Properties

Label 2205.2.b.d.881.7
Level $2205$
Weight $2$
Character 2205.881
Analytic conductor $17.607$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(881,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 790 x^{12} - 2192 x^{11} + 5036 x^{10} - 9472 x^{9} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.7
Root \(0.500000 - 0.878189i\) of defining polynomial
Character \(\chi\) \(=\) 2205.881
Dual form 2205.2.b.d.881.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.607761i q^{2} +1.63063 q^{4} +1.00000 q^{5} -2.20655i q^{8} -0.607761i q^{10} -2.07205i q^{11} -5.72027i q^{13} +1.92020 q^{16} +1.54734 q^{17} -7.10901i q^{19} +1.63063 q^{20} -1.25931 q^{22} +5.33347i q^{23} +1.00000 q^{25} -3.47655 q^{26} +7.57079i q^{29} -1.34780i q^{31} -5.58013i q^{32} -0.940414i q^{34} -1.44977 q^{37} -4.32058 q^{38} -2.20655i q^{40} -9.80448 q^{41} -6.75795 q^{43} -3.37874i q^{44} +3.24147 q^{46} -5.15570 q^{47} -0.607761i q^{50} -9.32762i q^{52} -9.34386i q^{53} -2.07205i q^{55} +4.60123 q^{58} +2.89929 q^{59} +4.65202i q^{61} -0.819142 q^{62} +0.449013 q^{64} -5.72027i q^{65} +9.35484 q^{67} +2.52314 q^{68} +4.17724i q^{71} +2.29124i q^{73} +0.881111i q^{74} -11.5921i q^{76} +14.0324 q^{79} +1.92020 q^{80} +5.95878i q^{82} -5.90939 q^{83} +1.54734 q^{85} +4.10722i q^{86} -4.57209 q^{88} +4.13776 q^{89} +8.69690i q^{92} +3.13343i q^{94} -7.10901i q^{95} -12.8624i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 16 q^{5} - 16 q^{20} - 16 q^{22} + 16 q^{25} + 32 q^{26} - 16 q^{38} - 32 q^{41} + 32 q^{43} - 16 q^{46} + 32 q^{47} + 48 q^{58} - 32 q^{59} - 32 q^{62} + 16 q^{64} - 16 q^{68} + 32 q^{79}+ \cdots + 64 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.607761i − 0.429752i −0.976641 0.214876i \(-0.931065\pi\)
0.976641 0.214876i \(-0.0689347\pi\)
\(3\) 0 0
\(4\) 1.63063 0.815313
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) − 2.20655i − 0.780134i
\(9\) 0 0
\(10\) − 0.607761i − 0.192191i
\(11\) − 2.07205i − 0.624746i −0.949959 0.312373i \(-0.898876\pi\)
0.949959 0.312373i \(-0.101124\pi\)
\(12\) 0 0
\(13\) − 5.72027i − 1.58652i −0.608885 0.793258i \(-0.708383\pi\)
0.608885 0.793258i \(-0.291617\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.92020 0.480049
\(17\) 1.54734 0.375286 0.187643 0.982237i \(-0.439915\pi\)
0.187643 + 0.982237i \(0.439915\pi\)
\(18\) 0 0
\(19\) − 7.10901i − 1.63092i −0.578814 0.815460i \(-0.696484\pi\)
0.578814 0.815460i \(-0.303516\pi\)
\(20\) 1.63063 0.364619
\(21\) 0 0
\(22\) −1.25931 −0.268486
\(23\) 5.33347i 1.11211i 0.831147 + 0.556053i \(0.187685\pi\)
−0.831147 + 0.556053i \(0.812315\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −3.47655 −0.681808
\(27\) 0 0
\(28\) 0 0
\(29\) 7.57079i 1.40586i 0.711259 + 0.702930i \(0.248125\pi\)
−0.711259 + 0.702930i \(0.751875\pi\)
\(30\) 0 0
\(31\) − 1.34780i − 0.242073i −0.992648 0.121036i \(-0.961378\pi\)
0.992648 0.121036i \(-0.0386217\pi\)
\(32\) − 5.58013i − 0.986436i
\(33\) 0 0
\(34\) − 0.940414i − 0.161280i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.44977 −0.238340 −0.119170 0.992874i \(-0.538023\pi\)
−0.119170 + 0.992874i \(0.538023\pi\)
\(38\) −4.32058 −0.700891
\(39\) 0 0
\(40\) − 2.20655i − 0.348887i
\(41\) −9.80448 −1.53120 −0.765601 0.643315i \(-0.777558\pi\)
−0.765601 + 0.643315i \(0.777558\pi\)
\(42\) 0 0
\(43\) −6.75795 −1.03058 −0.515289 0.857017i \(-0.672315\pi\)
−0.515289 + 0.857017i \(0.672315\pi\)
\(44\) − 3.37874i − 0.509364i
\(45\) 0 0
\(46\) 3.24147 0.477929
\(47\) −5.15570 −0.752036 −0.376018 0.926612i \(-0.622707\pi\)
−0.376018 + 0.926612i \(0.622707\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) − 0.607761i − 0.0859504i
\(51\) 0 0
\(52\) − 9.32762i − 1.29351i
\(53\) − 9.34386i − 1.28348i −0.766923 0.641739i \(-0.778213\pi\)
0.766923 0.641739i \(-0.221787\pi\)
\(54\) 0 0
\(55\) − 2.07205i − 0.279395i
\(56\) 0 0
\(57\) 0 0
\(58\) 4.60123 0.604171
\(59\) 2.89929 0.377456 0.188728 0.982029i \(-0.439564\pi\)
0.188728 + 0.982029i \(0.439564\pi\)
\(60\) 0 0
\(61\) 4.65202i 0.595630i 0.954624 + 0.297815i \(0.0962578\pi\)
−0.954624 + 0.297815i \(0.903742\pi\)
\(62\) −0.819142 −0.104031
\(63\) 0 0
\(64\) 0.449013 0.0561266
\(65\) − 5.72027i − 0.709512i
\(66\) 0 0
\(67\) 9.35484 1.14287 0.571437 0.820646i \(-0.306386\pi\)
0.571437 + 0.820646i \(0.306386\pi\)
\(68\) 2.52314 0.305976
\(69\) 0 0
\(70\) 0 0
\(71\) 4.17724i 0.495747i 0.968792 + 0.247874i \(0.0797318\pi\)
−0.968792 + 0.247874i \(0.920268\pi\)
\(72\) 0 0
\(73\) 2.29124i 0.268170i 0.990970 + 0.134085i \(0.0428095\pi\)
−0.990970 + 0.134085i \(0.957190\pi\)
\(74\) 0.881111i 0.102427i
\(75\) 0 0
\(76\) − 11.5921i − 1.32971i
\(77\) 0 0
\(78\) 0 0
\(79\) 14.0324 1.57877 0.789386 0.613898i \(-0.210399\pi\)
0.789386 + 0.613898i \(0.210399\pi\)
\(80\) 1.92020 0.214685
\(81\) 0 0
\(82\) 5.95878i 0.658037i
\(83\) −5.90939 −0.648640 −0.324320 0.945948i \(-0.605135\pi\)
−0.324320 + 0.945948i \(0.605135\pi\)
\(84\) 0 0
\(85\) 1.54734 0.167833
\(86\) 4.10722i 0.442893i
\(87\) 0 0
\(88\) −4.57209 −0.487386
\(89\) 4.13776 0.438601 0.219301 0.975657i \(-0.429622\pi\)
0.219301 + 0.975657i \(0.429622\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.69690i 0.906715i
\(93\) 0 0
\(94\) 3.13343i 0.323189i
\(95\) − 7.10901i − 0.729369i
\(96\) 0 0
\(97\) − 12.8624i − 1.30598i −0.757366 0.652991i \(-0.773514\pi\)
0.757366 0.652991i \(-0.226486\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.63063 0.163063
\(101\) 11.5786 1.15212 0.576059 0.817408i \(-0.304590\pi\)
0.576059 + 0.817408i \(0.304590\pi\)
\(102\) 0 0
\(103\) − 8.76554i − 0.863694i −0.901947 0.431847i \(-0.857862\pi\)
0.901947 0.431847i \(-0.142138\pi\)
\(104\) −12.6221 −1.23770
\(105\) 0 0
\(106\) −5.67883 −0.551577
\(107\) − 13.2290i − 1.27890i −0.768834 0.639449i \(-0.779163\pi\)
0.768834 0.639449i \(-0.220837\pi\)
\(108\) 0 0
\(109\) 11.3520 1.08733 0.543664 0.839303i \(-0.317037\pi\)
0.543664 + 0.839303i \(0.317037\pi\)
\(110\) −1.25931 −0.120071
\(111\) 0 0
\(112\) 0 0
\(113\) 13.7120i 1.28992i 0.764218 + 0.644958i \(0.223125\pi\)
−0.764218 + 0.644958i \(0.776875\pi\)
\(114\) 0 0
\(115\) 5.33347i 0.497349i
\(116\) 12.3451i 1.14622i
\(117\) 0 0
\(118\) − 1.76208i − 0.162212i
\(119\) 0 0
\(120\) 0 0
\(121\) 6.70661 0.609692
\(122\) 2.82731 0.255973
\(123\) 0 0
\(124\) − 2.19776i − 0.197365i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −20.3356 −1.80450 −0.902248 0.431217i \(-0.858084\pi\)
−0.902248 + 0.431217i \(0.858084\pi\)
\(128\) − 11.4331i − 1.01056i
\(129\) 0 0
\(130\) −3.47655 −0.304914
\(131\) 1.51493 0.132360 0.0661802 0.997808i \(-0.478919\pi\)
0.0661802 + 0.997808i \(0.478919\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 5.68550i − 0.491153i
\(135\) 0 0
\(136\) − 3.41429i − 0.292773i
\(137\) 6.72571i 0.574616i 0.957838 + 0.287308i \(0.0927604\pi\)
−0.957838 + 0.287308i \(0.907240\pi\)
\(138\) 0 0
\(139\) 5.33120i 0.452186i 0.974106 + 0.226093i \(0.0725954\pi\)
−0.974106 + 0.226093i \(0.927405\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.53876 0.213048
\(143\) −11.8527 −0.991171
\(144\) 0 0
\(145\) 7.57079i 0.628720i
\(146\) 1.39253 0.115246
\(147\) 0 0
\(148\) −2.36403 −0.194322
\(149\) 20.3546i 1.66751i 0.552134 + 0.833755i \(0.313813\pi\)
−0.552134 + 0.833755i \(0.686187\pi\)
\(150\) 0 0
\(151\) 23.0060 1.87220 0.936101 0.351732i \(-0.114407\pi\)
0.936101 + 0.351732i \(0.114407\pi\)
\(152\) −15.6864 −1.27234
\(153\) 0 0
\(154\) 0 0
\(155\) − 1.34780i − 0.108258i
\(156\) 0 0
\(157\) − 6.97420i − 0.556602i −0.960494 0.278301i \(-0.910229\pi\)
0.960494 0.278301i \(-0.0897713\pi\)
\(158\) − 8.52836i − 0.678480i
\(159\) 0 0
\(160\) − 5.58013i − 0.441148i
\(161\) 0 0
\(162\) 0 0
\(163\) −5.65699 −0.443089 −0.221545 0.975150i \(-0.571110\pi\)
−0.221545 + 0.975150i \(0.571110\pi\)
\(164\) −15.9874 −1.24841
\(165\) 0 0
\(166\) 3.59149i 0.278754i
\(167\) 19.6550 1.52095 0.760475 0.649367i \(-0.224966\pi\)
0.760475 + 0.649367i \(0.224966\pi\)
\(168\) 0 0
\(169\) −19.7215 −1.51704
\(170\) − 0.940414i − 0.0721265i
\(171\) 0 0
\(172\) −11.0197 −0.840244
\(173\) 24.1809 1.83844 0.919219 0.393747i \(-0.128821\pi\)
0.919219 + 0.393747i \(0.128821\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 3.97874i − 0.299909i
\(177\) 0 0
\(178\) − 2.51477i − 0.188490i
\(179\) − 5.41987i − 0.405100i −0.979272 0.202550i \(-0.935077\pi\)
0.979272 0.202550i \(-0.0649228\pi\)
\(180\) 0 0
\(181\) 1.45743i 0.108330i 0.998532 + 0.0541651i \(0.0172497\pi\)
−0.998532 + 0.0541651i \(0.982750\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 11.7686 0.867592
\(185\) −1.44977 −0.106589
\(186\) 0 0
\(187\) − 3.20617i − 0.234458i
\(188\) −8.40703 −0.613145
\(189\) 0 0
\(190\) −4.32058 −0.313448
\(191\) − 13.6957i − 0.990985i −0.868612 0.495492i \(-0.834988\pi\)
0.868612 0.495492i \(-0.165012\pi\)
\(192\) 0 0
\(193\) 7.48896 0.539067 0.269534 0.962991i \(-0.413130\pi\)
0.269534 + 0.962991i \(0.413130\pi\)
\(194\) −7.81728 −0.561248
\(195\) 0 0
\(196\) 0 0
\(197\) 2.07356i 0.147735i 0.997268 + 0.0738677i \(0.0235342\pi\)
−0.997268 + 0.0738677i \(0.976466\pi\)
\(198\) 0 0
\(199\) 1.44061i 0.102122i 0.998696 + 0.0510611i \(0.0162603\pi\)
−0.998696 + 0.0510611i \(0.983740\pi\)
\(200\) − 2.20655i − 0.156027i
\(201\) 0 0
\(202\) − 7.03705i − 0.495125i
\(203\) 0 0
\(204\) 0 0
\(205\) −9.80448 −0.684775
\(206\) −5.32735 −0.371174
\(207\) 0 0
\(208\) − 10.9840i − 0.761606i
\(209\) −14.7302 −1.01891
\(210\) 0 0
\(211\) 16.4747 1.13417 0.567083 0.823661i \(-0.308072\pi\)
0.567083 + 0.823661i \(0.308072\pi\)
\(212\) − 15.2364i − 1.04644i
\(213\) 0 0
\(214\) −8.04008 −0.549608
\(215\) −6.75795 −0.460888
\(216\) 0 0
\(217\) 0 0
\(218\) − 6.89932i − 0.467281i
\(219\) 0 0
\(220\) − 3.37874i − 0.227795i
\(221\) − 8.85122i − 0.595397i
\(222\) 0 0
\(223\) − 2.52216i − 0.168896i −0.996428 0.0844482i \(-0.973087\pi\)
0.996428 0.0844482i \(-0.0269128\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 8.33361 0.554344
\(227\) 15.3723 1.02030 0.510148 0.860087i \(-0.329591\pi\)
0.510148 + 0.860087i \(0.329591\pi\)
\(228\) 0 0
\(229\) 4.55926i 0.301284i 0.988588 + 0.150642i \(0.0481341\pi\)
−0.988588 + 0.150642i \(0.951866\pi\)
\(230\) 3.24147 0.213737
\(231\) 0 0
\(232\) 16.7053 1.09676
\(233\) 7.72652i 0.506181i 0.967443 + 0.253091i \(0.0814470\pi\)
−0.967443 + 0.253091i \(0.918553\pi\)
\(234\) 0 0
\(235\) −5.15570 −0.336321
\(236\) 4.72766 0.307745
\(237\) 0 0
\(238\) 0 0
\(239\) 0.869688i 0.0562554i 0.999604 + 0.0281277i \(0.00895451\pi\)
−0.999604 + 0.0281277i \(0.991045\pi\)
\(240\) 0 0
\(241\) 26.0615i 1.67877i 0.543541 + 0.839383i \(0.317083\pi\)
−0.543541 + 0.839383i \(0.682917\pi\)
\(242\) − 4.07602i − 0.262016i
\(243\) 0 0
\(244\) 7.58570i 0.485625i
\(245\) 0 0
\(246\) 0 0
\(247\) −40.6655 −2.58748
\(248\) −2.97400 −0.188849
\(249\) 0 0
\(250\) − 0.607761i − 0.0384382i
\(251\) −22.9225 −1.44686 −0.723428 0.690400i \(-0.757435\pi\)
−0.723428 + 0.690400i \(0.757435\pi\)
\(252\) 0 0
\(253\) 11.0512 0.694784
\(254\) 12.3592i 0.775486i
\(255\) 0 0
\(256\) −6.05059 −0.378162
\(257\) −27.3731 −1.70749 −0.853745 0.520692i \(-0.825674\pi\)
−0.853745 + 0.520692i \(0.825674\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) − 9.32762i − 0.578475i
\(261\) 0 0
\(262\) − 0.920717i − 0.0568821i
\(263\) 15.1797i 0.936020i 0.883723 + 0.468010i \(0.155029\pi\)
−0.883723 + 0.468010i \(0.844971\pi\)
\(264\) 0 0
\(265\) − 9.34386i − 0.573989i
\(266\) 0 0
\(267\) 0 0
\(268\) 15.2542 0.931801
\(269\) −26.3996 −1.60961 −0.804806 0.593538i \(-0.797730\pi\)
−0.804806 + 0.593538i \(0.797730\pi\)
\(270\) 0 0
\(271\) − 8.33144i − 0.506099i −0.967453 0.253050i \(-0.918566\pi\)
0.967453 0.253050i \(-0.0814336\pi\)
\(272\) 2.97120 0.180156
\(273\) 0 0
\(274\) 4.08762 0.246942
\(275\) − 2.07205i − 0.124949i
\(276\) 0 0
\(277\) −4.24827 −0.255254 −0.127627 0.991822i \(-0.540736\pi\)
−0.127627 + 0.991822i \(0.540736\pi\)
\(278\) 3.24009 0.194328
\(279\) 0 0
\(280\) 0 0
\(281\) − 4.35141i − 0.259583i −0.991541 0.129792i \(-0.958569\pi\)
0.991541 0.129792i \(-0.0414309\pi\)
\(282\) 0 0
\(283\) 27.7304i 1.64840i 0.566297 + 0.824202i \(0.308376\pi\)
−0.566297 + 0.824202i \(0.691624\pi\)
\(284\) 6.81152i 0.404190i
\(285\) 0 0
\(286\) 7.20359i 0.425957i
\(287\) 0 0
\(288\) 0 0
\(289\) −14.6057 −0.859161
\(290\) 4.60123 0.270193
\(291\) 0 0
\(292\) 3.73616i 0.218643i
\(293\) 20.8950 1.22070 0.610349 0.792133i \(-0.291029\pi\)
0.610349 + 0.792133i \(0.291029\pi\)
\(294\) 0 0
\(295\) 2.89929 0.168803
\(296\) 3.19898i 0.185937i
\(297\) 0 0
\(298\) 12.3707 0.716615
\(299\) 30.5089 1.76437
\(300\) 0 0
\(301\) 0 0
\(302\) − 13.9821i − 0.804582i
\(303\) 0 0
\(304\) − 13.6507i − 0.782922i
\(305\) 4.65202i 0.266374i
\(306\) 0 0
\(307\) 10.2546i 0.585259i 0.956226 + 0.292629i \(0.0945302\pi\)
−0.956226 + 0.292629i \(0.905470\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.819142 −0.0465241
\(311\) 13.0858 0.742029 0.371015 0.928627i \(-0.379010\pi\)
0.371015 + 0.928627i \(0.379010\pi\)
\(312\) 0 0
\(313\) − 9.36063i − 0.529094i −0.964373 0.264547i \(-0.914778\pi\)
0.964373 0.264547i \(-0.0852224\pi\)
\(314\) −4.23865 −0.239201
\(315\) 0 0
\(316\) 22.8816 1.28719
\(317\) − 25.7813i − 1.44802i −0.689787 0.724012i \(-0.742296\pi\)
0.689787 0.724012i \(-0.257704\pi\)
\(318\) 0 0
\(319\) 15.6870 0.878306
\(320\) 0.449013 0.0251006
\(321\) 0 0
\(322\) 0 0
\(323\) − 11.0001i − 0.612061i
\(324\) 0 0
\(325\) − 5.72027i − 0.317303i
\(326\) 3.43810i 0.190418i
\(327\) 0 0
\(328\) 21.6341i 1.19454i
\(329\) 0 0
\(330\) 0 0
\(331\) −20.9665 −1.15243 −0.576213 0.817300i \(-0.695470\pi\)
−0.576213 + 0.817300i \(0.695470\pi\)
\(332\) −9.63601 −0.528845
\(333\) 0 0
\(334\) − 11.9455i − 0.653631i
\(335\) 9.35484 0.511109
\(336\) 0 0
\(337\) −22.7010 −1.23660 −0.618302 0.785941i \(-0.712179\pi\)
−0.618302 + 0.785941i \(0.712179\pi\)
\(338\) 11.9859i 0.651949i
\(339\) 0 0
\(340\) 2.52314 0.136836
\(341\) −2.79271 −0.151234
\(342\) 0 0
\(343\) 0 0
\(344\) 14.9118i 0.803989i
\(345\) 0 0
\(346\) − 14.6962i − 0.790072i
\(347\) − 20.6183i − 1.10685i −0.832900 0.553424i \(-0.813321\pi\)
0.832900 0.553424i \(-0.186679\pi\)
\(348\) 0 0
\(349\) 26.9920i 1.44485i 0.691450 + 0.722424i \(0.256972\pi\)
−0.691450 + 0.722424i \(0.743028\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −11.5623 −0.616272
\(353\) 6.22357 0.331247 0.165624 0.986189i \(-0.447036\pi\)
0.165624 + 0.986189i \(0.447036\pi\)
\(354\) 0 0
\(355\) 4.17724i 0.221705i
\(356\) 6.74714 0.357598
\(357\) 0 0
\(358\) −3.29398 −0.174092
\(359\) 33.7134i 1.77933i 0.456618 + 0.889663i \(0.349061\pi\)
−0.456618 + 0.889663i \(0.650939\pi\)
\(360\) 0 0
\(361\) −31.5381 −1.65990
\(362\) 0.885771 0.0465551
\(363\) 0 0
\(364\) 0 0
\(365\) 2.29124i 0.119929i
\(366\) 0 0
\(367\) − 22.0596i − 1.15150i −0.817625 0.575751i \(-0.804710\pi\)
0.817625 0.575751i \(-0.195290\pi\)
\(368\) 10.2413i 0.533866i
\(369\) 0 0
\(370\) 0.881111i 0.0458068i
\(371\) 0 0
\(372\) 0 0
\(373\) 15.4260 0.798728 0.399364 0.916792i \(-0.369231\pi\)
0.399364 + 0.916792i \(0.369231\pi\)
\(374\) −1.94858 −0.100759
\(375\) 0 0
\(376\) 11.3763i 0.586689i
\(377\) 43.3069 2.23042
\(378\) 0 0
\(379\) 33.5254 1.72208 0.861042 0.508534i \(-0.169812\pi\)
0.861042 + 0.508534i \(0.169812\pi\)
\(380\) − 11.5921i − 0.594665i
\(381\) 0 0
\(382\) −8.32370 −0.425878
\(383\) −37.3377 −1.90787 −0.953933 0.300018i \(-0.903007\pi\)
−0.953933 + 0.300018i \(0.903007\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 4.55150i − 0.231665i
\(387\) 0 0
\(388\) − 20.9738i − 1.06478i
\(389\) 30.6366i 1.55334i 0.629909 + 0.776669i \(0.283092\pi\)
−0.629909 + 0.776669i \(0.716908\pi\)
\(390\) 0 0
\(391\) 8.25271i 0.417357i
\(392\) 0 0
\(393\) 0 0
\(394\) 1.26023 0.0634895
\(395\) 14.0324 0.706048
\(396\) 0 0
\(397\) 26.4280i 1.32639i 0.748449 + 0.663193i \(0.230799\pi\)
−0.748449 + 0.663193i \(0.769201\pi\)
\(398\) 0.875546 0.0438872
\(399\) 0 0
\(400\) 1.92020 0.0960099
\(401\) 18.5578i 0.926732i 0.886167 + 0.463366i \(0.153358\pi\)
−0.886167 + 0.463366i \(0.846642\pi\)
\(402\) 0 0
\(403\) −7.70979 −0.384052
\(404\) 18.8804 0.939337
\(405\) 0 0
\(406\) 0 0
\(407\) 3.00399i 0.148902i
\(408\) 0 0
\(409\) 30.1064i 1.48867i 0.667808 + 0.744334i \(0.267233\pi\)
−0.667808 + 0.744334i \(0.732767\pi\)
\(410\) 5.95878i 0.294283i
\(411\) 0 0
\(412\) − 14.2933i − 0.704181i
\(413\) 0 0
\(414\) 0 0
\(415\) −5.90939 −0.290080
\(416\) −31.9198 −1.56500
\(417\) 0 0
\(418\) 8.95245i 0.437879i
\(419\) −11.8430 −0.578570 −0.289285 0.957243i \(-0.593418\pi\)
−0.289285 + 0.957243i \(0.593418\pi\)
\(420\) 0 0
\(421\) −15.0914 −0.735511 −0.367756 0.929922i \(-0.619874\pi\)
−0.367756 + 0.929922i \(0.619874\pi\)
\(422\) − 10.0127i − 0.487410i
\(423\) 0 0
\(424\) −20.6177 −1.00129
\(425\) 1.54734 0.0750572
\(426\) 0 0
\(427\) 0 0
\(428\) − 21.5716i − 1.04270i
\(429\) 0 0
\(430\) 4.10722i 0.198068i
\(431\) 7.09697i 0.341849i 0.985284 + 0.170924i \(0.0546754\pi\)
−0.985284 + 0.170924i \(0.945325\pi\)
\(432\) 0 0
\(433\) 36.5702i 1.75745i 0.477326 + 0.878726i \(0.341606\pi\)
−0.477326 + 0.878726i \(0.658394\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 18.5109 0.886513
\(437\) 37.9157 1.81375
\(438\) 0 0
\(439\) − 18.7009i − 0.892547i −0.894897 0.446274i \(-0.852751\pi\)
0.894897 0.446274i \(-0.147249\pi\)
\(440\) −4.57209 −0.217966
\(441\) 0 0
\(442\) −5.37942 −0.255873
\(443\) 29.4215i 1.39786i 0.715190 + 0.698930i \(0.246340\pi\)
−0.715190 + 0.698930i \(0.753660\pi\)
\(444\) 0 0
\(445\) 4.13776 0.196148
\(446\) −1.53287 −0.0725836
\(447\) 0 0
\(448\) 0 0
\(449\) 1.50209i 0.0708879i 0.999372 + 0.0354440i \(0.0112845\pi\)
−0.999372 + 0.0354440i \(0.988715\pi\)
\(450\) 0 0
\(451\) 20.3154i 0.956613i
\(452\) 22.3591i 1.05169i
\(453\) 0 0
\(454\) − 9.34269i − 0.438474i
\(455\) 0 0
\(456\) 0 0
\(457\) −12.1408 −0.567924 −0.283962 0.958836i \(-0.591649\pi\)
−0.283962 + 0.958836i \(0.591649\pi\)
\(458\) 2.77094 0.129477
\(459\) 0 0
\(460\) 8.69690i 0.405495i
\(461\) 28.6537 1.33454 0.667268 0.744817i \(-0.267463\pi\)
0.667268 + 0.744817i \(0.267463\pi\)
\(462\) 0 0
\(463\) 6.28648 0.292158 0.146079 0.989273i \(-0.453335\pi\)
0.146079 + 0.989273i \(0.453335\pi\)
\(464\) 14.5374i 0.674882i
\(465\) 0 0
\(466\) 4.69587 0.217532
\(467\) −3.38674 −0.156720 −0.0783599 0.996925i \(-0.524968\pi\)
−0.0783599 + 0.996925i \(0.524968\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 3.13343i 0.144535i
\(471\) 0 0
\(472\) − 6.39744i − 0.294466i
\(473\) 14.0028i 0.643850i
\(474\) 0 0
\(475\) − 7.10901i − 0.326184i
\(476\) 0 0
\(477\) 0 0
\(478\) 0.528562 0.0241759
\(479\) 18.6355 0.851480 0.425740 0.904846i \(-0.360014\pi\)
0.425740 + 0.904846i \(0.360014\pi\)
\(480\) 0 0
\(481\) 8.29305i 0.378130i
\(482\) 15.8391 0.721453
\(483\) 0 0
\(484\) 10.9360 0.497090
\(485\) − 12.8624i − 0.584053i
\(486\) 0 0
\(487\) −26.8409 −1.21628 −0.608139 0.793831i \(-0.708084\pi\)
−0.608139 + 0.793831i \(0.708084\pi\)
\(488\) 10.2649 0.464671
\(489\) 0 0
\(490\) 0 0
\(491\) − 41.1046i − 1.85503i −0.373791 0.927513i \(-0.621942\pi\)
0.373791 0.927513i \(-0.378058\pi\)
\(492\) 0 0
\(493\) 11.7146i 0.527599i
\(494\) 24.7149i 1.11197i
\(495\) 0 0
\(496\) − 2.58805i − 0.116207i
\(497\) 0 0
\(498\) 0 0
\(499\) 5.89202 0.263763 0.131882 0.991265i \(-0.457898\pi\)
0.131882 + 0.991265i \(0.457898\pi\)
\(500\) 1.63063 0.0729238
\(501\) 0 0
\(502\) 13.9314i 0.621789i
\(503\) −31.4443 −1.40203 −0.701016 0.713146i \(-0.747270\pi\)
−0.701016 + 0.713146i \(0.747270\pi\)
\(504\) 0 0
\(505\) 11.5786 0.515243
\(506\) − 6.71650i − 0.298585i
\(507\) 0 0
\(508\) −33.1598 −1.47123
\(509\) 35.9489 1.59341 0.796704 0.604370i \(-0.206575\pi\)
0.796704 + 0.604370i \(0.206575\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 19.1890i − 0.848041i
\(513\) 0 0
\(514\) 16.6363i 0.733797i
\(515\) − 8.76554i − 0.386256i
\(516\) 0 0
\(517\) 10.6829i 0.469832i
\(518\) 0 0
\(519\) 0 0
\(520\) −12.6221 −0.553515
\(521\) 24.3888 1.06849 0.534247 0.845329i \(-0.320595\pi\)
0.534247 + 0.845329i \(0.320595\pi\)
\(522\) 0 0
\(523\) 41.9347i 1.83367i 0.399261 + 0.916837i \(0.369267\pi\)
−0.399261 + 0.916837i \(0.630733\pi\)
\(524\) 2.47029 0.107915
\(525\) 0 0
\(526\) 9.22562 0.402256
\(527\) − 2.08551i − 0.0908464i
\(528\) 0 0
\(529\) −5.44592 −0.236779
\(530\) −5.67883 −0.246673
\(531\) 0 0
\(532\) 0 0
\(533\) 56.0842i 2.42928i
\(534\) 0 0
\(535\) − 13.2290i − 0.571940i
\(536\) − 20.6419i − 0.891596i
\(537\) 0 0
\(538\) 16.0446i 0.691733i
\(539\) 0 0
\(540\) 0 0
\(541\) 4.12241 0.177236 0.0886181 0.996066i \(-0.471755\pi\)
0.0886181 + 0.996066i \(0.471755\pi\)
\(542\) −5.06353 −0.217497
\(543\) 0 0
\(544\) − 8.63437i − 0.370196i
\(545\) 11.3520 0.486268
\(546\) 0 0
\(547\) 35.3868 1.51303 0.756515 0.653976i \(-0.226900\pi\)
0.756515 + 0.653976i \(0.226900\pi\)
\(548\) 10.9671i 0.468492i
\(549\) 0 0
\(550\) −1.25931 −0.0536972
\(551\) 53.8208 2.29284
\(552\) 0 0
\(553\) 0 0
\(554\) 2.58193i 0.109696i
\(555\) 0 0
\(556\) 8.69319i 0.368674i
\(557\) − 38.1922i − 1.61826i −0.587633 0.809128i \(-0.699940\pi\)
0.587633 0.809128i \(-0.300060\pi\)
\(558\) 0 0
\(559\) 38.6573i 1.63503i
\(560\) 0 0
\(561\) 0 0
\(562\) −2.64462 −0.111556
\(563\) −13.0661 −0.550669 −0.275335 0.961348i \(-0.588789\pi\)
−0.275335 + 0.961348i \(0.588789\pi\)
\(564\) 0 0
\(565\) 13.7120i 0.576868i
\(566\) 16.8535 0.708404
\(567\) 0 0
\(568\) 9.21730 0.386750
\(569\) − 13.8167i − 0.579227i −0.957144 0.289614i \(-0.906473\pi\)
0.957144 0.289614i \(-0.0935268\pi\)
\(570\) 0 0
\(571\) −6.62806 −0.277376 −0.138688 0.990336i \(-0.544288\pi\)
−0.138688 + 0.990336i \(0.544288\pi\)
\(572\) −19.3273 −0.808115
\(573\) 0 0
\(574\) 0 0
\(575\) 5.33347i 0.222421i
\(576\) 0 0
\(577\) − 4.10673i − 0.170966i −0.996340 0.0854828i \(-0.972757\pi\)
0.996340 0.0854828i \(-0.0272433\pi\)
\(578\) 8.87679i 0.369226i
\(579\) 0 0
\(580\) 12.3451i 0.512603i
\(581\) 0 0
\(582\) 0 0
\(583\) −19.3609 −0.801848
\(584\) 5.05575 0.209209
\(585\) 0 0
\(586\) − 12.6992i − 0.524597i
\(587\) 43.6331 1.80093 0.900464 0.434930i \(-0.143227\pi\)
0.900464 + 0.434930i \(0.143227\pi\)
\(588\) 0 0
\(589\) −9.58155 −0.394801
\(590\) − 1.76208i − 0.0725435i
\(591\) 0 0
\(592\) −2.78384 −0.114415
\(593\) 4.96236 0.203780 0.101890 0.994796i \(-0.467511\pi\)
0.101890 + 0.994796i \(0.467511\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 33.1907i 1.35954i
\(597\) 0 0
\(598\) − 18.5421i − 0.758243i
\(599\) − 16.8333i − 0.687788i −0.939008 0.343894i \(-0.888254\pi\)
0.939008 0.343894i \(-0.111746\pi\)
\(600\) 0 0
\(601\) 11.0127i 0.449217i 0.974449 + 0.224609i \(0.0721103\pi\)
−0.974449 + 0.224609i \(0.927890\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 37.5142 1.52643
\(605\) 6.70661 0.272663
\(606\) 0 0
\(607\) 6.61806i 0.268619i 0.990939 + 0.134309i \(0.0428816\pi\)
−0.990939 + 0.134309i \(0.957118\pi\)
\(608\) −39.6692 −1.60880
\(609\) 0 0
\(610\) 2.82731 0.114475
\(611\) 29.4920i 1.19312i
\(612\) 0 0
\(613\) 2.87382 0.116072 0.0580362 0.998314i \(-0.481516\pi\)
0.0580362 + 0.998314i \(0.481516\pi\)
\(614\) 6.23232 0.251516
\(615\) 0 0
\(616\) 0 0
\(617\) − 11.6224i − 0.467900i −0.972249 0.233950i \(-0.924835\pi\)
0.972249 0.233950i \(-0.0751652\pi\)
\(618\) 0 0
\(619\) − 10.2458i − 0.411813i −0.978572 0.205907i \(-0.933986\pi\)
0.978572 0.205907i \(-0.0660143\pi\)
\(620\) − 2.19776i − 0.0882643i
\(621\) 0 0
\(622\) − 7.95305i − 0.318888i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −5.68902 −0.227379
\(627\) 0 0
\(628\) − 11.3723i − 0.453805i
\(629\) −2.24328 −0.0894456
\(630\) 0 0
\(631\) −20.0096 −0.796571 −0.398285 0.917262i \(-0.630395\pi\)
−0.398285 + 0.917262i \(0.630395\pi\)
\(632\) − 30.9633i − 1.23165i
\(633\) 0 0
\(634\) −15.6689 −0.622291
\(635\) −20.3356 −0.806995
\(636\) 0 0
\(637\) 0 0
\(638\) − 9.53397i − 0.377453i
\(639\) 0 0
\(640\) − 11.4331i − 0.451935i
\(641\) 7.62239i 0.301066i 0.988605 + 0.150533i \(0.0480990\pi\)
−0.988605 + 0.150533i \(0.951901\pi\)
\(642\) 0 0
\(643\) − 11.2819i − 0.444917i −0.974942 0.222458i \(-0.928592\pi\)
0.974942 0.222458i \(-0.0714081\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.68542 −0.263034
\(647\) 1.05563 0.0415012 0.0207506 0.999785i \(-0.493394\pi\)
0.0207506 + 0.999785i \(0.493394\pi\)
\(648\) 0 0
\(649\) − 6.00748i − 0.235814i
\(650\) −3.47655 −0.136362
\(651\) 0 0
\(652\) −9.22443 −0.361257
\(653\) 16.3928i 0.641501i 0.947164 + 0.320751i \(0.103935\pi\)
−0.947164 + 0.320751i \(0.896065\pi\)
\(654\) 0 0
\(655\) 1.51493 0.0591933
\(656\) −18.8265 −0.735053
\(657\) 0 0
\(658\) 0 0
\(659\) − 1.28390i − 0.0500137i −0.999687 0.0250068i \(-0.992039\pi\)
0.999687 0.0250068i \(-0.00796076\pi\)
\(660\) 0 0
\(661\) − 10.1657i − 0.395398i −0.980263 0.197699i \(-0.936653\pi\)
0.980263 0.197699i \(-0.0633469\pi\)
\(662\) 12.7426i 0.495257i
\(663\) 0 0
\(664\) 13.0394i 0.506026i
\(665\) 0 0
\(666\) 0 0
\(667\) −40.3786 −1.56346
\(668\) 32.0500 1.24005
\(669\) 0 0
\(670\) − 5.68550i − 0.219650i
\(671\) 9.63921 0.372118
\(672\) 0 0
\(673\) 8.80255 0.339314 0.169657 0.985503i \(-0.445734\pi\)
0.169657 + 0.985503i \(0.445734\pi\)
\(674\) 13.7968i 0.531433i
\(675\) 0 0
\(676\) −32.1584 −1.23686
\(677\) 6.38933 0.245562 0.122781 0.992434i \(-0.460819\pi\)
0.122781 + 0.992434i \(0.460819\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) − 3.41429i − 0.130932i
\(681\) 0 0
\(682\) 1.69730i 0.0649931i
\(683\) 17.8275i 0.682149i 0.940036 + 0.341074i \(0.110791\pi\)
−0.940036 + 0.341074i \(0.889209\pi\)
\(684\) 0 0
\(685\) 6.72571i 0.256976i
\(686\) 0 0
\(687\) 0 0
\(688\) −12.9766 −0.494728
\(689\) −53.4494 −2.03626
\(690\) 0 0
\(691\) − 25.1781i − 0.957818i −0.877864 0.478909i \(-0.841032\pi\)
0.877864 0.478909i \(-0.158968\pi\)
\(692\) 39.4300 1.49890
\(693\) 0 0
\(694\) −12.5310 −0.475670
\(695\) 5.33120i 0.202224i
\(696\) 0 0
\(697\) −15.1709 −0.574639
\(698\) 16.4047 0.620926
\(699\) 0 0
\(700\) 0 0
\(701\) − 8.86413i − 0.334794i −0.985890 0.167397i \(-0.946464\pi\)
0.985890 0.167397i \(-0.0535361\pi\)
\(702\) 0 0
\(703\) 10.3064i 0.388713i
\(704\) − 0.930376i − 0.0350649i
\(705\) 0 0
\(706\) − 3.78244i − 0.142354i
\(707\) 0 0
\(708\) 0 0
\(709\) 25.4921 0.957376 0.478688 0.877985i \(-0.341113\pi\)
0.478688 + 0.877985i \(0.341113\pi\)
\(710\) 2.53876 0.0952781
\(711\) 0 0
\(712\) − 9.13018i − 0.342168i
\(713\) 7.18847 0.269210
\(714\) 0 0
\(715\) −11.8527 −0.443265
\(716\) − 8.83778i − 0.330283i
\(717\) 0 0
\(718\) 20.4897 0.764668
\(719\) −39.0080 −1.45475 −0.727376 0.686239i \(-0.759260\pi\)
−0.727376 + 0.686239i \(0.759260\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 19.1676i 0.713344i
\(723\) 0 0
\(724\) 2.37653i 0.0883231i
\(725\) 7.57079i 0.281172i
\(726\) 0 0
\(727\) − 41.7031i − 1.54668i −0.633990 0.773342i \(-0.718584\pi\)
0.633990 0.773342i \(-0.281416\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.39253 0.0515398
\(731\) −10.4569 −0.386761
\(732\) 0 0
\(733\) − 12.1775i − 0.449788i −0.974383 0.224894i \(-0.927796\pi\)
0.974383 0.224894i \(-0.0722036\pi\)
\(734\) −13.4070 −0.494860
\(735\) 0 0
\(736\) 29.7614 1.09702
\(737\) − 19.3837i − 0.714007i
\(738\) 0 0
\(739\) 14.5460 0.535084 0.267542 0.963546i \(-0.413789\pi\)
0.267542 + 0.963546i \(0.413789\pi\)
\(740\) −2.36403 −0.0869033
\(741\) 0 0
\(742\) 0 0
\(743\) − 9.12577i − 0.334792i −0.985890 0.167396i \(-0.946464\pi\)
0.985890 0.167396i \(-0.0535359\pi\)
\(744\) 0 0
\(745\) 20.3546i 0.745733i
\(746\) − 9.37532i − 0.343255i
\(747\) 0 0
\(748\) − 5.22807i − 0.191157i
\(749\) 0 0
\(750\) 0 0
\(751\) −24.8928 −0.908351 −0.454176 0.890912i \(-0.650066\pi\)
−0.454176 + 0.890912i \(0.650066\pi\)
\(752\) −9.89997 −0.361015
\(753\) 0 0
\(754\) − 26.3203i − 0.958527i
\(755\) 23.0060 0.837274
\(756\) 0 0
\(757\) 6.56329 0.238547 0.119273 0.992861i \(-0.461943\pi\)
0.119273 + 0.992861i \(0.461943\pi\)
\(758\) − 20.3754i − 0.740069i
\(759\) 0 0
\(760\) −15.6864 −0.569006
\(761\) 13.0172 0.471874 0.235937 0.971768i \(-0.424184\pi\)
0.235937 + 0.971768i \(0.424184\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) − 22.3326i − 0.807963i
\(765\) 0 0
\(766\) 22.6924i 0.819909i
\(767\) − 16.5847i − 0.598840i
\(768\) 0 0
\(769\) 27.2477i 0.982578i 0.870997 + 0.491289i \(0.163474\pi\)
−0.870997 + 0.491289i \(0.836526\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 12.2117 0.439509
\(773\) 9.97277 0.358696 0.179348 0.983786i \(-0.442601\pi\)
0.179348 + 0.983786i \(0.442601\pi\)
\(774\) 0 0
\(775\) − 1.34780i − 0.0484145i
\(776\) −28.3816 −1.01884
\(777\) 0 0
\(778\) 18.6197 0.667550
\(779\) 69.7002i 2.49727i
\(780\) 0 0
\(781\) 8.65545 0.309716
\(782\) 5.01567 0.179360
\(783\) 0 0
\(784\) 0 0
\(785\) − 6.97420i − 0.248920i
\(786\) 0 0
\(787\) − 8.42880i − 0.300454i −0.988651 0.150227i \(-0.951999\pi\)
0.988651 0.150227i \(-0.0480005\pi\)
\(788\) 3.38121i 0.120451i
\(789\) 0 0
\(790\) − 8.52836i − 0.303425i
\(791\) 0 0
\(792\) 0 0
\(793\) 26.6108 0.944977
\(794\) 16.0619 0.570017
\(795\) 0 0
\(796\) 2.34910i 0.0832615i
\(797\) −54.1574 −1.91835 −0.959176 0.282809i \(-0.908734\pi\)
−0.959176 + 0.282809i \(0.908734\pi\)
\(798\) 0 0
\(799\) −7.97764 −0.282229
\(800\) − 5.58013i − 0.197287i
\(801\) 0 0
\(802\) 11.2787 0.398265
\(803\) 4.74757 0.167538
\(804\) 0 0
\(805\) 0 0
\(806\) 4.68571i 0.165047i
\(807\) 0 0
\(808\) − 25.5489i − 0.898807i
\(809\) − 39.6101i − 1.39262i −0.717742 0.696309i \(-0.754824\pi\)
0.717742 0.696309i \(-0.245176\pi\)
\(810\) 0 0
\(811\) − 24.1806i − 0.849096i −0.905406 0.424548i \(-0.860433\pi\)
0.905406 0.424548i \(-0.139567\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.82570 0.0639909
\(815\) −5.65699 −0.198156
\(816\) 0 0
\(817\) 48.0424i 1.68079i
\(818\) 18.2975 0.639758
\(819\) 0 0
\(820\) −15.9874 −0.558306
\(821\) − 6.69975i − 0.233823i −0.993142 0.116911i \(-0.962701\pi\)
0.993142 0.116911i \(-0.0372994\pi\)
\(822\) 0 0
\(823\) 46.9759 1.63748 0.818738 0.574167i \(-0.194674\pi\)
0.818738 + 0.574167i \(0.194674\pi\)
\(824\) −19.3416 −0.673797
\(825\) 0 0
\(826\) 0 0
\(827\) − 24.0149i − 0.835078i −0.908659 0.417539i \(-0.862893\pi\)
0.908659 0.417539i \(-0.137107\pi\)
\(828\) 0 0
\(829\) 27.0973i 0.941128i 0.882366 + 0.470564i \(0.155950\pi\)
−0.882366 + 0.470564i \(0.844050\pi\)
\(830\) 3.59149i 0.124663i
\(831\) 0 0
\(832\) − 2.56847i − 0.0890458i
\(833\) 0 0
\(834\) 0 0
\(835\) 19.6550 0.680190
\(836\) −24.0195 −0.830732
\(837\) 0 0
\(838\) 7.19773i 0.248642i
\(839\) −15.3834 −0.531094 −0.265547 0.964098i \(-0.585552\pi\)
−0.265547 + 0.964098i \(0.585552\pi\)
\(840\) 0 0
\(841\) −28.3168 −0.976441
\(842\) 9.17198i 0.316087i
\(843\) 0 0
\(844\) 26.8641 0.924700
\(845\) −19.7215 −0.678439
\(846\) 0 0
\(847\) 0 0
\(848\) − 17.9421i − 0.616133i
\(849\) 0 0
\(850\) − 0.940414i − 0.0322559i
\(851\) − 7.73228i − 0.265059i
\(852\) 0 0
\(853\) − 26.1335i − 0.894795i −0.894335 0.447398i \(-0.852351\pi\)
0.894335 0.447398i \(-0.147649\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −29.1905 −0.997711
\(857\) 48.2877 1.64948 0.824738 0.565515i \(-0.191323\pi\)
0.824738 + 0.565515i \(0.191323\pi\)
\(858\) 0 0
\(859\) 3.98550i 0.135984i 0.997686 + 0.0679918i \(0.0216592\pi\)
−0.997686 + 0.0679918i \(0.978341\pi\)
\(860\) −11.0197 −0.375768
\(861\) 0 0
\(862\) 4.31326 0.146910
\(863\) 20.4965i 0.697710i 0.937177 + 0.348855i \(0.113429\pi\)
−0.937177 + 0.348855i \(0.886571\pi\)
\(864\) 0 0
\(865\) 24.1809 0.822174
\(866\) 22.2259 0.755268
\(867\) 0 0
\(868\) 0 0
\(869\) − 29.0759i − 0.986332i
\(870\) 0 0
\(871\) − 53.5122i − 1.81319i
\(872\) − 25.0489i − 0.848262i
\(873\) 0 0
\(874\) − 23.0437i − 0.779464i
\(875\) 0 0
\(876\) 0 0
\(877\) −7.07912 −0.239045 −0.119522 0.992832i \(-0.538136\pi\)
−0.119522 + 0.992832i \(0.538136\pi\)
\(878\) −11.3657 −0.383574
\(879\) 0 0
\(880\) − 3.97874i − 0.134123i
\(881\) −29.7131 −1.00106 −0.500529 0.865720i \(-0.666861\pi\)
−0.500529 + 0.865720i \(0.666861\pi\)
\(882\) 0 0
\(883\) 21.6525 0.728666 0.364333 0.931269i \(-0.381297\pi\)
0.364333 + 0.931269i \(0.381297\pi\)
\(884\) − 14.4330i − 0.485435i
\(885\) 0 0
\(886\) 17.8813 0.600733
\(887\) −37.3619 −1.25449 −0.627246 0.778821i \(-0.715818\pi\)
−0.627246 + 0.778821i \(0.715818\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) − 2.51477i − 0.0842952i
\(891\) 0 0
\(892\) − 4.11271i − 0.137704i
\(893\) 36.6520i 1.22651i
\(894\) 0 0
\(895\) − 5.41987i − 0.181166i
\(896\) 0 0
\(897\) 0 0
\(898\) 0.912911 0.0304642
\(899\) 10.2039 0.340320
\(900\) 0 0
\(901\) − 14.4582i − 0.481671i
\(902\) 12.3469 0.411106
\(903\) 0 0
\(904\) 30.2562 1.00631
\(905\) 1.45743i 0.0484467i
\(906\) 0 0
\(907\) 0.0978680 0.00324965 0.00162483 0.999999i \(-0.499483\pi\)
0.00162483 + 0.999999i \(0.499483\pi\)
\(908\) 25.0665 0.831861
\(909\) 0 0
\(910\) 0 0
\(911\) 25.9494i 0.859740i 0.902891 + 0.429870i \(0.141441\pi\)
−0.902891 + 0.429870i \(0.858559\pi\)
\(912\) 0 0
\(913\) 12.2445i 0.405235i
\(914\) 7.37871i 0.244066i
\(915\) 0 0
\(916\) 7.43444i 0.245641i
\(917\) 0 0
\(918\) 0 0
\(919\) 17.6538 0.582344 0.291172 0.956671i \(-0.405955\pi\)
0.291172 + 0.956671i \(0.405955\pi\)
\(920\) 11.7686 0.387999
\(921\) 0 0
\(922\) − 17.4146i − 0.573520i
\(923\) 23.8949 0.786512
\(924\) 0 0
\(925\) −1.44977 −0.0476680
\(926\) − 3.82068i − 0.125555i
\(927\) 0 0
\(928\) 42.2459 1.38679
\(929\) 24.8525 0.815385 0.407693 0.913119i \(-0.366334\pi\)
0.407693 + 0.913119i \(0.366334\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 12.5991i 0.412696i
\(933\) 0 0
\(934\) 2.05833i 0.0673506i
\(935\) − 3.20617i − 0.104853i
\(936\) 0 0
\(937\) − 30.1769i − 0.985837i −0.870075 0.492918i \(-0.835930\pi\)
0.870075 0.492918i \(-0.164070\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −8.40703 −0.274207
\(941\) −31.4158 −1.02413 −0.512063 0.858948i \(-0.671119\pi\)
−0.512063 + 0.858948i \(0.671119\pi\)
\(942\) 0 0
\(943\) − 52.2919i − 1.70286i
\(944\) 5.56721 0.181197
\(945\) 0 0
\(946\) 8.51036 0.276696
\(947\) − 50.7620i − 1.64954i −0.565466 0.824772i \(-0.691304\pi\)
0.565466 0.824772i \(-0.308696\pi\)
\(948\) 0 0
\(949\) 13.1065 0.425456
\(950\) −4.32058 −0.140178
\(951\) 0 0
\(952\) 0 0
\(953\) 34.7241i 1.12482i 0.826858 + 0.562411i \(0.190126\pi\)
−0.826858 + 0.562411i \(0.809874\pi\)
\(954\) 0 0
\(955\) − 13.6957i − 0.443182i
\(956\) 1.41814i 0.0458658i
\(957\) 0 0
\(958\) − 11.3260i − 0.365925i
\(959\) 0 0
\(960\) 0 0
\(961\) 29.1834 0.941401
\(962\) 5.04019 0.162502
\(963\) 0 0
\(964\) 42.4965i 1.36872i
\(965\) 7.48896 0.241078
\(966\) 0 0
\(967\) −34.7915 −1.11882 −0.559410 0.828891i \(-0.688972\pi\)
−0.559410 + 0.828891i \(0.688972\pi\)
\(968\) − 14.7985i − 0.475642i
\(969\) 0 0
\(970\) −7.81728 −0.250998
\(971\) −47.9049 −1.53734 −0.768670 0.639646i \(-0.779081\pi\)
−0.768670 + 0.639646i \(0.779081\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 16.3129i 0.522698i
\(975\) 0 0
\(976\) 8.93279i 0.285932i
\(977\) 29.7314i 0.951192i 0.879664 + 0.475596i \(0.157768\pi\)
−0.879664 + 0.475596i \(0.842232\pi\)
\(978\) 0 0
\(979\) − 8.57364i − 0.274015i
\(980\) 0 0
\(981\) 0 0
\(982\) −24.9818 −0.797201
\(983\) −38.1303 −1.21617 −0.608084 0.793873i \(-0.708062\pi\)
−0.608084 + 0.793873i \(0.708062\pi\)
\(984\) 0 0
\(985\) 2.07356i 0.0660693i
\(986\) 7.11968 0.226737
\(987\) 0 0
\(988\) −66.3102 −2.10961
\(989\) − 36.0433i − 1.14611i
\(990\) 0 0
\(991\) 13.7304 0.436159 0.218080 0.975931i \(-0.430021\pi\)
0.218080 + 0.975931i \(0.430021\pi\)
\(992\) −7.52091 −0.238789
\(993\) 0 0
\(994\) 0 0
\(995\) 1.44061i 0.0456704i
\(996\) 0 0
\(997\) 57.5721i 1.82333i 0.410936 + 0.911664i \(0.365202\pi\)
−0.410936 + 0.911664i \(0.634798\pi\)
\(998\) − 3.58094i − 0.113353i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.b.d.881.7 yes 16
3.2 odd 2 2205.2.b.c.881.10 yes 16
7.6 odd 2 2205.2.b.c.881.7 16
21.20 even 2 inner 2205.2.b.d.881.10 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2205.2.b.c.881.7 16 7.6 odd 2
2205.2.b.c.881.10 yes 16 3.2 odd 2
2205.2.b.d.881.7 yes 16 1.1 even 1 trivial
2205.2.b.d.881.10 yes 16 21.20 even 2 inner