Properties

Label 2205.2.b.d.881.6
Level $2205$
Weight $2$
Character 2205.881
Analytic conductor $17.607$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(881,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 790 x^{12} - 2192 x^{11} + 5036 x^{10} - 9472 x^{9} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.6
Root \(0.500000 + 1.71572i\) of defining polynomial
Character \(\chi\) \(=\) 2205.881
Dual form 2205.2.b.d.881.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.15464i q^{2} +0.666795 q^{4} +1.00000 q^{5} -3.07920i q^{8} -1.15464i q^{10} -1.60302i q^{11} +0.357205i q^{13} -2.22179 q^{16} -1.71805 q^{17} -4.09896i q^{19} +0.666795 q^{20} -1.85092 q^{22} -2.70889i q^{23} +1.00000 q^{25} +0.412444 q^{26} -7.84601i q^{29} +6.44364i q^{31} -3.59302i q^{32} +1.98374i q^{34} -7.74723 q^{37} -4.73284 q^{38} -3.07920i q^{40} +4.07114 q^{41} +3.84370 q^{43} -1.06889i q^{44} -3.12781 q^{46} -5.12477 q^{47} -1.15464i q^{50} +0.238182i q^{52} -4.10804i q^{53} -1.60302i q^{55} -9.05935 q^{58} +7.51051 q^{59} -13.3611i q^{61} +7.44012 q^{62} -8.59225 q^{64} +0.357205i q^{65} +11.5119 q^{67} -1.14559 q^{68} -3.19867i q^{71} +16.6521i q^{73} +8.94530i q^{74} -2.73317i q^{76} -9.48008 q^{79} -2.22179 q^{80} -4.70072i q^{82} -0.627576 q^{83} -1.71805 q^{85} -4.43811i q^{86} -4.93602 q^{88} +9.40198 q^{89} -1.80628i q^{92} +5.91729i q^{94} -4.09896i q^{95} +5.93276i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 16 q^{5} - 16 q^{20} - 16 q^{22} + 16 q^{25} + 32 q^{26} - 16 q^{38} - 32 q^{41} + 32 q^{43} - 16 q^{46} + 32 q^{47} + 48 q^{58} - 32 q^{59} - 32 q^{62} + 16 q^{64} - 16 q^{68} + 32 q^{79}+ \cdots + 64 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.15464i − 0.816457i −0.912880 0.408229i \(-0.866147\pi\)
0.912880 0.408229i \(-0.133853\pi\)
\(3\) 0 0
\(4\) 0.666795 0.333398
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) − 3.07920i − 1.08866i
\(9\) 0 0
\(10\) − 1.15464i − 0.365131i
\(11\) − 1.60302i − 0.483328i −0.970360 0.241664i \(-0.922307\pi\)
0.970360 0.241664i \(-0.0776932\pi\)
\(12\) 0 0
\(13\) 0.357205i 0.0990707i 0.998772 + 0.0495354i \(0.0157740\pi\)
−0.998772 + 0.0495354i \(0.984226\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.22179 −0.555448
\(17\) −1.71805 −0.416688 −0.208344 0.978056i \(-0.566807\pi\)
−0.208344 + 0.978056i \(0.566807\pi\)
\(18\) 0 0
\(19\) − 4.09896i − 0.940365i −0.882569 0.470183i \(-0.844188\pi\)
0.882569 0.470183i \(-0.155812\pi\)
\(20\) 0.666795 0.149100
\(21\) 0 0
\(22\) −1.85092 −0.394617
\(23\) − 2.70889i − 0.564844i −0.959290 0.282422i \(-0.908862\pi\)
0.959290 0.282422i \(-0.0911378\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.412444 0.0808870
\(27\) 0 0
\(28\) 0 0
\(29\) − 7.84601i − 1.45697i −0.685063 0.728484i \(-0.740225\pi\)
0.685063 0.728484i \(-0.259775\pi\)
\(30\) 0 0
\(31\) 6.44364i 1.15731i 0.815572 + 0.578656i \(0.196423\pi\)
−0.815572 + 0.578656i \(0.803577\pi\)
\(32\) − 3.59302i − 0.635162i
\(33\) 0 0
\(34\) 1.98374i 0.340208i
\(35\) 0 0
\(36\) 0 0
\(37\) −7.74723 −1.27364 −0.636818 0.771014i \(-0.719750\pi\)
−0.636818 + 0.771014i \(0.719750\pi\)
\(38\) −4.73284 −0.767768
\(39\) 0 0
\(40\) − 3.07920i − 0.486864i
\(41\) 4.07114 0.635805 0.317902 0.948123i \(-0.397022\pi\)
0.317902 + 0.948123i \(0.397022\pi\)
\(42\) 0 0
\(43\) 3.84370 0.586159 0.293080 0.956088i \(-0.405320\pi\)
0.293080 + 0.956088i \(0.405320\pi\)
\(44\) − 1.06889i − 0.161141i
\(45\) 0 0
\(46\) −3.12781 −0.461171
\(47\) −5.12477 −0.747524 −0.373762 0.927525i \(-0.621932\pi\)
−0.373762 + 0.927525i \(0.621932\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) − 1.15464i − 0.163291i
\(51\) 0 0
\(52\) 0.238182i 0.0330299i
\(53\) − 4.10804i − 0.564283i −0.959373 0.282141i \(-0.908955\pi\)
0.959373 0.282141i \(-0.0910447\pi\)
\(54\) 0 0
\(55\) − 1.60302i − 0.216151i
\(56\) 0 0
\(57\) 0 0
\(58\) −9.05935 −1.18955
\(59\) 7.51051 0.977785 0.488892 0.872344i \(-0.337401\pi\)
0.488892 + 0.872344i \(0.337401\pi\)
\(60\) 0 0
\(61\) − 13.3611i − 1.71071i −0.518040 0.855356i \(-0.673338\pi\)
0.518040 0.855356i \(-0.326662\pi\)
\(62\) 7.44012 0.944896
\(63\) 0 0
\(64\) −8.59225 −1.07403
\(65\) 0.357205i 0.0443058i
\(66\) 0 0
\(67\) 11.5119 1.40640 0.703202 0.710990i \(-0.251753\pi\)
0.703202 + 0.710990i \(0.251753\pi\)
\(68\) −1.14559 −0.138923
\(69\) 0 0
\(70\) 0 0
\(71\) − 3.19867i − 0.379613i −0.981822 0.189806i \(-0.939214\pi\)
0.981822 0.189806i \(-0.0607860\pi\)
\(72\) 0 0
\(73\) 16.6521i 1.94899i 0.224418 + 0.974493i \(0.427952\pi\)
−0.224418 + 0.974493i \(0.572048\pi\)
\(74\) 8.94530i 1.03987i
\(75\) 0 0
\(76\) − 2.73317i − 0.313516i
\(77\) 0 0
\(78\) 0 0
\(79\) −9.48008 −1.06659 −0.533296 0.845929i \(-0.679047\pi\)
−0.533296 + 0.845929i \(0.679047\pi\)
\(80\) −2.22179 −0.248404
\(81\) 0 0
\(82\) − 4.70072i − 0.519107i
\(83\) −0.627576 −0.0688854 −0.0344427 0.999407i \(-0.510966\pi\)
−0.0344427 + 0.999407i \(0.510966\pi\)
\(84\) 0 0
\(85\) −1.71805 −0.186349
\(86\) − 4.43811i − 0.478574i
\(87\) 0 0
\(88\) −4.93602 −0.526181
\(89\) 9.40198 0.996607 0.498304 0.867003i \(-0.333956\pi\)
0.498304 + 0.867003i \(0.333956\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 1.80628i − 0.188317i
\(93\) 0 0
\(94\) 5.91729i 0.610322i
\(95\) − 4.09896i − 0.420544i
\(96\) 0 0
\(97\) 5.93276i 0.602381i 0.953564 + 0.301190i \(0.0973840\pi\)
−0.953564 + 0.301190i \(0.902616\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.666795 0.0666795
\(101\) −4.36228 −0.434063 −0.217032 0.976165i \(-0.569637\pi\)
−0.217032 + 0.976165i \(0.569637\pi\)
\(102\) 0 0
\(103\) − 0.506737i − 0.0499303i −0.999688 0.0249651i \(-0.992053\pi\)
0.999688 0.0249651i \(-0.00794748\pi\)
\(104\) 1.09990 0.107855
\(105\) 0 0
\(106\) −4.74333 −0.460713
\(107\) − 19.5304i − 1.88808i −0.329836 0.944038i \(-0.606993\pi\)
0.329836 0.944038i \(-0.393007\pi\)
\(108\) 0 0
\(109\) 9.16489 0.877837 0.438918 0.898527i \(-0.355362\pi\)
0.438918 + 0.898527i \(0.355362\pi\)
\(110\) −1.85092 −0.176478
\(111\) 0 0
\(112\) 0 0
\(113\) − 4.81733i − 0.453176i −0.973991 0.226588i \(-0.927243\pi\)
0.973991 0.226588i \(-0.0727571\pi\)
\(114\) 0 0
\(115\) − 2.70889i − 0.252606i
\(116\) − 5.23168i − 0.485749i
\(117\) 0 0
\(118\) − 8.67197i − 0.798319i
\(119\) 0 0
\(120\) 0 0
\(121\) 8.43033 0.766394
\(122\) −15.4273 −1.39672
\(123\) 0 0
\(124\) 4.29659i 0.385845i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −13.2009 −1.17139 −0.585697 0.810530i \(-0.699179\pi\)
−0.585697 + 0.810530i \(0.699179\pi\)
\(128\) 2.73496i 0.241738i
\(129\) 0 0
\(130\) 0.412444 0.0361738
\(131\) 18.8531 1.64721 0.823603 0.567166i \(-0.191960\pi\)
0.823603 + 0.567166i \(0.191960\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 13.2922i − 1.14827i
\(135\) 0 0
\(136\) 5.29022i 0.453633i
\(137\) 4.35312i 0.371912i 0.982558 + 0.185956i \(0.0595382\pi\)
−0.982558 + 0.185956i \(0.940462\pi\)
\(138\) 0 0
\(139\) 1.62070i 0.137466i 0.997635 + 0.0687330i \(0.0218956\pi\)
−0.997635 + 0.0687330i \(0.978104\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.69333 −0.309938
\(143\) 0.572606 0.0478837
\(144\) 0 0
\(145\) − 7.84601i − 0.651576i
\(146\) 19.2273 1.59126
\(147\) 0 0
\(148\) −5.16582 −0.424627
\(149\) − 9.32158i − 0.763653i −0.924234 0.381827i \(-0.875295\pi\)
0.924234 0.381827i \(-0.124705\pi\)
\(150\) 0 0
\(151\) −11.3489 −0.923560 −0.461780 0.886995i \(-0.652789\pi\)
−0.461780 + 0.886995i \(0.652789\pi\)
\(152\) −12.6215 −1.02374
\(153\) 0 0
\(154\) 0 0
\(155\) 6.44364i 0.517566i
\(156\) 0 0
\(157\) − 3.68158i − 0.293822i −0.989150 0.146911i \(-0.953067\pi\)
0.989150 0.146911i \(-0.0469330\pi\)
\(158\) 10.9461i 0.870827i
\(159\) 0 0
\(160\) − 3.59302i − 0.284053i
\(161\) 0 0
\(162\) 0 0
\(163\) −10.8165 −0.847212 −0.423606 0.905846i \(-0.639236\pi\)
−0.423606 + 0.905846i \(0.639236\pi\)
\(164\) 2.71462 0.211976
\(165\) 0 0
\(166\) 0.724628i 0.0562420i
\(167\) −20.5609 −1.59105 −0.795523 0.605923i \(-0.792804\pi\)
−0.795523 + 0.605923i \(0.792804\pi\)
\(168\) 0 0
\(169\) 12.8724 0.990185
\(170\) 1.98374i 0.152146i
\(171\) 0 0
\(172\) 2.56296 0.195424
\(173\) 14.6900 1.11686 0.558430 0.829552i \(-0.311404\pi\)
0.558430 + 0.829552i \(0.311404\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.56158i 0.268464i
\(177\) 0 0
\(178\) − 10.8559i − 0.813687i
\(179\) 11.9475i 0.893000i 0.894784 + 0.446500i \(0.147330\pi\)
−0.894784 + 0.446500i \(0.852670\pi\)
\(180\) 0 0
\(181\) − 17.3559i − 1.29005i −0.764161 0.645026i \(-0.776846\pi\)
0.764161 0.645026i \(-0.223154\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.34123 −0.614924
\(185\) −7.74723 −0.569588
\(186\) 0 0
\(187\) 2.75407i 0.201397i
\(188\) −3.41717 −0.249223
\(189\) 0 0
\(190\) −4.73284 −0.343356
\(191\) 2.00877i 0.145350i 0.997356 + 0.0726748i \(0.0231535\pi\)
−0.997356 + 0.0726748i \(0.976846\pi\)
\(192\) 0 0
\(193\) 10.2964 0.741148 0.370574 0.928803i \(-0.379161\pi\)
0.370574 + 0.928803i \(0.379161\pi\)
\(194\) 6.85023 0.491818
\(195\) 0 0
\(196\) 0 0
\(197\) 21.9056i 1.56071i 0.625339 + 0.780353i \(0.284961\pi\)
−0.625339 + 0.780353i \(0.715039\pi\)
\(198\) 0 0
\(199\) 18.7030i 1.32582i 0.748697 + 0.662912i \(0.230680\pi\)
−0.748697 + 0.662912i \(0.769320\pi\)
\(200\) − 3.07920i − 0.217732i
\(201\) 0 0
\(202\) 5.03689i 0.354394i
\(203\) 0 0
\(204\) 0 0
\(205\) 4.07114 0.284341
\(206\) −0.585101 −0.0407660
\(207\) 0 0
\(208\) − 0.793635i − 0.0550287i
\(209\) −6.57071 −0.454505
\(210\) 0 0
\(211\) 5.32850 0.366829 0.183415 0.983036i \(-0.441285\pi\)
0.183415 + 0.983036i \(0.441285\pi\)
\(212\) − 2.73922i − 0.188130i
\(213\) 0 0
\(214\) −22.5507 −1.54153
\(215\) 3.84370 0.262138
\(216\) 0 0
\(217\) 0 0
\(218\) − 10.5822i − 0.716716i
\(219\) 0 0
\(220\) − 1.06889i − 0.0720642i
\(221\) − 0.613695i − 0.0412816i
\(222\) 0 0
\(223\) 6.84113i 0.458116i 0.973413 + 0.229058i \(0.0735646\pi\)
−0.973413 + 0.229058i \(0.926435\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.56231 −0.369999
\(227\) −26.7957 −1.77850 −0.889248 0.457426i \(-0.848772\pi\)
−0.889248 + 0.457426i \(0.848772\pi\)
\(228\) 0 0
\(229\) 23.8141i 1.57368i 0.617158 + 0.786839i \(0.288284\pi\)
−0.617158 + 0.786839i \(0.711716\pi\)
\(230\) −3.12781 −0.206242
\(231\) 0 0
\(232\) −24.1594 −1.58615
\(233\) 4.57554i 0.299753i 0.988705 + 0.149877i \(0.0478877\pi\)
−0.988705 + 0.149877i \(0.952112\pi\)
\(234\) 0 0
\(235\) −5.12477 −0.334303
\(236\) 5.00797 0.325991
\(237\) 0 0
\(238\) 0 0
\(239\) 12.5361i 0.810890i 0.914119 + 0.405445i \(0.132883\pi\)
−0.914119 + 0.405445i \(0.867117\pi\)
\(240\) 0 0
\(241\) 2.09928i 0.135227i 0.997712 + 0.0676133i \(0.0215384\pi\)
−0.997712 + 0.0676133i \(0.978462\pi\)
\(242\) − 9.73404i − 0.625728i
\(243\) 0 0
\(244\) − 8.90912i − 0.570348i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.46417 0.0931627
\(248\) 19.8413 1.25992
\(249\) 0 0
\(250\) − 1.15464i − 0.0730262i
\(251\) −20.8036 −1.31311 −0.656555 0.754278i \(-0.727987\pi\)
−0.656555 + 0.754278i \(0.727987\pi\)
\(252\) 0 0
\(253\) −4.34241 −0.273005
\(254\) 15.2424i 0.956393i
\(255\) 0 0
\(256\) −14.0266 −0.876662
\(257\) −17.7924 −1.10986 −0.554931 0.831896i \(-0.687255\pi\)
−0.554931 + 0.831896i \(0.687255\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.238182i 0.0147714i
\(261\) 0 0
\(262\) − 21.7687i − 1.34487i
\(263\) 14.5539i 0.897431i 0.893675 + 0.448715i \(0.148118\pi\)
−0.893675 + 0.448715i \(0.851882\pi\)
\(264\) 0 0
\(265\) − 4.10804i − 0.252355i
\(266\) 0 0
\(267\) 0 0
\(268\) 7.67609 0.468892
\(269\) 21.9662 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(270\) 0 0
\(271\) − 31.3407i − 1.90381i −0.306390 0.951906i \(-0.599121\pi\)
0.306390 0.951906i \(-0.400879\pi\)
\(272\) 3.81715 0.231449
\(273\) 0 0
\(274\) 5.02631 0.303650
\(275\) − 1.60302i − 0.0966657i
\(276\) 0 0
\(277\) 30.9680 1.86069 0.930344 0.366688i \(-0.119508\pi\)
0.930344 + 0.366688i \(0.119508\pi\)
\(278\) 1.87133 0.112235
\(279\) 0 0
\(280\) 0 0
\(281\) 14.4971i 0.864822i 0.901677 + 0.432411i \(0.142337\pi\)
−0.901677 + 0.432411i \(0.857663\pi\)
\(282\) 0 0
\(283\) − 9.96129i − 0.592137i −0.955167 0.296069i \(-0.904324\pi\)
0.955167 0.296069i \(-0.0956757\pi\)
\(284\) − 2.13286i − 0.126562i
\(285\) 0 0
\(286\) − 0.661156i − 0.0390950i
\(287\) 0 0
\(288\) 0 0
\(289\) −14.0483 −0.826371
\(290\) −9.05935 −0.531984
\(291\) 0 0
\(292\) 11.1036i 0.649787i
\(293\) −19.0315 −1.11183 −0.555917 0.831238i \(-0.687633\pi\)
−0.555917 + 0.831238i \(0.687633\pi\)
\(294\) 0 0
\(295\) 7.51051 0.437279
\(296\) 23.8553i 1.38656i
\(297\) 0 0
\(298\) −10.7631 −0.623490
\(299\) 0.967629 0.0559594
\(300\) 0 0
\(301\) 0 0
\(302\) 13.1039i 0.754047i
\(303\) 0 0
\(304\) 9.10704i 0.522324i
\(305\) − 13.3611i − 0.765054i
\(306\) 0 0
\(307\) 15.8498i 0.904596i 0.891867 + 0.452298i \(0.149396\pi\)
−0.891867 + 0.452298i \(0.850604\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 7.44012 0.422570
\(311\) 23.7234 1.34523 0.672614 0.739994i \(-0.265171\pi\)
0.672614 + 0.739994i \(0.265171\pi\)
\(312\) 0 0
\(313\) 17.5892i 0.994198i 0.867694 + 0.497099i \(0.165601\pi\)
−0.867694 + 0.497099i \(0.834399\pi\)
\(314\) −4.25091 −0.239893
\(315\) 0 0
\(316\) −6.32127 −0.355599
\(317\) 2.74428i 0.154134i 0.997026 + 0.0770669i \(0.0245555\pi\)
−0.997026 + 0.0770669i \(0.975444\pi\)
\(318\) 0 0
\(319\) −12.5773 −0.704194
\(320\) −8.59225 −0.480321
\(321\) 0 0
\(322\) 0 0
\(323\) 7.04221i 0.391839i
\(324\) 0 0
\(325\) 0.357205i 0.0198141i
\(326\) 12.4892i 0.691713i
\(327\) 0 0
\(328\) − 12.5359i − 0.692177i
\(329\) 0 0
\(330\) 0 0
\(331\) 34.1835 1.87889 0.939447 0.342693i \(-0.111339\pi\)
0.939447 + 0.342693i \(0.111339\pi\)
\(332\) −0.418465 −0.0229662
\(333\) 0 0
\(334\) 23.7405i 1.29902i
\(335\) 11.5119 0.628963
\(336\) 0 0
\(337\) −4.72928 −0.257620 −0.128810 0.991669i \(-0.541116\pi\)
−0.128810 + 0.991669i \(0.541116\pi\)
\(338\) − 14.8631i − 0.808444i
\(339\) 0 0
\(340\) −1.14559 −0.0621282
\(341\) 10.3293 0.559362
\(342\) 0 0
\(343\) 0 0
\(344\) − 11.8355i − 0.638129i
\(345\) 0 0
\(346\) − 16.9617i − 0.911868i
\(347\) − 23.5145i − 1.26232i −0.775651 0.631162i \(-0.782578\pi\)
0.775651 0.631162i \(-0.217422\pi\)
\(348\) 0 0
\(349\) − 3.64800i − 0.195273i −0.995222 0.0976364i \(-0.968872\pi\)
0.995222 0.0976364i \(-0.0311282\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.75968 −0.306992
\(353\) 2.09123 0.111305 0.0556523 0.998450i \(-0.482276\pi\)
0.0556523 + 0.998450i \(0.482276\pi\)
\(354\) 0 0
\(355\) − 3.19867i − 0.169768i
\(356\) 6.26919 0.332267
\(357\) 0 0
\(358\) 13.7952 0.729097
\(359\) − 11.0492i − 0.583155i −0.956547 0.291578i \(-0.905820\pi\)
0.956547 0.291578i \(-0.0941801\pi\)
\(360\) 0 0
\(361\) 2.19855 0.115713
\(362\) −20.0399 −1.05327
\(363\) 0 0
\(364\) 0 0
\(365\) 16.6521i 0.871613i
\(366\) 0 0
\(367\) − 30.7668i − 1.60601i −0.595969 0.803007i \(-0.703232\pi\)
0.595969 0.803007i \(-0.296768\pi\)
\(368\) 6.01860i 0.313741i
\(369\) 0 0
\(370\) 8.94530i 0.465044i
\(371\) 0 0
\(372\) 0 0
\(373\) 18.0140 0.932730 0.466365 0.884592i \(-0.345563\pi\)
0.466365 + 0.884592i \(0.345563\pi\)
\(374\) 3.17997 0.164432
\(375\) 0 0
\(376\) 15.7802i 0.813801i
\(377\) 2.80263 0.144343
\(378\) 0 0
\(379\) 30.5269 1.56806 0.784031 0.620721i \(-0.213160\pi\)
0.784031 + 0.620721i \(0.213160\pi\)
\(380\) − 2.73317i − 0.140208i
\(381\) 0 0
\(382\) 2.31942 0.118672
\(383\) 19.0308 0.972430 0.486215 0.873839i \(-0.338377\pi\)
0.486215 + 0.873839i \(0.338377\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 11.8886i − 0.605116i
\(387\) 0 0
\(388\) 3.95594i 0.200832i
\(389\) 37.0522i 1.87862i 0.343071 + 0.939310i \(0.388533\pi\)
−0.343071 + 0.939310i \(0.611467\pi\)
\(390\) 0 0
\(391\) 4.65402i 0.235364i
\(392\) 0 0
\(393\) 0 0
\(394\) 25.2931 1.27425
\(395\) −9.48008 −0.476995
\(396\) 0 0
\(397\) − 12.8335i − 0.644094i −0.946724 0.322047i \(-0.895629\pi\)
0.946724 0.322047i \(-0.104371\pi\)
\(398\) 21.5954 1.08248
\(399\) 0 0
\(400\) −2.22179 −0.111090
\(401\) 8.75444i 0.437176i 0.975817 + 0.218588i \(0.0701450\pi\)
−0.975817 + 0.218588i \(0.929855\pi\)
\(402\) 0 0
\(403\) −2.30170 −0.114656
\(404\) −2.90875 −0.144716
\(405\) 0 0
\(406\) 0 0
\(407\) 12.4190i 0.615585i
\(408\) 0 0
\(409\) 7.19948i 0.355991i 0.984031 + 0.177996i \(0.0569613\pi\)
−0.984031 + 0.177996i \(0.943039\pi\)
\(410\) − 4.70072i − 0.232152i
\(411\) 0 0
\(412\) − 0.337890i − 0.0166466i
\(413\) 0 0
\(414\) 0 0
\(415\) −0.627576 −0.0308065
\(416\) 1.28344 0.0629260
\(417\) 0 0
\(418\) 7.58683i 0.371084i
\(419\) −15.6058 −0.762395 −0.381198 0.924494i \(-0.624488\pi\)
−0.381198 + 0.924494i \(0.624488\pi\)
\(420\) 0 0
\(421\) 23.3453 1.13778 0.568891 0.822413i \(-0.307372\pi\)
0.568891 + 0.822413i \(0.307372\pi\)
\(422\) − 6.15253i − 0.299500i
\(423\) 0 0
\(424\) −12.6495 −0.614313
\(425\) −1.71805 −0.0833377
\(426\) 0 0
\(427\) 0 0
\(428\) − 13.0228i − 0.629480i
\(429\) 0 0
\(430\) − 4.43811i − 0.214025i
\(431\) − 14.1788i − 0.682967i −0.939888 0.341484i \(-0.889071\pi\)
0.939888 0.341484i \(-0.110929\pi\)
\(432\) 0 0
\(433\) 35.2665i 1.69480i 0.530957 + 0.847399i \(0.321833\pi\)
−0.530957 + 0.847399i \(0.678167\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.11110 0.292669
\(437\) −11.1036 −0.531159
\(438\) 0 0
\(439\) 14.9937i 0.715611i 0.933796 + 0.357806i \(0.116475\pi\)
−0.933796 + 0.357806i \(0.883525\pi\)
\(440\) −4.93602 −0.235315
\(441\) 0 0
\(442\) −0.708600 −0.0337047
\(443\) 32.4617i 1.54230i 0.636652 + 0.771151i \(0.280319\pi\)
−0.636652 + 0.771151i \(0.719681\pi\)
\(444\) 0 0
\(445\) 9.40198 0.445696
\(446\) 7.89908 0.374032
\(447\) 0 0
\(448\) 0 0
\(449\) − 12.1678i − 0.574234i −0.957896 0.287117i \(-0.907303\pi\)
0.957896 0.287117i \(-0.0926968\pi\)
\(450\) 0 0
\(451\) − 6.52611i − 0.307302i
\(452\) − 3.21217i − 0.151088i
\(453\) 0 0
\(454\) 30.9396i 1.45207i
\(455\) 0 0
\(456\) 0 0
\(457\) 29.7369 1.39103 0.695517 0.718510i \(-0.255175\pi\)
0.695517 + 0.718510i \(0.255175\pi\)
\(458\) 27.4968 1.28484
\(459\) 0 0
\(460\) − 1.80628i − 0.0842181i
\(461\) 17.5104 0.815539 0.407770 0.913085i \(-0.366307\pi\)
0.407770 + 0.913085i \(0.366307\pi\)
\(462\) 0 0
\(463\) 16.3138 0.758168 0.379084 0.925362i \(-0.376239\pi\)
0.379084 + 0.925362i \(0.376239\pi\)
\(464\) 17.4322i 0.809270i
\(465\) 0 0
\(466\) 5.28312 0.244736
\(467\) −35.0551 −1.62216 −0.811079 0.584937i \(-0.801119\pi\)
−0.811079 + 0.584937i \(0.801119\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 5.91729i 0.272944i
\(471\) 0 0
\(472\) − 23.1264i − 1.06448i
\(473\) − 6.16153i − 0.283307i
\(474\) 0 0
\(475\) − 4.09896i − 0.188073i
\(476\) 0 0
\(477\) 0 0
\(478\) 14.4747 0.662057
\(479\) 28.4078 1.29798 0.648992 0.760795i \(-0.275191\pi\)
0.648992 + 0.760795i \(0.275191\pi\)
\(480\) 0 0
\(481\) − 2.76734i − 0.126180i
\(482\) 2.42393 0.110407
\(483\) 0 0
\(484\) 5.62130 0.255514
\(485\) 5.93276i 0.269393i
\(486\) 0 0
\(487\) 17.6184 0.798368 0.399184 0.916871i \(-0.369293\pi\)
0.399184 + 0.916871i \(0.369293\pi\)
\(488\) −41.1415 −1.86239
\(489\) 0 0
\(490\) 0 0
\(491\) 2.81103i 0.126860i 0.997986 + 0.0634300i \(0.0202040\pi\)
−0.997986 + 0.0634300i \(0.979796\pi\)
\(492\) 0 0
\(493\) 13.4798i 0.607101i
\(494\) − 1.69059i − 0.0760633i
\(495\) 0 0
\(496\) − 14.3164i − 0.642827i
\(497\) 0 0
\(498\) 0 0
\(499\) 5.40475 0.241950 0.120975 0.992656i \(-0.461398\pi\)
0.120975 + 0.992656i \(0.461398\pi\)
\(500\) 0.666795 0.0298200
\(501\) 0 0
\(502\) 24.0207i 1.07210i
\(503\) 6.96616 0.310606 0.155303 0.987867i \(-0.450365\pi\)
0.155303 + 0.987867i \(0.450365\pi\)
\(504\) 0 0
\(505\) −4.36228 −0.194119
\(506\) 5.01394i 0.222897i
\(507\) 0 0
\(508\) −8.80232 −0.390540
\(509\) −4.29636 −0.190433 −0.0952163 0.995457i \(-0.530354\pi\)
−0.0952163 + 0.995457i \(0.530354\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21.6656i 0.957495i
\(513\) 0 0
\(514\) 20.5439i 0.906155i
\(515\) − 0.506737i − 0.0223295i
\(516\) 0 0
\(517\) 8.21510i 0.361300i
\(518\) 0 0
\(519\) 0 0
\(520\) 1.09990 0.0482340
\(521\) −20.1993 −0.884946 −0.442473 0.896782i \(-0.645899\pi\)
−0.442473 + 0.896782i \(0.645899\pi\)
\(522\) 0 0
\(523\) − 3.94123i − 0.172338i −0.996281 0.0861690i \(-0.972537\pi\)
0.996281 0.0861690i \(-0.0274625\pi\)
\(524\) 12.5712 0.549175
\(525\) 0 0
\(526\) 16.8046 0.732714
\(527\) − 11.0705i − 0.482238i
\(528\) 0 0
\(529\) 15.6619 0.680952
\(530\) −4.74333 −0.206037
\(531\) 0 0
\(532\) 0 0
\(533\) 1.45423i 0.0629896i
\(534\) 0 0
\(535\) − 19.5304i − 0.844373i
\(536\) − 35.4475i − 1.53110i
\(537\) 0 0
\(538\) − 25.3631i − 1.09348i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.395732 −0.0170138 −0.00850692 0.999964i \(-0.502708\pi\)
−0.00850692 + 0.999964i \(0.502708\pi\)
\(542\) −36.1874 −1.55438
\(543\) 0 0
\(544\) 6.17299i 0.264665i
\(545\) 9.16489 0.392581
\(546\) 0 0
\(547\) 22.1746 0.948117 0.474058 0.880493i \(-0.342789\pi\)
0.474058 + 0.880493i \(0.342789\pi\)
\(548\) 2.90264i 0.123995i
\(549\) 0 0
\(550\) −1.85092 −0.0789234
\(551\) −32.1605 −1.37008
\(552\) 0 0
\(553\) 0 0
\(554\) − 35.7571i − 1.51917i
\(555\) 0 0
\(556\) 1.08067i 0.0458308i
\(557\) − 11.2280i − 0.475744i −0.971297 0.237872i \(-0.923550\pi\)
0.971297 0.237872i \(-0.0764499\pi\)
\(558\) 0 0
\(559\) 1.37299i 0.0580712i
\(560\) 0 0
\(561\) 0 0
\(562\) 16.7390 0.706090
\(563\) 34.7365 1.46397 0.731984 0.681322i \(-0.238595\pi\)
0.731984 + 0.681322i \(0.238595\pi\)
\(564\) 0 0
\(565\) − 4.81733i − 0.202667i
\(566\) −11.5018 −0.483455
\(567\) 0 0
\(568\) −9.84936 −0.413270
\(569\) 39.8074i 1.66881i 0.551149 + 0.834407i \(0.314190\pi\)
−0.551149 + 0.834407i \(0.685810\pi\)
\(570\) 0 0
\(571\) −15.4622 −0.647074 −0.323537 0.946216i \(-0.604872\pi\)
−0.323537 + 0.946216i \(0.604872\pi\)
\(572\) 0.381811 0.0159643
\(573\) 0 0
\(574\) 0 0
\(575\) − 2.70889i − 0.112969i
\(576\) 0 0
\(577\) − 7.30058i − 0.303927i −0.988386 0.151964i \(-0.951440\pi\)
0.988386 0.151964i \(-0.0485596\pi\)
\(578\) 16.2208i 0.674696i
\(579\) 0 0
\(580\) − 5.23168i − 0.217234i
\(581\) 0 0
\(582\) 0 0
\(583\) −6.58526 −0.272734
\(584\) 51.2753 2.12179
\(585\) 0 0
\(586\) 21.9747i 0.907765i
\(587\) −6.99734 −0.288811 −0.144405 0.989519i \(-0.546127\pi\)
−0.144405 + 0.989519i \(0.546127\pi\)
\(588\) 0 0
\(589\) 26.4122 1.08830
\(590\) − 8.67197i − 0.357019i
\(591\) 0 0
\(592\) 17.2127 0.707439
\(593\) 8.58674 0.352615 0.176307 0.984335i \(-0.443585\pi\)
0.176307 + 0.984335i \(0.443585\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 6.21558i − 0.254600i
\(597\) 0 0
\(598\) − 1.11727i − 0.0456885i
\(599\) − 8.94210i − 0.365364i −0.983172 0.182682i \(-0.941522\pi\)
0.983172 0.182682i \(-0.0584779\pi\)
\(600\) 0 0
\(601\) 13.7656i 0.561509i 0.959780 + 0.280754i \(0.0905846\pi\)
−0.959780 + 0.280754i \(0.909415\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −7.56739 −0.307913
\(605\) 8.43033 0.342742
\(606\) 0 0
\(607\) − 30.9117i − 1.25467i −0.778751 0.627334i \(-0.784146\pi\)
0.778751 0.627334i \(-0.215854\pi\)
\(608\) −14.7276 −0.597285
\(609\) 0 0
\(610\) −15.4273 −0.624634
\(611\) − 1.83059i − 0.0740578i
\(612\) 0 0
\(613\) 14.0313 0.566718 0.283359 0.959014i \(-0.408551\pi\)
0.283359 + 0.959014i \(0.408551\pi\)
\(614\) 18.3009 0.738564
\(615\) 0 0
\(616\) 0 0
\(617\) 15.4280i 0.621107i 0.950556 + 0.310553i \(0.100514\pi\)
−0.950556 + 0.310553i \(0.899486\pi\)
\(618\) 0 0
\(619\) − 22.4630i − 0.902863i −0.892306 0.451431i \(-0.850914\pi\)
0.892306 0.451431i \(-0.149086\pi\)
\(620\) 4.29659i 0.172555i
\(621\) 0 0
\(622\) − 27.3920i − 1.09832i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 20.3092 0.811720
\(627\) 0 0
\(628\) − 2.45486i − 0.0979595i
\(629\) 13.3101 0.530709
\(630\) 0 0
\(631\) 22.5219 0.896581 0.448291 0.893888i \(-0.352033\pi\)
0.448291 + 0.893888i \(0.352033\pi\)
\(632\) 29.1911i 1.16116i
\(633\) 0 0
\(634\) 3.16866 0.125844
\(635\) −13.2009 −0.523863
\(636\) 0 0
\(637\) 0 0
\(638\) 14.5223i 0.574944i
\(639\) 0 0
\(640\) 2.73496i 0.108109i
\(641\) 45.2571i 1.78755i 0.448516 + 0.893775i \(0.351953\pi\)
−0.448516 + 0.893775i \(0.648047\pi\)
\(642\) 0 0
\(643\) 35.7477i 1.40975i 0.709330 + 0.704877i \(0.248998\pi\)
−0.709330 + 0.704877i \(0.751002\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.13125 0.319920
\(647\) −13.9336 −0.547786 −0.273893 0.961760i \(-0.588311\pi\)
−0.273893 + 0.961760i \(0.588311\pi\)
\(648\) 0 0
\(649\) − 12.0395i − 0.472591i
\(650\) 0.412444 0.0161774
\(651\) 0 0
\(652\) −7.21238 −0.282459
\(653\) 21.8033i 0.853230i 0.904433 + 0.426615i \(0.140294\pi\)
−0.904433 + 0.426615i \(0.859706\pi\)
\(654\) 0 0
\(655\) 18.8531 0.736653
\(656\) −9.04523 −0.353157
\(657\) 0 0
\(658\) 0 0
\(659\) − 16.8309i − 0.655638i −0.944741 0.327819i \(-0.893686\pi\)
0.944741 0.327819i \(-0.106314\pi\)
\(660\) 0 0
\(661\) 21.7907i 0.847560i 0.905765 + 0.423780i \(0.139297\pi\)
−0.905765 + 0.423780i \(0.860703\pi\)
\(662\) − 39.4698i − 1.53404i
\(663\) 0 0
\(664\) 1.93243i 0.0749930i
\(665\) 0 0
\(666\) 0 0
\(667\) −21.2540 −0.822959
\(668\) −13.7099 −0.530451
\(669\) 0 0
\(670\) − 13.2922i − 0.513521i
\(671\) −21.4181 −0.826836
\(672\) 0 0
\(673\) 24.0769 0.928096 0.464048 0.885810i \(-0.346396\pi\)
0.464048 + 0.885810i \(0.346396\pi\)
\(674\) 5.46064i 0.210336i
\(675\) 0 0
\(676\) 8.58326 0.330125
\(677\) −35.9713 −1.38249 −0.691244 0.722622i \(-0.742937\pi\)
−0.691244 + 0.722622i \(0.742937\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 5.29022i 0.202871i
\(681\) 0 0
\(682\) − 11.9266i − 0.456695i
\(683\) − 32.9651i − 1.26137i −0.776037 0.630687i \(-0.782773\pi\)
0.776037 0.630687i \(-0.217227\pi\)
\(684\) 0 0
\(685\) 4.35312i 0.166324i
\(686\) 0 0
\(687\) 0 0
\(688\) −8.53991 −0.325581
\(689\) 1.46741 0.0559039
\(690\) 0 0
\(691\) 12.8724i 0.489689i 0.969562 + 0.244845i \(0.0787369\pi\)
−0.969562 + 0.244845i \(0.921263\pi\)
\(692\) 9.79522 0.372358
\(693\) 0 0
\(694\) −27.1509 −1.03063
\(695\) 1.62070i 0.0614766i
\(696\) 0 0
\(697\) −6.99442 −0.264932
\(698\) −4.21214 −0.159432
\(699\) 0 0
\(700\) 0 0
\(701\) − 26.9582i − 1.01820i −0.860708 0.509099i \(-0.829979\pi\)
0.860708 0.509099i \(-0.170021\pi\)
\(702\) 0 0
\(703\) 31.7556i 1.19768i
\(704\) 13.7735i 0.519110i
\(705\) 0 0
\(706\) − 2.41462i − 0.0908755i
\(707\) 0 0
\(708\) 0 0
\(709\) 11.4300 0.429264 0.214632 0.976695i \(-0.431145\pi\)
0.214632 + 0.976695i \(0.431145\pi\)
\(710\) −3.69333 −0.138608
\(711\) 0 0
\(712\) − 28.9506i − 1.08497i
\(713\) 17.4551 0.653700
\(714\) 0 0
\(715\) 0.572606 0.0214142
\(716\) 7.96656i 0.297724i
\(717\) 0 0
\(718\) −12.7579 −0.476121
\(719\) 48.2915 1.80097 0.900484 0.434889i \(-0.143213\pi\)
0.900484 + 0.434889i \(0.143213\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 2.53854i − 0.0944747i
\(723\) 0 0
\(724\) − 11.5728i − 0.430100i
\(725\) − 7.84601i − 0.291393i
\(726\) 0 0
\(727\) 25.8282i 0.957913i 0.877839 + 0.478957i \(0.158985\pi\)
−0.877839 + 0.478957i \(0.841015\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 19.2273 0.711635
\(731\) −6.60367 −0.244246
\(732\) 0 0
\(733\) 37.2569i 1.37612i 0.725656 + 0.688058i \(0.241537\pi\)
−0.725656 + 0.688058i \(0.758463\pi\)
\(734\) −35.5247 −1.31124
\(735\) 0 0
\(736\) −9.73311 −0.358767
\(737\) − 18.4538i − 0.679755i
\(738\) 0 0
\(739\) −15.1832 −0.558524 −0.279262 0.960215i \(-0.590090\pi\)
−0.279262 + 0.960215i \(0.590090\pi\)
\(740\) −5.16582 −0.189899
\(741\) 0 0
\(742\) 0 0
\(743\) − 14.9120i − 0.547069i −0.961862 0.273534i \(-0.911807\pi\)
0.961862 0.273534i \(-0.0881927\pi\)
\(744\) 0 0
\(745\) − 9.32158i − 0.341516i
\(746\) − 20.7998i − 0.761534i
\(747\) 0 0
\(748\) 1.83640i 0.0671454i
\(749\) 0 0
\(750\) 0 0
\(751\) −14.3840 −0.524881 −0.262440 0.964948i \(-0.584527\pi\)
−0.262440 + 0.964948i \(0.584527\pi\)
\(752\) 11.3862 0.415211
\(753\) 0 0
\(754\) − 3.23604i − 0.117850i
\(755\) −11.3489 −0.413029
\(756\) 0 0
\(757\) −3.90656 −0.141986 −0.0709931 0.997477i \(-0.522617\pi\)
−0.0709931 + 0.997477i \(0.522617\pi\)
\(758\) − 35.2477i − 1.28026i
\(759\) 0 0
\(760\) −12.6215 −0.457830
\(761\) −12.8066 −0.464240 −0.232120 0.972687i \(-0.574566\pi\)
−0.232120 + 0.972687i \(0.574566\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.33944i 0.0484592i
\(765\) 0 0
\(766\) − 21.9738i − 0.793947i
\(767\) 2.68279i 0.0968698i
\(768\) 0 0
\(769\) − 36.3639i − 1.31132i −0.755058 0.655658i \(-0.772391\pi\)
0.755058 0.655658i \(-0.227609\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.86556 0.247097
\(773\) −32.5499 −1.17074 −0.585370 0.810766i \(-0.699051\pi\)
−0.585370 + 0.810766i \(0.699051\pi\)
\(774\) 0 0
\(775\) 6.44364i 0.231462i
\(776\) 18.2682 0.655789
\(777\) 0 0
\(778\) 42.7821 1.53381
\(779\) − 16.6874i − 0.597889i
\(780\) 0 0
\(781\) −5.12754 −0.183478
\(782\) 5.37373 0.192164
\(783\) 0 0
\(784\) 0 0
\(785\) − 3.68158i − 0.131401i
\(786\) 0 0
\(787\) − 18.0485i − 0.643360i −0.946849 0.321680i \(-0.895753\pi\)
0.946849 0.321680i \(-0.104247\pi\)
\(788\) 14.6065i 0.520336i
\(789\) 0 0
\(790\) 10.9461i 0.389446i
\(791\) 0 0
\(792\) 0 0
\(793\) 4.77264 0.169482
\(794\) −14.8181 −0.525875
\(795\) 0 0
\(796\) 12.4711i 0.442027i
\(797\) 17.0005 0.602190 0.301095 0.953594i \(-0.402648\pi\)
0.301095 + 0.953594i \(0.402648\pi\)
\(798\) 0 0
\(799\) 8.80461 0.311485
\(800\) − 3.59302i − 0.127032i
\(801\) 0 0
\(802\) 10.1083 0.356935
\(803\) 26.6937 0.942000
\(804\) 0 0
\(805\) 0 0
\(806\) 2.65764i 0.0936115i
\(807\) 0 0
\(808\) 13.4323i 0.472548i
\(809\) 44.8419i 1.57656i 0.615318 + 0.788279i \(0.289028\pi\)
−0.615318 + 0.788279i \(0.710972\pi\)
\(810\) 0 0
\(811\) 12.6240i 0.443289i 0.975128 + 0.221645i \(0.0711425\pi\)
−0.975128 + 0.221645i \(0.928858\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 14.3395 0.502598
\(815\) −10.8165 −0.378885
\(816\) 0 0
\(817\) − 15.7552i − 0.551204i
\(818\) 8.31284 0.290652
\(819\) 0 0
\(820\) 2.71462 0.0947985
\(821\) − 2.19737i − 0.0766888i −0.999265 0.0383444i \(-0.987792\pi\)
0.999265 0.0383444i \(-0.0122084\pi\)
\(822\) 0 0
\(823\) −39.0579 −1.36147 −0.680736 0.732529i \(-0.738340\pi\)
−0.680736 + 0.732529i \(0.738340\pi\)
\(824\) −1.56035 −0.0543572
\(825\) 0 0
\(826\) 0 0
\(827\) 5.09620i 0.177212i 0.996067 + 0.0886061i \(0.0282412\pi\)
−0.996067 + 0.0886061i \(0.971759\pi\)
\(828\) 0 0
\(829\) − 6.08051i − 0.211185i −0.994409 0.105592i \(-0.966326\pi\)
0.994409 0.105592i \(-0.0336739\pi\)
\(830\) 0.724628i 0.0251522i
\(831\) 0 0
\(832\) − 3.06919i − 0.106405i
\(833\) 0 0
\(834\) 0 0
\(835\) −20.5609 −0.711538
\(836\) −4.38132 −0.151531
\(837\) 0 0
\(838\) 18.0192i 0.622463i
\(839\) 34.6534 1.19637 0.598183 0.801359i \(-0.295889\pi\)
0.598183 + 0.801359i \(0.295889\pi\)
\(840\) 0 0
\(841\) −32.5599 −1.12275
\(842\) − 26.9556i − 0.928951i
\(843\) 0 0
\(844\) 3.55302 0.122300
\(845\) 12.8724 0.442824
\(846\) 0 0
\(847\) 0 0
\(848\) 9.12721i 0.313430i
\(849\) 0 0
\(850\) 1.98374i 0.0680416i
\(851\) 20.9864i 0.719405i
\(852\) 0 0
\(853\) − 31.2245i − 1.06911i −0.845135 0.534554i \(-0.820480\pi\)
0.845135 0.534554i \(-0.179520\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −60.1381 −2.05548
\(857\) −51.7185 −1.76667 −0.883336 0.468740i \(-0.844708\pi\)
−0.883336 + 0.468740i \(0.844708\pi\)
\(858\) 0 0
\(859\) − 24.4200i − 0.833199i −0.909090 0.416600i \(-0.863222\pi\)
0.909090 0.416600i \(-0.136778\pi\)
\(860\) 2.56296 0.0873963
\(861\) 0 0
\(862\) −16.3714 −0.557614
\(863\) − 26.7371i − 0.910141i −0.890455 0.455071i \(-0.849614\pi\)
0.890455 0.455071i \(-0.150386\pi\)
\(864\) 0 0
\(865\) 14.6900 0.499475
\(866\) 40.7202 1.38373
\(867\) 0 0
\(868\) 0 0
\(869\) 15.1967i 0.515514i
\(870\) 0 0
\(871\) 4.11211i 0.139333i
\(872\) − 28.2205i − 0.955668i
\(873\) 0 0
\(874\) 12.8208i 0.433669i
\(875\) 0 0
\(876\) 0 0
\(877\) 32.7528 1.10598 0.552992 0.833186i \(-0.313486\pi\)
0.552992 + 0.833186i \(0.313486\pi\)
\(878\) 17.3124 0.584266
\(879\) 0 0
\(880\) 3.56158i 0.120061i
\(881\) −44.2838 −1.49196 −0.745980 0.665969i \(-0.768018\pi\)
−0.745980 + 0.665969i \(0.768018\pi\)
\(882\) 0 0
\(883\) −45.3627 −1.52658 −0.763288 0.646058i \(-0.776416\pi\)
−0.763288 + 0.646058i \(0.776416\pi\)
\(884\) − 0.409209i − 0.0137632i
\(885\) 0 0
\(886\) 37.4818 1.25922
\(887\) 19.4350 0.652563 0.326281 0.945273i \(-0.394204\pi\)
0.326281 + 0.945273i \(0.394204\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) − 10.8559i − 0.363892i
\(891\) 0 0
\(892\) 4.56163i 0.152735i
\(893\) 21.0062i 0.702946i
\(894\) 0 0
\(895\) 11.9475i 0.399362i
\(896\) 0 0
\(897\) 0 0
\(898\) −14.0495 −0.468837
\(899\) 50.5569 1.68617
\(900\) 0 0
\(901\) 7.05782i 0.235130i
\(902\) −7.53534 −0.250899
\(903\) 0 0
\(904\) −14.8335 −0.493356
\(905\) − 17.3559i − 0.576929i
\(906\) 0 0
\(907\) −41.2795 −1.37066 −0.685332 0.728230i \(-0.740343\pi\)
−0.685332 + 0.728230i \(0.740343\pi\)
\(908\) −17.8673 −0.592946
\(909\) 0 0
\(910\) 0 0
\(911\) 11.3055i 0.374567i 0.982306 + 0.187283i \(0.0599683\pi\)
−0.982306 + 0.187283i \(0.940032\pi\)
\(912\) 0 0
\(913\) 1.00602i 0.0332943i
\(914\) − 34.3356i − 1.13572i
\(915\) 0 0
\(916\) 15.8791i 0.524661i
\(917\) 0 0
\(918\) 0 0
\(919\) −38.9164 −1.28373 −0.641866 0.766817i \(-0.721839\pi\)
−0.641866 + 0.766817i \(0.721839\pi\)
\(920\) −8.34123 −0.275002
\(921\) 0 0
\(922\) − 20.2183i − 0.665853i
\(923\) 1.14258 0.0376085
\(924\) 0 0
\(925\) −7.74723 −0.254727
\(926\) − 18.8367i − 0.619012i
\(927\) 0 0
\(928\) −28.1909 −0.925411
\(929\) 14.4205 0.473120 0.236560 0.971617i \(-0.423980\pi\)
0.236560 + 0.971617i \(0.423980\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 3.05095i 0.0999370i
\(933\) 0 0
\(934\) 40.4762i 1.32442i
\(935\) 2.75407i 0.0900676i
\(936\) 0 0
\(937\) − 45.7697i − 1.49523i −0.664133 0.747615i \(-0.731199\pi\)
0.664133 0.747615i \(-0.268801\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −3.41717 −0.111456
\(941\) 11.7592 0.383340 0.191670 0.981459i \(-0.438610\pi\)
0.191670 + 0.981459i \(0.438610\pi\)
\(942\) 0 0
\(943\) − 11.0283i − 0.359130i
\(944\) −16.6868 −0.543109
\(945\) 0 0
\(946\) −7.11438 −0.231308
\(947\) 35.6980i 1.16003i 0.814606 + 0.580015i \(0.196953\pi\)
−0.814606 + 0.580015i \(0.803047\pi\)
\(948\) 0 0
\(949\) −5.94822 −0.193087
\(950\) −4.73284 −0.153554
\(951\) 0 0
\(952\) 0 0
\(953\) 3.09755i 0.100339i 0.998741 + 0.0501697i \(0.0159762\pi\)
−0.998741 + 0.0501697i \(0.984024\pi\)
\(954\) 0 0
\(955\) 2.00877i 0.0650023i
\(956\) 8.35898i 0.270349i
\(957\) 0 0
\(958\) − 32.8009i − 1.05975i
\(959\) 0 0
\(960\) 0 0
\(961\) −10.5205 −0.339371
\(962\) −3.19530 −0.103021
\(963\) 0 0
\(964\) 1.39979i 0.0450842i
\(965\) 10.2964 0.331452
\(966\) 0 0
\(967\) −30.4410 −0.978917 −0.489458 0.872027i \(-0.662806\pi\)
−0.489458 + 0.872027i \(0.662806\pi\)
\(968\) − 25.9587i − 0.834344i
\(969\) 0 0
\(970\) 6.85023 0.219948
\(971\) −30.1997 −0.969154 −0.484577 0.874749i \(-0.661026\pi\)
−0.484577 + 0.874749i \(0.661026\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) − 20.3430i − 0.651833i
\(975\) 0 0
\(976\) 29.6856i 0.950213i
\(977\) 11.4654i 0.366809i 0.983038 + 0.183405i \(0.0587119\pi\)
−0.983038 + 0.183405i \(0.941288\pi\)
\(978\) 0 0
\(979\) − 15.0715i − 0.481689i
\(980\) 0 0
\(981\) 0 0
\(982\) 3.24574 0.103576
\(983\) −31.3686 −1.00050 −0.500251 0.865881i \(-0.666759\pi\)
−0.500251 + 0.865881i \(0.666759\pi\)
\(984\) 0 0
\(985\) 21.9056i 0.697969i
\(986\) 15.5644 0.495672
\(987\) 0 0
\(988\) 0.976299 0.0310602
\(989\) − 10.4122i − 0.331088i
\(990\) 0 0
\(991\) −0.520712 −0.0165410 −0.00827048 0.999966i \(-0.502633\pi\)
−0.00827048 + 0.999966i \(0.502633\pi\)
\(992\) 23.1521 0.735081
\(993\) 0 0
\(994\) 0 0
\(995\) 18.7030i 0.592926i
\(996\) 0 0
\(997\) 29.1905i 0.924472i 0.886757 + 0.462236i \(0.152953\pi\)
−0.886757 + 0.462236i \(0.847047\pi\)
\(998\) − 6.24056i − 0.197542i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.b.d.881.6 yes 16
3.2 odd 2 2205.2.b.c.881.11 yes 16
7.6 odd 2 2205.2.b.c.881.6 16
21.20 even 2 inner 2205.2.b.d.881.11 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2205.2.b.c.881.6 16 7.6 odd 2
2205.2.b.c.881.11 yes 16 3.2 odd 2
2205.2.b.d.881.6 yes 16 1.1 even 1 trivial
2205.2.b.d.881.11 yes 16 21.20 even 2 inner