440167 0.897916i
\(28\) 0 0
\(29\) −8.77100 −1.62873 −0.814367 0.580350i \(-0.802916\pi\)
−0.814367 + 0.580350i \(0.802916\pi\)
\(30\) 0 0
\(31\) 7.75722i 1.39324i 0.717442 + 0.696619i \(0.245313\pi\)
−0.717442 + 0.696619i \(0.754687\pi\)
\(32\) 0 0
\(33\) 7.47599 + 1.14463i 1.30140 + 0.199255i
\(34\) 0 0
\(35\) 0.493208i 0.0833673i
\(36\) 0 0
\(37\) 10.1015i 1.66068i 0.557254 + 0.830342i \(0.311855\pi\)
−0.557254 + 0.830342i \(0.688145\pi\)
\(38\) 0 0
\(39\) −9.42255 1.44267i −1.50882 0.231012i
\(40\) 0 0
\(41\) 2.80694i 0.438371i −0.975683 0.219185i \(-0.929660\pi\)
0.975683 0.219185i \(-0.0703399\pi\)
\(42\) 0 0
\(43\) −3.07905 −0.469550 −0.234775 0.972050i \(-0.575435\pi\)
−0.234775 + 0.972050i \(0.575435\pi\)
\(44\) 0 0
\(45\) 0.373638 + 0.117161i 0.0556987 + 0.0174653i
\(46\) 0 0
\(47\) −3.41142 −0.497607 −0.248803 0.968554i \(-0.580037\pi\)
−0.248803 + 0.968554i \(0.580037\pi\)
\(48\) 0 0
\(49\) −7.27804 −1.03972
\(50\) 0 0
\(51\) 0.688374 + 0.105396i 0.0963917 + 0.0147584i
\(52\) 0 0
\(53\) −0.336698 −0.0462490 −0.0231245 0.999733i \(-0.507361\pi\)
−0.0231245 + 0.999733i \(0.507361\pi\)
\(54\) 0 0
\(55\) 0.569948i 0.0768518i
\(56\) 0 0
\(57\) −0.545685 + 3.56405i −0.0722777 + 0.472070i
\(58\) 0 0
\(59\) 9.68031i 1.26027i 0.776486 + 0.630134i \(0.217000\pi\)
−0.776486 + 0.630134i \(0.783000\pi\)
\(60\) 0 0
\(61\) 2.78101i 0.356072i 0.984024 + 0.178036i \(0.0569744\pi\)
−0.984024 + 0.178036i \(0.943026\pi\)
\(62\) 0 0
\(63\) −3.39173 + 10.8166i −0.427317 + 1.36276i
\(64\) 0 0
\(65\) 0.718348i 0.0891001i
\(66\) 0 0
\(67\) −12.8230 −1.56658 −0.783292 0.621654i \(-0.786461\pi\)
−0.783292 + 0.621654i \(0.786461\pi\)
\(68\) 0 0
\(69\) 0.262136 1.71210i 0.0315575 0.206113i
\(70\) 0 0
\(71\) −8.19053 −0.972037 −0.486018 0.873949i \(-0.661551\pi\)
−0.486018 + 0.873949i \(0.661551\pi\)
\(72\) 0 0
\(73\) 0.417051 0.0488121 0.0244061 0.999702i \(-0.492231\pi\)
0.0244061 + 0.999702i \(0.492231\pi\)
\(74\) 0 0
\(75\) 1.30622 8.53133i 0.150829 0.985113i
\(76\) 0 0
\(77\) −16.4996 −1.88031
\(78\) 0 0
\(79\) 3.09607i 0.348335i −0.984716 0.174168i \(-0.944277\pi\)
0.984716 0.174168i \(-0.0557235\pi\)
\(80\) 0 0
\(81\) 7.38860 + 5.13893i 0.820956 + 0.570992i
\(82\) 0 0
\(83\) 3.59045i 0.394103i 0.980393 + 0.197052i \(0.0631367\pi\)
−0.980393 + 0.197052i \(0.936863\pi\)
\(84\) 0 0
\(85\) 0.0524797i 0.00569222i
\(86\) 0 0
\(87\) 2.29920 15.0168i 0.246500 1.60997i
\(88\) 0 0
\(89\) 11.1036i 1.17698i 0.808506 + 0.588488i \(0.200276\pi\)
−0.808506 + 0.588488i \(0.799724\pi\)
\(90\) 0 0
\(91\) 20.7957 2.17998
\(92\) 0 0
\(93\) −13.2811 2.03345i −1.37719 0.210859i
\(94\) 0 0
\(95\) −0.271713 −0.0278772
\(96\) 0 0
\(97\) 4.53325 0.460281 0.230141 0.973157i \(-0.426081\pi\)
0.230141 + 0.973157i \(0.426081\pi\)
\(98\) 0 0
\(99\) −3.91946 + 12.4996i −0.393920 + 1.25626i
\(100\) 0 0
\(101\) 3.79039 0.377158 0.188579 0.982058i \(-0.439612\pi\)
0.188579 + 0.982058i \(0.439612\pi\)
\(102\) 0 0
\(103\) 6.81074i 0.671082i −0.942026 0.335541i \(-0.891081\pi\)
0.942026 0.335541i \(-0.108919\pi\)
\(104\) 0 0
\(105\) −0.844421 0.129288i −0.0824070 0.0126172i
\(106\) 0 0
\(107\) 6.74888i 0.652439i 0.945294 + 0.326219i \(0.105775\pi\)
−0.945294 + 0.326219i \(0.894225\pi\)
\(108\) 0 0
\(109\) 18.3211i 1.75485i 0.479716 + 0.877424i \(0.340740\pi\)
−0.479716 + 0.877424i \(0.659260\pi\)
\(110\) 0 0
\(111\) −17.2948 2.64798i −1.64155 0.251335i
\(112\) 0 0
\(113\) 14.3459i 1.34955i −0.738023 0.674775i \(-0.764241\pi\)
0.738023 0.674775i \(-0.235759\pi\)
\(114\) 0 0
\(115\) 0.130526 0.0121716
\(116\) 0 0
\(117\) 4.93999 15.7542i 0.456702 1.45647i
\(118\) 0 0
\(119\) −1.51925 −0.139270
\(120\) 0 0
\(121\) −8.06685 −0.733350
\(122\) 0 0
\(123\) 4.80576 + 0.735802i 0.433321 + 0.0663450i
\(124\) 0 0
\(125\) 1.30303 0.116547
\(126\) 0 0
\(127\) 13.5190i 1.19962i −0.800143 0.599810i \(-0.795243\pi\)
0.800143 0.599810i \(-0.204757\pi\)
\(128\) 0 0
\(129\) 0.807131 5.27164i 0.0710639 0.464142i
\(130\) 0 0
\(131\) 21.6396i 1.89066i −0.326114 0.945331i \(-0.605739\pi\)
0.326114 0.945331i \(-0.394261\pi\)
\(132\) 0 0
\(133\) 7.86591i 0.682061i
\(134\) 0 0
\(135\) −0.298535 + 0.608994i −0.0256938 + 0.0524139i
\(136\) 0 0
\(137\) 14.9588i 1.27801i −0.769201 0.639007i \(-0.779345\pi\)
0.769201 0.639007i \(-0.220655\pi\)
\(138\) 0 0
\(139\) −11.5627 −0.980736 −0.490368 0.871515i \(-0.663138\pi\)
−0.490368 + 0.871515i \(0.663138\pi\)
\(140\) 0 0
\(141\) 0.894258 5.84069i 0.0753101 0.491875i
\(142\) 0 0
\(143\) 24.0314 2.00961
\(144\) 0 0
\(145\) 1.14484 0.0950738
\(146\) 0 0
\(147\) 1.90784 12.4607i 0.157356 1.02774i
\(148\) 0 0
\(149\) −13.1430 −1.07671 −0.538356 0.842717i \(-0.680955\pi\)
−0.538356 + 0.842717i \(0.680955\pi\)
\(150\) 0 0
\(151\) 1.10155i 0.0896425i 0.998995 + 0.0448213i \(0.0142718\pi\)
−0.998995 + 0.0448213i \(0.985728\pi\)
\(152\) 0 0
\(153\) −0.360896 + 1.15094i −0.0291767 + 0.0930478i
\(154\) 0 0
\(155\) 1.01252i 0.0813272i
\(156\) 0 0
\(157\) 17.3372i 1.38366i −0.722062 0.691828i \(-0.756805\pi\)
0.722062 0.691828i \(-0.243195\pi\)
\(158\) 0 0
\(159\) 0.0882607 0.576460i 0.00699953 0.0457162i
\(160\) 0 0
\(161\) 3.77863i 0.297798i
\(162\) 0 0
\(163\) 10.4421 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(164\) 0 0
\(165\) −0.975807 0.149404i −0.0759665 0.0116311i
\(166\) 0 0
\(167\) 1.67012 0.129238 0.0646188 0.997910i \(-0.479417\pi\)
0.0646188 + 0.997910i \(0.479417\pi\)
\(168\) 0 0
\(169\) −17.2886 −1.32989
\(170\) 0 0
\(171\) −5.95896 1.86853i −0.455693 0.142890i
\(172\) 0 0
\(173\) −8.55215 −0.650208 −0.325104 0.945678i \(-0.605399\pi\)
−0.325104 + 0.945678i \(0.605399\pi\)
\(174\) 0 0
\(175\) 18.8288i 1.42332i
\(176\) 0 0
\(177\) −16.5736 2.53756i −1.24575 0.190735i
\(178\) 0 0
\(179\) 14.7284i 1.10085i −0.834885 0.550425i \(-0.814466\pi\)
0.834885 0.550425i \(-0.185534\pi\)
\(180\) 0 0
\(181\) 21.7258i 1.61487i 0.589959 + 0.807433i \(0.299144\pi\)
−0.589959 + 0.807433i \(0.700856\pi\)
\(182\) 0 0
\(183\) −4.76137 0.729005i −0.351971 0.0538896i
\(184\) 0 0
\(185\) 1.31851i 0.0969388i
\(186\) 0 0
\(187\) −1.75564 −0.128385
\(188\) 0 0
\(189\) −17.6300 8.64240i −1.28239 0.628642i
\(190\) 0 0
\(191\) −10.7127 −0.775145 −0.387572 0.921839i \(-0.626686\pi\)
−0.387572 + 0.921839i \(0.626686\pi\)
\(192\) 0 0
\(193\) 14.8172 1.06657 0.533283 0.845937i \(-0.320958\pi\)
0.533283 + 0.845937i \(0.320958\pi\)
\(194\) 0 0
\(195\) 1.22988 + 0.188305i 0.0880738 + 0.0134848i
\(196\) 0 0
\(197\) −17.5258 −1.24866 −0.624331 0.781160i \(-0.714628\pi\)
−0.624331 + 0.781160i \(0.714628\pi\)
\(198\) 0 0
\(199\) 23.3044i 1.65201i 0.563666 + 0.826003i \(0.309391\pi\)
−0.563666 + 0.826003i \(0.690609\pi\)
\(200\) 0 0
\(201\) 3.36139 21.9543i 0.237094 1.54854i
\(202\) 0 0
\(203\) 33.1424i 2.32614i
\(204\) 0 0
\(205\) 0.366378i 0.0255889i
\(206\) 0 0
\(207\) 2.86257 + 0.897607i 0.198962 + 0.0623880i
\(208\) 0 0
\(209\) 9.08979i 0.628754i
\(210\) 0 0
\(211\) −16.0748 −1.10664 −0.553319 0.832970i \(-0.686639\pi\)
−0.553319 + 0.832970i \(0.686639\pi\)
\(212\) 0 0
\(213\) 2.14704 14.0230i 0.147112 0.960840i
\(214\) 0 0
\(215\) 0.401894 0.0274090
\(216\) 0 0
\(217\) 29.3117 1.98980
\(218\) 0 0
\(219\) −0.109324 + 0.714033i −0.00738745 + 0.0482499i
\(220\) 0 0
\(221\) 2.21276 0.148847
\(222\) 0 0
\(223\) 16.7322i 1.12047i 0.828333 + 0.560237i \(0.189290\pi\)
−0.828333 + 0.560237i \(0.810710\pi\)
\(224\) 0 0
\(225\) 14.2641 + 4.47274i 0.950938 + 0.298183i
\(226\) 0 0
\(227\) 5.60178i 0.371803i −0.982568 0.185902i \(-0.940479\pi\)
0.982568 0.185902i \(-0.0595206\pi\)
\(228\) 0 0
\(229\) 17.9554i 1.18653i −0.805008 0.593264i \(-0.797839\pi\)
0.805008 0.593264i \(-0.202161\pi\)
\(230\) 0 0
\(231\) 4.32515 28.2490i 0.284574 1.85865i
\(232\) 0 0
\(233\) 24.5310i 1.60708i 0.595252 + 0.803539i \(0.297052\pi\)
−0.595252 + 0.803539i \(0.702948\pi\)
\(234\) 0 0
\(235\) 0.445278 0.0290467
\(236\) 0 0
\(237\) 5.30078 + 0.811594i 0.344323 + 0.0527187i
\(238\) 0 0
\(239\) 3.73158 0.241376 0.120688 0.992691i \(-0.461490\pi\)
0.120688 + 0.992691i \(0.461490\pi\)
\(240\) 0 0
\(241\) 8.92696 0.575036 0.287518 0.957775i \(-0.407170\pi\)
0.287518 + 0.957775i \(0.407170\pi\)
\(242\) 0 0
\(243\) −10.7352 + 11.3029i −0.688662 + 0.725083i
\(244\) 0 0
\(245\) 0.949971 0.0606914
\(246\) 0 0
\(247\) 11.4566i 0.728963i
\(248\) 0 0
\(249\) −6.14721 0.941188i −0.389564 0.0596454i
\(250\) 0 0
\(251\) 15.0476i 0.949798i −0.880040 0.474899i \(-0.842485\pi\)
0.880040 0.474899i \(-0.157515\pi\)
\(252\) 0 0
\(253\) 4.36656i 0.274523i
\(254\) 0 0
\(255\) −0.0898505 0.0137568i −0.00562666 0.000861487i
\(256\) 0 0
\(257\) 7.84239i 0.489195i −0.969625 0.244597i \(-0.921344\pi\)
0.969625 0.244597i \(-0.0786558\pi\)
\(258\) 0 0
\(259\) 38.1700 2.37177
\(260\) 0 0
\(261\) 25.1076 + 7.87292i 1.55412 + 0.487321i
\(262\) 0 0
\(263\) −18.6358 −1.14913 −0.574566 0.818458i \(-0.694829\pi\)
−0.574566 + 0.818458i \(0.694829\pi\)
\(264\) 0 0
\(265\) 0.0439477 0.00269968
\(266\) 0 0
\(267\) −19.0104 2.91065i −1.16342 0.178129i
\(268\) 0 0
\(269\) 5.72570 0.349102 0.174551 0.984648i \(-0.444153\pi\)
0.174551 + 0.984648i \(0.444153\pi\)
\(270\) 0 0
\(271\) 10.0447i 0.610173i 0.952325 + 0.305086i \(0.0986853\pi\)
−0.952325 + 0.305086i \(0.901315\pi\)
\(272\) 0 0
\(273\) −5.45131 + 35.6043i −0.329928 + 2.15487i
\(274\) 0 0
\(275\) 21.7584i 1.31208i
\(276\) 0 0
\(277\) 12.6894i 0.762431i −0.924486 0.381215i \(-0.875506\pi\)
0.924486 0.381215i \(-0.124494\pi\)
\(278\) 0 0
\(279\) 6.96294 22.2056i 0.416860 1.32941i
\(280\) 0 0
\(281\) 25.8591i 1.54262i 0.636458 + 0.771311i \(0.280399\pi\)
−0.636458 + 0.771311i \(0.719601\pi\)
\(282\) 0 0
\(283\) −21.0898 −1.25366 −0.626828 0.779158i \(-0.715647\pi\)
−0.626828 + 0.779158i \(0.715647\pi\)
\(284\) 0 0
\(285\) 0.0712259 0.465199i 0.00421906 0.0275560i
\(286\) 0 0
\(287\) −10.6064 −0.626076
\(288\) 0 0
\(289\) 16.8383 0.990491
\(290\) 0 0
\(291\) −1.18833 + 7.76137i −0.0696611 + 0.454979i
\(292\) 0 0
\(293\) 17.5822 1.02717 0.513583 0.858040i \(-0.328318\pi\)
0.513583 + 0.858040i \(0.328318\pi\)
\(294\) 0 0
\(295\) 1.26353i 0.0735654i
\(296\) 0 0
\(297\) −20.3731 9.98710i −1.18217 0.579510i
\(298\) 0 0
\(299\) 5.50350i 0.318276i
\(300\) 0 0
\(301\) 11.6346i 0.670606i
\(302\) 0 0
\(303\) −0.993599 + 6.48952i −0.0570808 + 0.372813i
\(304\) 0 0
\(305\) 0.362993i 0.0207849i
\(306\) 0 0
\(307\) 12.0490 0.687674 0.343837 0.939029i \(-0.388273\pi\)
0.343837 + 0.939029i \(0.388273\pi\)
\(308\) 0 0
\(309\) 11.6607 + 1.78534i 0.663352 + 0.101565i
\(310\) 0 0
\(311\) 8.92121 0.505876 0.252938 0.967483i \(-0.418603\pi\)
0.252938 + 0.967483i \(0.418603\pi\)
\(312\) 0 0
\(313\) 0.481564 0.0272196 0.0136098 0.999907i \(-0.495668\pi\)
0.0136098 + 0.999907i \(0.495668\pi\)
\(314\) 0 0
\(315\) 0.442707 1.41184i 0.0249437 0.0795483i
\(316\) 0 0
\(317\) −6.46721 −0.363235 −0.181617 0.983369i \(-0.558133\pi\)
−0.181617 + 0.983369i \(0.558133\pi\)
\(318\) 0 0
\(319\) 38.2991i 2.14434i
\(320\) 0 0
\(321\) −11.5548 1.76913i −0.644923 0.0987431i
\(322\) 0 0
\(323\) 0.836971i 0.0465703i
\(324\) 0 0
\(325\) 27.4238i 1.52120i
\(326\) 0 0
\(327\) −31.3676 4.80264i −1.73463 0.265587i
\(328\) 0 0
\(329\) 12.8905i 0.710676i
\(330\) 0 0
\(331\) −25.1117 −1.38026 −0.690132 0.723683i \(-0.742448\pi\)
−0.690132 + 0.723683i \(0.742448\pi\)
\(332\) 0 0
\(333\) 9.06722 28.9164i 0.496881 1.58461i
\(334\) 0 0
\(335\) 1.67374 0.0914459
\(336\) 0 0
\(337\) −10.0318 −0.546465 −0.273232 0.961948i \(-0.588093\pi\)
−0.273232 + 0.961948i \(0.588093\pi\)
\(338\) 0 0
\(339\) 24.5616 + 3.76059i 1.33401 + 0.204247i
\(340\) 0 0
\(341\) 33.8724 1.83429
\(342\) 0 0
\(343\) 1.05062i 0.0567283i
\(344\) 0 0
\(345\) −0.0342155 + 0.223473i −0.00184210 + 0.0120314i
\(346\) 0 0
\(347\) 12.4062i 0.665998i −0.942927 0.332999i \(-0.891939\pi\)
0.942927 0.332999i \(-0.108061\pi\)
\(348\) 0 0
\(349\) 17.9711i 0.961969i 0.876729 + 0.480985i \(0.159721\pi\)
−0.876729 + 0.480985i \(0.840279\pi\)
\(350\) 0 0
\(351\) 25.6777 + 12.5875i 1.37058 + 0.671870i
\(352\) 0 0
\(353\) 25.5729i 1.36111i 0.732698 + 0.680554i \(0.238261\pi\)
−0.732698 + 0.680554i \(0.761739\pi\)
\(354\) 0 0
\(355\) 1.06907 0.0567405
\(356\) 0 0
\(357\) 0.398252 2.60111i 0.0210777 0.137665i
\(358\) 0 0
\(359\) 20.5959 1.08701 0.543506 0.839405i \(-0.317096\pi\)
0.543506 + 0.839405i \(0.317096\pi\)
\(360\) 0 0
\(361\) −14.6666 −0.771926
\(362\) 0 0
\(363\) 2.11462 13.8113i 0.110989 0.724903i
\(364\) 0 0
\(365\) −0.0544358 −0.00284930
\(366\) 0 0
\(367\) 0.995463i 0.0519628i 0.999662 + 0.0259814i \(0.00827106\pi\)
−0.999662 + 0.0259814i \(0.991729\pi\)
\(368\) 0 0
\(369\) −2.51953 + 8.03507i −0.131162 + 0.418289i
\(370\) 0 0
\(371\) 1.27226i 0.0660522i
\(372\) 0 0
\(373\) 19.8991i 1.03034i 0.857089 + 0.515168i \(0.172271\pi\)
−0.857089 + 0.515168i \(0.827729\pi\)
\(374\) 0 0
\(375\) −0.341572 + 2.23092i −0.0176387 + 0.115204i
\(376\) 0 0
\(377\) 48.2713i 2.48610i
\(378\) 0 0
\(379\) 13.7477 0.706172 0.353086 0.935591i \(-0.385132\pi\)
0.353086 + 0.935591i \(0.385132\pi\)
\(380\) 0 0
\(381\) 23.1459 + 3.54383i 1.18580 + 0.181556i
\(382\) 0 0
\(383\) −5.57295 −0.284764 −0.142382 0.989812i \(-0.545476\pi\)
−0.142382 + 0.989812i \(0.545476\pi\)
\(384\) 0 0
\(385\) 2.15362 0.109759
\(386\) 0 0
\(387\) 8.81399 + 2.76378i 0.448040 + 0.140491i
\(388\) 0 0
\(389\) −14.5658 −0.738516 −0.369258 0.929327i \(-0.620388\pi\)
−0.369258 + 0.929327i \(0.620388\pi\)
\(390\) 0 0
\(391\) 0.402065i 0.0203333i
\(392\) 0 0
\(393\) 37.0492 + 5.67253i 1.86888 + 0.286141i
\(394\) 0 0
\(395\) 0.404117i 0.0203333i
\(396\) 0 0
\(397\) 1.50196i 0.0753812i −0.999289 0.0376906i \(-0.988000\pi\)
0.999289 0.0376906i \(-0.0120001\pi\)
\(398\) 0 0
\(399\) 13.4672 + 2.06194i 0.674204 + 0.103226i
\(400\) 0 0
\(401\) 21.6674i 1.08202i −0.841016 0.541010i \(-0.818042\pi\)
0.841016 0.541010i \(-0.181958\pi\)
\(402\) 0 0
\(403\) −42.6919 −2.12663
\(404\) 0 0
\(405\) −0.964402 0.670761i −0.0479215 0.0333304i
\(406\) 0 0
\(407\) 44.1090 2.18640
\(408\) 0 0
\(409\) 7.53712 0.372687 0.186343 0.982485i \(-0.440336\pi\)
0.186343 + 0.982485i \(0.440336\pi\)
\(410\) 0 0
\(411\) 25.6109 + 3.92124i 1.26329 + 0.193421i
\(412\) 0 0
\(413\) 36.5783 1.79990
\(414\) 0 0
\(415\) 0.468646i 0.0230049i
\(416\) 0 0
\(417\) 3.03101 19.7965i 0.148429 0.969439i
\(418\) 0 0
\(419\) 4.47808i 0.218768i −0.994000 0.109384i \(-0.965112\pi\)
0.994000 0.109384i \(-0.0348879\pi\)
\(420\) 0 0
\(421\) 8.65241i 0.421693i 0.977519 + 0.210846i \(0.0676220\pi\)
−0.977519 + 0.210846i \(0.932378\pi\)
\(422\) 0 0
\(423\) 9.76543 + 3.06212i 0.474811 + 0.148885i
\(424\) 0 0
\(425\) 2.00347i 0.0971827i
\(426\) 0 0
\(427\) 10.5084 0.508538
\(428\) 0 0
\(429\) −6.29950 + 41.1441i −0.304143 + 1.98646i
\(430\) 0 0
\(431\) 12.6268 0.608214 0.304107 0.952638i \(-0.401642\pi\)
0.304107 + 0.952638i \(0.401642\pi\)
\(432\) 0 0
\(433\) −30.6380 −1.47237 −0.736185 0.676781i \(-0.763375\pi\)
−0.736185 + 0.676781i \(0.763375\pi\)
\(434\) 0 0
\(435\) −0.300104 + 1.96008i −0.0143889 + 0.0939787i
\(436\) 0 0
\(437\) −2.08168 −0.0995804
\(438\) 0 0
\(439\) 30.6982i 1.46514i −0.680689 0.732572i \(-0.738319\pi\)
0.680689 0.732572i \(-0.261681\pi\)
\(440\) 0 0
\(441\) 20.8339 + 6.53283i 0.992091 + 0.311087i
\(442\) 0 0
\(443\) 1.20435i 0.0572206i −0.999591 0.0286103i \(-0.990892\pi\)
0.999591 0.0286103i \(-0.00910818\pi\)
\(444\) 0 0
\(445\) 1.44930i 0.0687034i
\(446\) 0 0
\(447\) 3.44525 22.5020i 0.162955 1.06431i
\(448\) 0 0
\(449\) 30.8882i 1.45771i −0.684670 0.728853i \(-0.740054\pi\)
0.684670 0.728853i \(-0.259946\pi\)
\(450\) 0 0
\(451\) −12.2567 −0.577145
\(452\) 0 0
\(453\) −1.88596 0.288755i −0.0886099 0.0135669i
\(454\) 0 0
\(455\) −2.71437 −0.127252
\(456\) 0 0
\(457\) −2.41262 −0.112858 −0.0564289 0.998407i \(-0.517971\pi\)
−0.0564289 + 0.998407i \(0.517971\pi\)
\(458\) 0 0
\(459\) −1.87592 0.919593i −0.0875602 0.0429229i
\(460\) 0 0
\(461\) 26.7626 1.24646 0.623230 0.782039i \(-0.285820\pi\)
0.623230 + 0.782039i \(0.285820\pi\)
\(462\) 0 0
\(463\) 4.03126i 0.187349i 0.995603 + 0.0936743i \(0.0298613\pi\)
−0.995603 + 0.0936743i \(0.970139\pi\)
\(464\) 0 0
\(465\) 1.73353 + 0.265417i 0.0803904 + 0.0123084i
\(466\) 0 0
\(467\) 19.4906i 0.901918i 0.892545 + 0.450959i \(0.148918\pi\)
−0.892545 + 0.450959i \(0.851082\pi\)
\(468\) 0 0
\(469\) 48.4535i 2.23738i
\(470\) 0 0
\(471\) 29.6830 + 4.54470i 1.36772 + 0.209409i
\(472\) 0 0
\(473\) 13.4448i 0.618195i
\(474\) 0 0
\(475\) −10.3729 −0.475944
\(476\) 0 0
\(477\) 0.963820 + 0.302222i 0.0441303 + 0.0138378i
\(478\) 0 0
\(479\) 11.7760 0.538061 0.269030 0.963132i \(-0.413297\pi\)
0.269030 + 0.963132i \(0.413297\pi\)
\(480\) 0 0
\(481\) −55.5939 −2.53486
\(482\) 0 0
\(483\) −6.46939 0.990517i −0.294367 0.0450701i
\(484\) 0 0
\(485\) −0.591705 −0.0268679
\(486\) 0 0
\(487\) 7.24525i 0.328314i 0.986434 + 0.164157i \(0.0524903\pi\)
−0.986434 + 0.164157i \(0.947510\pi\)
\(488\) 0 0
\(489\) −2.73726 + 17.8779i −0.123783 + 0.808468i
\(490\) 0 0
\(491\) 16.2051i 0.731328i 0.930747 + 0.365664i \(0.119158\pi\)
−0.930747 + 0.365664i \(0.880842\pi\)
\(492\) 0 0
\(493\) 3.52651i 0.158826i
\(494\) 0 0
\(495\) 0.511589 1.63152i 0.0229942 0.0733312i
\(496\) 0 0
\(497\) 30.9490i 1.38825i
\(498\) 0 0
\(499\) −5.30706 −0.237576 −0.118788 0.992920i \(-0.537901\pi\)
−0.118788 + 0.992920i \(0.537901\pi\)
\(500\) 0 0
\(501\) −0.437799 + 2.85941i −0.0195594 + 0.127749i
\(502\) 0 0
\(503\) −0.131455 −0.00586131 −0.00293065 0.999996i \(-0.500933\pi\)
−0.00293065 + 0.999996i \(0.500933\pi\)
\(504\) 0 0
\(505\) −0.494742 −0.0220157
\(506\) 0 0
\(507\) 4.53196 29.5997i 0.201272 1.31457i
\(508\) 0 0
\(509\) −35.3633 −1.56745 −0.783725 0.621108i \(-0.786683\pi\)
−0.783725 + 0.621108i \(0.786683\pi\)
\(510\) 0 0
\(511\) 1.57588i 0.0697129i
\(512\) 0 0
\(513\) 4.76118 9.71252i 0.210211 0.428818i
\(514\) 0 0
\(515\) 0.888976i 0.0391730i
\(516\) 0 0
\(517\) 14.8962i 0.655133i
\(518\) 0 0
\(519\) 2.24183 14.6421i 0.0984055 0.642719i
\(520\) 0 0
\(521\) 0.362476i 0.0158804i 0.999968 + 0.00794019i \(0.00252747\pi\)
−0.999968 + 0.00794019i \(0.997473\pi\)
\(522\) 0 0
\(523\) 0.701562 0.0306772 0.0153386 0.999882i \(-0.495117\pi\)
0.0153386 + 0.999882i \(0.495117\pi\)
\(524\) 0 0
\(525\) −32.2367 4.93571i −1.40693 0.215412i
\(526\) 0 0
\(527\) 3.11890 0.135862
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 8.68912 27.7105i 0.377076 1.20254i
\(532\) 0 0
\(533\) 15.4480 0.669128
\(534\) 0 0
\(535\) 0.880901i 0.0380847i
\(536\) 0 0
\(537\) 25.2164 + 3.86084i 1.08817 + 0.166608i
\(538\) 0 0
\(539\) 31.7800i 1.36886i
\(540\) 0 0
\(541\) 8.62101i 0.370646i −0.982678 0.185323i \(-0.940667\pi\)
0.982678 0.185323i \(-0.0593332\pi\)
\(542\) 0 0
\(543\) −37.1967 5.69513i −1.59627 0.244401i
\(544\) 0 0
\(545\) 2.39138i 0.102435i
\(546\) 0 0
\(547\) 7.45918 0.318931 0.159466 0.987203i \(-0.449023\pi\)
0.159466 + 0.987203i \(0.449023\pi\)
\(548\) 0 0
\(549\) 2.49626 7.96084i 0.106538 0.339760i
\(550\) 0 0
\(551\) −18.2584 −0.777836
\(552\) 0 0
\(553\) −11.6989 −0.497488
\(554\) 0 0
\(555\) 2.25742 + 0.345630i 0.0958222 + 0.0146712i
\(556\) 0 0
\(557\) 24.0703 1.01989 0.509945 0.860207i \(-0.329666\pi\)
0.509945 + 0.860207i \(0.329666\pi\)
\(558\) 0 0
\(559\) 16.9456i 0.716720i
\(560\) 0 0
\(561\) 0.460217 3.00583i 0.0194304 0.126906i
\(562\) 0 0
\(563\) 3.51983i 0.148343i −0.997246 0.0741715i \(-0.976369\pi\)
0.997246 0.0741715i \(-0.0236312\pi\)
\(564\) 0 0
\(565\) 1.87251i 0.0787771i
\(566\) 0 0
\(567\) 19.4181 27.9188i 0.815484 1.17248i
\(568\) 0 0
\(569\) 34.0590i 1.42783i −0.700233 0.713914i \(-0.746921\pi\)
0.700233 0.713914i \(-0.253079\pi\)
\(570\) 0 0
\(571\) 9.16056 0.383357 0.191679 0.981458i \(-0.438607\pi\)
0.191679 + 0.981458i \(0.438607\pi\)
\(572\) 0 0
\(573\) 2.80819 18.3412i 0.117314 0.766216i
\(574\) 0 0
\(575\) 4.98296 0.207804
\(576\) 0 0
\(577\) 14.7661 0.614720 0.307360 0.951593i \(-0.400554\pi\)
0.307360 + 0.951593i \(0.400554\pi\)
\(578\) 0 0
\(579\) −3.88413 + 25.3686i −0.161419 + 1.05428i
\(580\) 0 0
\(581\) 13.5670 0.562853
\(582\) 0 0
\(583\) 1.47021i 0.0608899i
\(584\) 0 0
\(585\) −0.644795 + 2.05632i −0.0266590 + 0.0850184i
\(586\) 0 0
\(587\) 0.974726i 0.0402313i −0.999798 0.0201156i \(-0.993597\pi\)
0.999798 0.0201156i \(-0.00640344\pi\)
\(588\) 0 0
\(589\) 16.1481i 0.665370i
\(590\) 0 0
\(591\) 4.59415 30.0059i 0.188978 1.23428i
\(592\) 0 0
\(593\) 20.2807i 0.832828i 0.909175 + 0.416414i \(0.136713\pi\)
−0.909175 + 0.416414i \(0.863287\pi\)
\(594\) 0 0
\(595\) 0.198301 0.00812956
\(596\) 0 0
\(597\) −39.8995 6.10894i −1.63298 0.250022i
\(598\) 0 0
\(599\) 31.5805 1.29034 0.645172 0.764037i \(-0.276786\pi\)
0.645172 + 0.764037i \(0.276786\pi\)
\(600\) 0 0
\(601\) 7.95503 0.324492 0.162246 0.986750i \(-0.448126\pi\)
0.162246 + 0.986750i \(0.448126\pi\)
\(602\) 0 0
\(603\) 36.7069 + 11.5101i 1.49482 + 0.468726i
\(604\) 0 0
\(605\) 1.05293 0.0428077
\(606\) 0 0
\(607\) 5.15628i 0.209287i 0.994510 + 0.104643i \(0.0333701\pi\)
−0.994510 + 0.104643i \(0.966630\pi\)
\(608\) 0 0
\(609\) −56.7430 8.68782i −2.29934 0.352048i
\(610\) 0 0
\(611\) 18.7748i 0.759546i
\(612\) 0 0
\(613\) 34.3625i 1.38789i −0.720029 0.693944i \(-0.755871\pi\)
0.720029 0.693944i \(-0.244129\pi\)
\(614\) 0 0
\(615\) −0.627275 0.0960410i −0.0252942 0.00387275i
\(616\) 0 0
\(617\) 0.319112i 0.0128470i 0.999979 + 0.00642349i \(0.00204467\pi\)
−0.999979 + 0.00642349i \(0.997955\pi\)
\(618\) 0 0
\(619\) −1.90822 −0.0766978 −0.0383489 0.999264i \(-0.512210\pi\)
−0.0383489 + 0.999264i \(0.512210\pi\)
\(620\) 0 0
\(621\) −2.28718 + 4.66571i −0.0917812 + 0.187228i
\(622\) 0 0
\(623\) 41.9563 1.68094
\(624\) 0 0
\(625\) 24.7447 0.989789
\(626\) 0 0
\(627\) 15.5626 + 2.38277i 0.621512 + 0.0951585i
\(628\) 0 0
\(629\) 4.06147 0.161942
\(630\) 0 0
\(631\) 37.3783i 1.48801i −0.668175 0.744004i \(-0.732924\pi\)
0.668175 0.744004i \(-0.267076\pi\)
\(632\) 0 0
\(633\) 4.21380 27.5217i 0.167484 1.09389i
\(634\) 0 0
\(635\) 1.76458i 0.0700252i
\(636\) 0 0
\(637\) 40.0547i 1.58703i
\(638\) 0 0
\(639\) 23.4459 + 7.35188i 0.927507 + 0.290836i
\(640\) 0 0
\(641\) 20.2501i 0.799831i 0.916552 + 0.399915i \(0.130961\pi\)
−0.916552 + 0.399915i \(0.869039\pi\)
\(642\) 0 0
\(643\) 28.2916 1.11571 0.557856 0.829938i \(-0.311624\pi\)
0.557856 + 0.829938i \(0.311624\pi\)
\(644\) 0 0
\(645\) −0.105351 + 0.688083i −0.00414820 + 0.0270933i
\(646\) 0 0
\(647\) −47.8762 −1.88221 −0.941104 0.338118i \(-0.890210\pi\)
−0.941104 + 0.338118i \(0.890210\pi\)
\(648\) 0 0
\(649\) 42.2696 1.65923
\(650\) 0 0
\(651\) −7.68365 + 50.1845i −0.301146 + 1.96688i
\(652\) 0 0
\(653\) −9.67576 −0.378642 −0.189321 0.981915i \(-0.560629\pi\)
−0.189321 + 0.981915i \(0.560629\pi\)
\(654\) 0 0
\(655\) 2.82452i 0.110363i
\(656\) 0 0
\(657\) −1.19384 0.374348i −0.0465760 0.0146047i
\(658\) 0 0
\(659\) 18.2791i 0.712052i −0.934476 0.356026i \(-0.884131\pi\)
0.934476 0.356026i \(-0.115869\pi\)
\(660\) 0 0
\(661\) 1.38156i 0.0537364i −0.999639 0.0268682i \(-0.991447\pi\)
0.999639 0.0268682i \(-0.00855344\pi\)
\(662\) 0 0
\(663\) −0.580046 + 3.78847i −0.0225271 + 0.147132i
\(664\) 0 0
\(665\) 1.02670i 0.0398138i
\(666\) 0 0
\(667\) 8.77100 0.339615
\(668\) 0 0
\(669\) −28.6472 4.38613i −1.10757 0.169578i
\(670\) 0 0
\(671\) 12.1435 0.468793
\(672\) 0 0
\(673\) −21.5643 −0.831243 −0.415621 0.909538i \(-0.636436\pi\)
−0.415621 + 0.909538i \(0.636436\pi\)
\(674\) 0 0
\(675\) −11.3969 + 23.2490i −0.438668 + 0.894856i
\(676\) 0 0
\(677\) −24.7287 −0.950401 −0.475201 0.879878i \(-0.657624\pi\)
−0.475201 + 0.879878i \(0.657624\pi\)
\(678\) 0 0
\(679\) 17.1295i 0.657368i
\(680\) 0 0
\(681\) 9.59081 + 1.46843i 0.367520 + 0.0562704i
\(682\) 0 0
\(683\) 35.4360i 1.35592i −0.735098 0.677961i \(-0.762864\pi\)
0.735098 0.677961i \(-0.237136\pi\)
\(684\) 0 0
\(685\) 1.95250i 0.0746013i
\(686\) 0 0
\(687\) 30.7415 + 4.70677i 1.17286 + 0.179575i
\(688\) 0 0
\(689\) 1.85302i 0.0705943i
\(690\) 0 0
\(691\) −47.3180 −1.80006 −0.900032 0.435824i \(-0.856457\pi\)
−0.900032 + 0.435824i \(0.856457\pi\)
\(692\) 0 0
\(693\) 47.2313 + 14.8102i 1.79417 + 0.562592i
\(694\) 0 0
\(695\) 1.50923 0.0572483
\(696\) 0 0
\(697\) −1.12857 −0.0427477
\(698\) 0 0
\(699\) −41.9995 6.43046i −1.58857 0.243222i
\(700\) 0 0
\(701\) 30.6619 1.15808 0.579042 0.815298i \(-0.303427\pi\)
0.579042 + 0.815298i \(0.303427\pi\)
\(702\) 0 0
\(703\) 21.0282i 0.793094i
\(704\) 0 0
\(705\) −0.116724 + 0.762360i −0.00439606 + 0.0287121i
\(706\) 0 0
\(707\) 14.3225i 0.538652i
\(708\) 0 0
\(709\) 19.6131i 0.736586i 0.929710 + 0.368293i \(0.120058\pi\)
−0.929710 + 0.368293i \(0.879942\pi\)
\(710\) 0 0
\(711\) −2.77906 + 8.86272i −0.104223 + 0.332378i
\(712\) 0 0
\(713\) 7.75722i 0.290510i
\(714\) 0 0
\(715\) −3.13671 −0.117306
\(716\) 0 0
\(717\) −0.978182 + 6.38883i −0.0365309 + 0.238595i
\(718\) 0 0
\(719\) −42.9444 −1.60156 −0.800778 0.598961i \(-0.795580\pi\)
−0.800778 + 0.598961i \(0.795580\pi\)
\(720\) 0 0
\(721\) −25.7353 −0.958432
\(722\) 0 0
\(723\) −2.34008 + 15.2838i −0.0870285 + 0.568412i
\(724\) 0 0
\(725\) 43.7056 1.62318
\(726\) 0 0
\(727\) 51.8477i 1.92292i −0.274937 0.961462i \(-0.588657\pi\)
0.274937 0.961462i \(-0.411343\pi\)
\(728\) 0 0
\(729\) −16.5376 21.3426i −0.612505 0.790466i
\(730\) 0 0
\(731\) 1.23798i 0.0457882i
\(732\) 0 0
\(733\) 25.2940i 0.934254i −0.884190 0.467127i \(-0.845289\pi\)
0.884190 0.467127i \(-0.154711\pi\)
\(734\) 0 0
\(735\) −0.249022 + 1.62644i −0.00918532 + 0.0599923i
\(736\) 0 0
\(737\) 55.9926i 2.06251i
\(738\) 0 0
\(739\) −2.11141 −0.0776696 −0.0388348 0.999246i \(-0.512365\pi\)
−0.0388348 + 0.999246i \(0.512365\pi\)
\(740\) 0 0
\(741\) −19.6148 3.00318i −0.720566 0.110325i
\(742\) 0 0
\(743\) 6.40799 0.235087 0.117543 0.993068i \(-0.462498\pi\)
0.117543 + 0.993068i \(0.462498\pi\)
\(744\) 0 0
\(745\) 1.71549 0.0628508
\(746\) 0 0
\(747\) 3.22282 10.2779i 0.117917 0.376049i
\(748\) 0 0
\(749\) 25.5015 0.931805
\(750\) 0 0
\(751\) 24.3046i 0.886888i 0.896302 + 0.443444i \(0.146244\pi\)
−0.896302 + 0.443444i \(0.853756\pi\)
\(752\) 0 0
\(753\) 25.7630 + 3.94453i 0.938857 + 0.143747i
\(754\) 0 0
\(755\) 0.143780i 0.00523269i
\(756\) 0 0
\(757\) 18.6833i 0.679054i −0.940596 0.339527i \(-0.889733\pi\)
0.940596 0.339527i \(-0.110267\pi\)
\(758\) 0 0
\(759\) −7.47599 1.14463i −0.271361 0.0415476i
\(760\) 0 0
\(761\) 30.2497i 1.09655i 0.836297 + 0.548276i \(0.184716\pi\)
−0.836297 + 0.548276i \(0.815284\pi\)
\(762\) 0 0
\(763\) 69.2288 2.50625
\(764\) 0 0
\(765\) 0.0471062 0.150227i 0.00170313 0.00543146i
\(766\) 0 0
\(767\) −53.2756 −1.92367
\(768\) 0 0
\(769\) 47.4784 1.71211 0.856057 0.516882i \(-0.172907\pi\)
0.856057 + 0.516882i \(0.172907\pi\)
\(770\) 0 0
\(771\) 13.4270 + 2.05578i 0.483560 + 0.0740370i
\(772\) 0 0
\(773\) 30.2729 1.08884 0.544421 0.838812i \(-0.316750\pi\)
0.544421 + 0.838812i \(0.316750\pi\)
\(774\) 0 0
\(775\) 38.6539i 1.38849i
\(776\) 0 0
\(777\) −10.0057 + 65.3508i −0.358954 + 2.34445i
\(778\) 0 0
\(779\) 5.84316i 0.209353i
\(780\) 0 0
\(781\) 35.7644i 1.27975i
\(782\) 0 0
\(783\) −20.0608 + 40.9229i −0.716916 + 1.46247i
\(784\) 0 0
\(785\) 2.26294i 0.0807679i
\(786\) 0 0
\(787\) 11.7940 0.420411 0.210205 0.977657i \(-0.432587\pi\)
0.210205 + 0.977657i \(0.432587\pi\)
\(788\) 0 0
\(789\) 4.88512 31.9064i 0.173915 1.13590i
\(790\) 0 0
\(791\) −54.2079 −1.92741
\(792\) 0 0
\(793\) −15.3053 −0.543508
\(794\) 0 0
\(795\) −0.0115203 + 0.0752428i −0.000408582 + 0.00266859i
\(796\) 0 0
\(797\) 13.6252 0.482629 0.241314 0.970447i \(-0.422421\pi\)
0.241314 + 0.970447i \(0.422421\pi\)
\(798\) 0 0
\(799\) 1.37161i 0.0485241i
\(800\) 0 0
\(801\) 9.96664 31.7847i 0.352154 1.12306i
\(802\) 0 0
\(803\) 1.82108i 0.0642645i
\(804\) 0 0
\(805\) 0.493208i 0.0173833i
\(806\) 0 0
\(807\) −1.50091 + 9.80297i −0.0528347 + 0.345081i
\(808\) 0 0
\(809\) 5.37668i 0.189034i 0.995523 + 0.0945170i \(0.0301307\pi\)
−0.995523 + 0.0945170i \(0.969869\pi\)
\(810\) 0 0
\(811\) 20.2058 0.709521 0.354761 0.934957i \(-0.384562\pi\)
0.354761 + 0.934957i \(0.384562\pi\)
\(812\) 0 0
\(813\) −17.1975 2.63308i −0.603144 0.0923463i
\(814\) 0 0
\(815\) −1.36296 −0.0477425
\(816\) 0 0
\(817\) −6.40960 −0.224244
\(818\) 0 0
\(819\) −59.5291 18.6664i −2.08012 0.652256i
\(820\) 0 0
\(821\) −26.7962 −0.935193 −0.467596 0.883942i \(-0.654880\pi\)
−0.467596 + 0.883942i \(0.654880\pi\)
\(822\) 0 0
\(823\) 1.87513i 0.0653629i 0.999466 + 0.0326815i \(0.0104047\pi\)
−0.999466 + 0.0326815i \(0.989595\pi\)
\(824\) 0 0
\(825\) −37.2526 5.70367i −1.29697 0.198576i
\(826\) 0 0
\(827\) 53.8718i 1.87331i 0.350260 + 0.936653i \(0.386093\pi\)
−0.350260 + 0.936653i \(0.613907\pi\)
\(828\) 0 0
\(829\) 36.9767i 1.28425i 0.766599 + 0.642127i \(0.221948\pi\)
−0.766599 + 0.642127i \(0.778052\pi\)
\(830\) 0 0
\(831\) 21.7255 + 3.32635i 0.753648 + 0.115390i
\(832\) 0 0
\(833\) 2.92624i 0.101388i
\(834\) 0 0
\(835\) −0.217993 −0.00754396
\(836\) 0 0
\(837\) 36.1929 + 17.7421i 1.25101 + 0.613258i
\(838\) 0 0
\(839\) −12.1566 −0.419693 −0.209847 0.977734i \(-0.567296\pi\)
−0.209847 + 0.977734i \(0.567296\pi\)
\(840\) 0 0
\(841\) 47.9305 1.65278
\(842\) 0 0
\(843\) −44.2733 6.77860i −1.52485 0.233468i
\(844\) 0 0
\(845\) 2.25660 0.0776294
\(846\) 0 0
\(847\) 30.4817i 1.04736i
\(848\) 0 0
\(849\) 5.52840 36.1078i 0.189734 1.23922i
\(850\) 0 0
\(851\) 10.1015i 0.346277i
\(852\) 0 0
\(853\) 19.4838i 0.667114i −0.942730 0.333557i \(-0.891751\pi\)
0.942730 0.333557i \(-0.108249\pi\)
\(854\) 0 0
\(855\) 0.777797 + 0.243891i 0.0266001 + 0.00834091i
\(856\) 0 0
\(857\) 23.9656i 0.818649i −0.912389 0.409324i \(-0.865764\pi\)
0.912389 0.409324i \(-0.134236\pi\)
\(858\) 0 0
\(859\) 3.22143 0.109914 0.0549568 0.998489i \(-0.482498\pi\)
0.0549568 + 0.998489i \(0.482498\pi\)
\(860\) 0 0
\(861\) 2.78032 18.1592i 0.0947532 0.618864i
\(862\) 0 0
\(863\) −28.5105 −0.970509 −0.485255 0.874373i \(-0.661273\pi\)
−0.485255 + 0.874373i \(0.661273\pi\)
\(864\) 0 0
\(865\) 1.11627 0.0379545
\(866\) 0 0
\(867\) −4.41394 + 28.8289i −0.149905 + 0.979081i
\(868\) 0 0
\(869\) −13.5192 −0.458607
\(870\) 0 0
\(871\) 70.5717i 2.39123i
\(872\) 0 0
\(873\) −12.9767 4.06908i −0.439196 0.137717i
\(874\) 0 0
\(875\) 4.92368i 0.166451i
\(876\) 0 0
\(877\) 26.6860i 0.901123i 0.892746 + 0.450561i \(0.148776\pi\)
−0.892746 + 0.450561i \(0.851224\pi\)
\(878\) 0 0
\(879\) −4.60894 + 30.1025i −0.155456 + 1.01533i
\(880\) 0 0
\(881\) 7.40195i 0.249378i 0.992196 + 0.124689i \(0.0397933\pi\)
−0.992196 + 0.124689i \(0.960207\pi\)
\(882\) 0 0
\(883\) 7.09453 0.238750 0.119375 0.992849i \(-0.461911\pi\)
0.119375 + 0.992849i \(0.461911\pi\)
\(884\) 0 0
\(885\) 2.16329 + 0.331217i 0.0727180 + 0.0111337i
\(886\) 0 0
\(887\) −27.4157 −0.920529 −0.460264 0.887782i \(-0.652245\pi\)
−0.460264 + 0.887782i \(0.652245\pi\)
\(888\) 0 0
\(889\) −51.0834 −1.71328
\(890\) 0 0
\(891\) 22.4394 32.2628i 0.751749 1.08084i
\(892\) 0 0
\(893\) −7.10150 −0.237643
\(894\) 0 0
\(895\) 1.92243i 0.0642597i
\(896\) 0 0
\(897\) 9.42255 + 1.44267i 0.314610 + 0.0481693i
\(898\) 0 0
\(899\) 68.0386i 2.26921i
\(900\) 0 0
\(901\) 0.135374i 0.00450997i
\(902\) 0 0
\(903\) −19.9196 3.04985i −0.662881 0.101493i
\(904\) 0 0
\(905\) 2.83577i 0.0942643i
\(906\) 0 0
\(907\) −17.7447 −0.589203 −0.294601 0.955620i \(-0.595187\pi\)
−0.294601 + 0.955620i \(0.595187\pi\)
\(908\) 0 0
\(909\) −10.8502 3.40228i −0.359880 0.112846i
\(910\) 0 0
\(911\) 40.5517 1.34354 0.671769 0.740761i \(-0.265535\pi\)
0.671769 + 0.740761i \(0.265535\pi\)
\(912\) 0 0
\(913\) 15.6779 0.518864
\(914\) 0 0
\(915\) 0.621481 + 0.0951538i 0.0205455 + 0.00314569i
\(916\) 0 0
\(917\) −81.7681 −2.70022
\(918\) 0 0
\(919\) 42.2700i 1.39436i 0.716896 + 0.697180i \(0.245562\pi\)
−0.716896 + 0.697180i \(0.754438\pi\)
\(920\) 0 0
\(921\) −3.15849 + 20.6291i −0.104076 + 0.679753i
\(922\) 0 0
\(923\) 45.0766i 1.48371i
\(924\) 0 0
\(925\) 50.3356i 1.65503i
\(926\) 0 0
\(927\) −6.11337 + 19.4962i −0.200789 + 0.640340i
\(928\) 0 0
\(929\) 28.1066i 0.922147i 0.887362 + 0.461073i \(0.152536\pi\)
−0.887362 + 0.461073i \(0.847464\pi\)
\(930\) 0 0
\(931\) −15.1506 −0.496540
\(932\) 0 0
\(933\) −2.33858 + 15.2740i −0.0765615 + 0.500049i
\(934\) 0 0
\(935\) 0.229156 0.00749420
\(936\) 0 0
\(937\) 19.6450 0.641773 0.320887 0.947118i \(-0.396019\pi\)
0.320887 + 0.947118i \(0.396019\pi\)
\(938\) 0 0
\(939\) −0.126235 + 0.824485i −0.00411954 + 0.0269061i
\(940\) 0 0
\(941\) 39.9096 1.30101 0.650507 0.759500i \(-0.274556\pi\)
0.650507 + 0.759500i \(0.274556\pi\)
\(942\) 0 0
\(943\) 2.80694i 0.0914066i
\(944\) 0 0
\(945\) 2.30116 + 1.12805i 0.0748568 + 0.0366956i
\(946\) 0 0
\(947\) 40.6728i 1.32169i 0.750523 + 0.660845i \(0.229802\pi\)
−0.750523 + 0.660845i \(0.770198\pi\)
\(948\) 0 0
\(949\) 2.29524i 0.0745067i
\(950\) 0 0
\(951\) 1.69529 11.0725i 0.0549736 0.359051i
\(952\) 0 0
\(953\) 10.4493i 0.338484i −0.985574 0.169242i \(-0.945868\pi\)
0.985574 0.169242i \(-0.0541320\pi\)
\(954\) 0 0
\(955\) 1.39828 0.0452474
\(956\) 0 0
\(957\) −65.5719 10.0396i −2.11964 0.324534i
\(958\) 0 0
\(959\) −56.5237 −1.82525
\(960\) 0 0
\(961\) −29.1744 −0.941111
\(962\) 0 0
\(963\) 6.05784 19.3191i 0.195211 0.622550i
\(964\) 0 0
\(965\) −1.93403 −0.0622585
\(966\) 0 0
\(967\) 10.6501i 0.342484i −0.985229 0.171242i \(-0.945222\pi\)
0.985229 0.171242i \(-0.0547779\pi\)
\(968\) 0 0
\(969\) 1.43298 + 0.219401i 0.0460339 + 0.00704816i
\(970\) 0 0
\(971\) 27.4861i 0.882070i −0.897490 0.441035i \(-0.854611\pi\)
0.897490 0.441035i \(-0.145389\pi\)
\(972\) 0 0
\(973\) 43.6912i 1.40068i
\(974\) 0 0
\(975\) 46.9522 + 7.18877i 1.50367 + 0.230225i
\(976\) 0 0
\(977\) 49.0762i 1.57009i −0.619441 0.785043i \(-0.712641\pi\)
0.619441 0.785043i \(-0.287359\pi\)
\(978\) 0 0
\(979\) 48.4844 1.54957
\(980\) 0 0
\(981\) 16.4452 52.4455i 0.525055 1.67446i
\(982\) 0 0
\(983\) −26.9525 −0.859651 −0.429825 0.902912i \(-0.641425\pi\)
−0.429825 + 0.902912i \(0.641425\pi\)
\(984\) 0 0
\(985\) 2.28756 0.0728879
\(986\) 0 0
\(987\) −22.0698 3.37907i −0.702490 0.107557i
\(988\) 0 0
\(989\) 3.07905 0.0979080
\(990\) 0 0
\(991\) 44.4537i 1.41212i 0.708153 + 0.706059i \(0.249529\pi\)
−0.708153 + 0.706059i \(0.750471\pi\)
\(992\) 0 0
\(993\) 6.58269 42.9937i 0.208895 1.36437i
\(994\) 0 0
\(995\) 3.04182i 0.0964323i
\(996\) 0 0
\(997\) 10.5458i 0.333989i −0.985958 0.166994i \(-0.946594\pi\)
0.985958 0.166994i \(-0.0534062\pi\)
\(998\) 0 0
\(999\) 47.1308 + 23.1040i 1.49115 + 0.730979i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2208.2.j.d.47.20 42
3.2 odd 2 2208.2.j.c.47.19 42
4.3 odd 2 552.2.j.d.323.19 yes 42
8.3 odd 2 2208.2.j.c.47.20 42
8.5 even 2 552.2.j.c.323.23 42
12.11 even 2 552.2.j.c.323.24 yes 42
24.5 odd 2 552.2.j.d.323.20 yes 42
24.11 even 2 inner 2208.2.j.d.47.19 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.j.c.323.23 42 8.5 even 2
552.2.j.c.323.24 yes 42 12.11 even 2
552.2.j.d.323.19 yes 42 4.3 odd 2
552.2.j.d.323.20 yes 42 24.5 odd 2
2208.2.j.c.47.19 42 3.2 odd 2
2208.2.j.c.47.20 42 8.3 odd 2
2208.2.j.d.47.19 42 24.11 even 2 inner
2208.2.j.d.47.20 42 1.1 even 1 trivial