Properties

Label 2205.4.a.bq
Level $2205$
Weight $4$
Character orbit 2205.a
Self dual yes
Analytic conductor $130.099$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,4,Mod(1,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,6,0,18,20,0,0,30,0,30,24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.51264.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 15x^{2} + 16x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 735)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - \beta_1 + 2) q^{2} + (2 \beta_{3} - \beta_{2} - \beta_1 + 6) q^{4} + 5 q^{5} + (6 \beta_{3} - 7 \beta_{2} + \beta_1 + 10) q^{8} + ( - 5 \beta_{2} - 5 \beta_1 + 10) q^{10} + ( - 3 \beta_{3} + 2 \beta_{2} + \cdots + 4) q^{11}+ \cdots + (6 \beta_{3} - 390 \beta_{2} + \cdots + 164) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{2} + 18 q^{4} + 20 q^{5} + 30 q^{8} + 30 q^{10} + 24 q^{11} - 46 q^{16} + 88 q^{17} + 72 q^{19} + 90 q^{20} - 28 q^{22} + 100 q^{25} - 112 q^{26} + 636 q^{29} + 228 q^{31} + 126 q^{32} - 48 q^{34}+ \cdots + 588 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 15x^{2} + 16x + 46 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 8 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 11\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + \beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} + 3\beta_{2} + 12\beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.03449
2.50184
−3.03449
−1.50184
−3.44871 0 3.89358 5.00000 0 0 14.1618 0 −17.2435
1.2 0.912375 0 −7.16757 5.00000 0 0 −13.8385 0 4.56187
1.3 3.62028 0 5.10642 5.00000 0 0 −10.4756 0 18.1014
1.4 4.91605 0 16.1676 5.00000 0 0 40.1522 0 24.5803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2205.4.a.bq 4
3.b odd 2 1 735.4.a.u yes 4
7.b odd 2 1 2205.4.a.bp 4
21.c even 2 1 735.4.a.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.4.a.t 4 21.c even 2 1
735.4.a.u yes 4 3.b odd 2 1
2205.4.a.bp 4 7.b odd 2 1
2205.4.a.bq 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2205))\):

\( T_{2}^{4} - 6T_{2}^{3} - 7T_{2}^{2} + 72T_{2} - 56 \) Copy content Toggle raw display
\( T_{11}^{4} - 24T_{11}^{3} - 58T_{11}^{2} + 2808T_{11} - 10808 \) Copy content Toggle raw display
\( T_{13}^{4} - 1096T_{13}^{2} - 3072T_{13} + 1024 \) Copy content Toggle raw display
\( T_{17}^{4} - 88T_{17}^{3} - 1530T_{17}^{2} + 213488T_{17} - 1153424 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 6 T^{3} + \cdots - 56 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T - 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 24 T^{3} + \cdots - 10808 \) Copy content Toggle raw display
$13$ \( T^{4} - 1096 T^{2} + \cdots + 1024 \) Copy content Toggle raw display
$17$ \( T^{4} - 88 T^{3} + \cdots - 1153424 \) Copy content Toggle raw display
$19$ \( T^{4} - 72 T^{3} + \cdots + 5456016 \) Copy content Toggle raw display
$23$ \( T^{4} - 11698 T^{2} + \cdots + 9614584 \) Copy content Toggle raw display
$29$ \( T^{4} - 636 T^{3} + \cdots + 349146808 \) Copy content Toggle raw display
$31$ \( T^{4} - 228 T^{3} + \cdots - 24242148 \) Copy content Toggle raw display
$37$ \( T^{4} + 68 T^{3} + \cdots + 170898952 \) Copy content Toggle raw display
$41$ \( T^{4} - 56 T^{3} + \cdots + 126356848 \) Copy content Toggle raw display
$43$ \( T^{4} - 20 T^{3} + \cdots + 454079200 \) Copy content Toggle raw display
$47$ \( T^{4} - 744 T^{3} + \cdots + 276948792 \) Copy content Toggle raw display
$53$ \( T^{4} - 360 T^{3} + \cdots + 111504456 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 32798657504 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 37509812744 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 149047690736 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 56245124128 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 4390308576 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 4846395904 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 201571856352 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 9397074032 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 72223884864 \) Copy content Toggle raw display
show more
show less