Properties

Label 2205.2.b.d.881.2
Level $2205$
Weight $2$
Character 2205.881
Analytic conductor $17.607$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(881,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 790 x^{12} - 2192 x^{11} + 5036 x^{10} - 9472 x^{9} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.2
Root \(0.500000 - 3.00459i\) of defining polynomial
Character \(\chi\) \(=\) 2205.881
Dual form 2205.2.b.d.881.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.14110i q^{2} -2.58431 q^{4} +1.00000 q^{5} +1.25106i q^{8} -2.14110i q^{10} +4.18075i q^{11} +4.24055i q^{13} -2.48998 q^{16} -3.08329 q^{17} -3.93398i q^{19} -2.58431 q^{20} +8.95140 q^{22} +3.52184i q^{23} +1.00000 q^{25} +9.07943 q^{26} +7.16190i q^{29} -4.25812i q^{31} +7.83340i q^{32} +6.60162i q^{34} +1.22460 q^{37} -8.42304 q^{38} +1.25106i q^{40} +7.62731 q^{41} +4.88515 q^{43} -10.8043i q^{44} +7.54061 q^{46} +2.24777 q^{47} -2.14110i q^{50} -10.9589i q^{52} +7.99310i q^{53} +4.18075i q^{55} +15.3343 q^{58} -6.03279 q^{59} +14.0213i q^{61} -9.11706 q^{62} +11.7921 q^{64} +4.24055i q^{65} +1.87745 q^{67} +7.96815 q^{68} +16.3448i q^{71} +11.1606i q^{73} -2.62199i q^{74} +10.1666i q^{76} +15.6282 q^{79} -2.48998 q^{80} -16.3308i q^{82} -17.0540 q^{83} -3.08329 q^{85} -10.4596i q^{86} -5.23035 q^{88} +3.04499 q^{89} -9.10151i q^{92} -4.81271i q^{94} -3.93398i q^{95} -19.3686i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 16 q^{5} - 16 q^{20} - 16 q^{22} + 16 q^{25} + 32 q^{26} - 16 q^{38} - 32 q^{41} + 32 q^{43} - 16 q^{46} + 32 q^{47} + 48 q^{58} - 32 q^{59} - 32 q^{62} + 16 q^{64} - 16 q^{68} + 32 q^{79}+ \cdots + 64 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.14110i − 1.51399i −0.653423 0.756993i \(-0.726668\pi\)
0.653423 0.756993i \(-0.273332\pi\)
\(3\) 0 0
\(4\) −2.58431 −1.29215
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 1.25106i 0.442315i
\(9\) 0 0
\(10\) − 2.14110i − 0.677075i
\(11\) 4.18075i 1.26054i 0.776375 + 0.630272i \(0.217056\pi\)
−0.776375 + 0.630272i \(0.782944\pi\)
\(12\) 0 0
\(13\) 4.24055i 1.17612i 0.808819 + 0.588058i \(0.200107\pi\)
−0.808819 + 0.588058i \(0.799893\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.48998 −0.622494
\(17\) −3.08329 −0.747807 −0.373903 0.927468i \(-0.621981\pi\)
−0.373903 + 0.927468i \(0.621981\pi\)
\(18\) 0 0
\(19\) − 3.93398i − 0.902516i −0.892393 0.451258i \(-0.850975\pi\)
0.892393 0.451258i \(-0.149025\pi\)
\(20\) −2.58431 −0.577868
\(21\) 0 0
\(22\) 8.95140 1.90844
\(23\) 3.52184i 0.734355i 0.930151 + 0.367177i \(0.119676\pi\)
−0.930151 + 0.367177i \(0.880324\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 9.07943 1.78062
\(27\) 0 0
\(28\) 0 0
\(29\) 7.16190i 1.32993i 0.746874 + 0.664966i \(0.231554\pi\)
−0.746874 + 0.664966i \(0.768446\pi\)
\(30\) 0 0
\(31\) − 4.25812i − 0.764781i −0.924001 0.382391i \(-0.875101\pi\)
0.924001 0.382391i \(-0.124899\pi\)
\(32\) 7.83340i 1.38476i
\(33\) 0 0
\(34\) 6.60162i 1.13217i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.22460 0.201323 0.100662 0.994921i \(-0.467904\pi\)
0.100662 + 0.994921i \(0.467904\pi\)
\(38\) −8.42304 −1.36640
\(39\) 0 0
\(40\) 1.25106i 0.197809i
\(41\) 7.62731 1.19119 0.595593 0.803286i \(-0.296917\pi\)
0.595593 + 0.803286i \(0.296917\pi\)
\(42\) 0 0
\(43\) 4.88515 0.744978 0.372489 0.928037i \(-0.378504\pi\)
0.372489 + 0.928037i \(0.378504\pi\)
\(44\) − 10.8043i − 1.62881i
\(45\) 0 0
\(46\) 7.54061 1.11180
\(47\) 2.24777 0.327872 0.163936 0.986471i \(-0.447581\pi\)
0.163936 + 0.986471i \(0.447581\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) − 2.14110i − 0.302797i
\(51\) 0 0
\(52\) − 10.9589i − 1.51972i
\(53\) 7.99310i 1.09794i 0.835843 + 0.548968i \(0.184979\pi\)
−0.835843 + 0.548968i \(0.815021\pi\)
\(54\) 0 0
\(55\) 4.18075i 0.563732i
\(56\) 0 0
\(57\) 0 0
\(58\) 15.3343 2.01350
\(59\) −6.03279 −0.785402 −0.392701 0.919666i \(-0.628459\pi\)
−0.392701 + 0.919666i \(0.628459\pi\)
\(60\) 0 0
\(61\) 14.0213i 1.79524i 0.440767 + 0.897622i \(0.354707\pi\)
−0.440767 + 0.897622i \(0.645293\pi\)
\(62\) −9.11706 −1.15787
\(63\) 0 0
\(64\) 11.7921 1.47402
\(65\) 4.24055i 0.525975i
\(66\) 0 0
\(67\) 1.87745 0.229367 0.114684 0.993402i \(-0.463415\pi\)
0.114684 + 0.993402i \(0.463415\pi\)
\(68\) 7.96815 0.966281
\(69\) 0 0
\(70\) 0 0
\(71\) 16.3448i 1.93977i 0.243561 + 0.969886i \(0.421684\pi\)
−0.243561 + 0.969886i \(0.578316\pi\)
\(72\) 0 0
\(73\) 11.1606i 1.30625i 0.757249 + 0.653126i \(0.226543\pi\)
−0.757249 + 0.653126i \(0.773457\pi\)
\(74\) − 2.62199i − 0.304800i
\(75\) 0 0
\(76\) 10.1666i 1.16619i
\(77\) 0 0
\(78\) 0 0
\(79\) 15.6282 1.75831 0.879156 0.476533i \(-0.158107\pi\)
0.879156 + 0.476533i \(0.158107\pi\)
\(80\) −2.48998 −0.278388
\(81\) 0 0
\(82\) − 16.3308i − 1.80344i
\(83\) −17.0540 −1.87192 −0.935962 0.352102i \(-0.885467\pi\)
−0.935962 + 0.352102i \(0.885467\pi\)
\(84\) 0 0
\(85\) −3.08329 −0.334429
\(86\) − 10.4596i − 1.12789i
\(87\) 0 0
\(88\) −5.23035 −0.557557
\(89\) 3.04499 0.322769 0.161384 0.986892i \(-0.448404\pi\)
0.161384 + 0.986892i \(0.448404\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 9.10151i − 0.948898i
\(93\) 0 0
\(94\) − 4.81271i − 0.496393i
\(95\) − 3.93398i − 0.403618i
\(96\) 0 0
\(97\) − 19.3686i − 1.96658i −0.182036 0.983292i \(-0.558269\pi\)
0.182036 0.983292i \(-0.441731\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.58431 −0.258431
\(101\) −3.06784 −0.305261 −0.152631 0.988283i \(-0.548774\pi\)
−0.152631 + 0.988283i \(0.548774\pi\)
\(102\) 0 0
\(103\) 7.31378i 0.720648i 0.932827 + 0.360324i \(0.117334\pi\)
−0.932827 + 0.360324i \(0.882666\pi\)
\(104\) −5.30516 −0.520214
\(105\) 0 0
\(106\) 17.1140 1.66226
\(107\) − 10.0286i − 0.969505i −0.874651 0.484752i \(-0.838910\pi\)
0.874651 0.484752i \(-0.161090\pi\)
\(108\) 0 0
\(109\) −0.119632 −0.0114587 −0.00572933 0.999984i \(-0.501824\pi\)
−0.00572933 + 0.999984i \(0.501824\pi\)
\(110\) 8.95140 0.853482
\(111\) 0 0
\(112\) 0 0
\(113\) − 18.5189i − 1.74211i −0.491188 0.871054i \(-0.663437\pi\)
0.491188 0.871054i \(-0.336563\pi\)
\(114\) 0 0
\(115\) 3.52184i 0.328413i
\(116\) − 18.5085i − 1.71847i
\(117\) 0 0
\(118\) 12.9168i 1.18909i
\(119\) 0 0
\(120\) 0 0
\(121\) −6.47866 −0.588969
\(122\) 30.0210 2.71797
\(123\) 0 0
\(124\) 11.0043i 0.988214i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.99148 −0.442923 −0.221461 0.975169i \(-0.571083\pi\)
−0.221461 + 0.975169i \(0.571083\pi\)
\(128\) − 9.58132i − 0.846877i
\(129\) 0 0
\(130\) 9.07943 0.796319
\(131\) 6.63297 0.579525 0.289763 0.957099i \(-0.406424\pi\)
0.289763 + 0.957099i \(0.406424\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 4.01981i − 0.347259i
\(135\) 0 0
\(136\) − 3.85736i − 0.330766i
\(137\) 19.7452i 1.68694i 0.537173 + 0.843472i \(0.319492\pi\)
−0.537173 + 0.843472i \(0.680508\pi\)
\(138\) 0 0
\(139\) − 15.8170i − 1.34158i −0.741647 0.670790i \(-0.765955\pi\)
0.741647 0.670790i \(-0.234045\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 34.9958 2.93679
\(143\) −17.7287 −1.48254
\(144\) 0 0
\(145\) 7.16190i 0.594763i
\(146\) 23.8960 1.97765
\(147\) 0 0
\(148\) −3.16474 −0.260140
\(149\) − 7.99054i − 0.654611i −0.944919 0.327305i \(-0.893859\pi\)
0.944919 0.327305i \(-0.106141\pi\)
\(150\) 0 0
\(151\) 20.0680 1.63311 0.816555 0.577268i \(-0.195881\pi\)
0.816555 + 0.577268i \(0.195881\pi\)
\(152\) 4.92163 0.399197
\(153\) 0 0
\(154\) 0 0
\(155\) − 4.25812i − 0.342020i
\(156\) 0 0
\(157\) − 7.25448i − 0.578970i −0.957182 0.289485i \(-0.906516\pi\)
0.957182 0.289485i \(-0.0934841\pi\)
\(158\) − 33.4616i − 2.66206i
\(159\) 0 0
\(160\) 7.83340i 0.619284i
\(161\) 0 0
\(162\) 0 0
\(163\) 1.04273 0.0816726 0.0408363 0.999166i \(-0.486998\pi\)
0.0408363 + 0.999166i \(0.486998\pi\)
\(164\) −19.7113 −1.53919
\(165\) 0 0
\(166\) 36.5144i 2.83407i
\(167\) 10.2720 0.794874 0.397437 0.917629i \(-0.369900\pi\)
0.397437 + 0.917629i \(0.369900\pi\)
\(168\) 0 0
\(169\) −4.98223 −0.383249
\(170\) 6.60162i 0.506321i
\(171\) 0 0
\(172\) −12.6247 −0.962626
\(173\) −9.21652 −0.700719 −0.350359 0.936615i \(-0.613941\pi\)
−0.350359 + 0.936615i \(0.613941\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 10.4100i − 0.784680i
\(177\) 0 0
\(178\) − 6.51963i − 0.488667i
\(179\) 11.0782i 0.828024i 0.910271 + 0.414012i \(0.135873\pi\)
−0.910271 + 0.414012i \(0.864127\pi\)
\(180\) 0 0
\(181\) − 7.18944i − 0.534387i −0.963643 0.267193i \(-0.913904\pi\)
0.963643 0.267193i \(-0.0860962\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.40602 −0.324816
\(185\) 1.22460 0.0900344
\(186\) 0 0
\(187\) − 12.8904i − 0.942642i
\(188\) −5.80894 −0.423660
\(189\) 0 0
\(190\) −8.42304 −0.611071
\(191\) 18.0815i 1.30833i 0.756351 + 0.654166i \(0.226980\pi\)
−0.756351 + 0.654166i \(0.773020\pi\)
\(192\) 0 0
\(193\) −10.2481 −0.737677 −0.368839 0.929493i \(-0.620245\pi\)
−0.368839 + 0.929493i \(0.620245\pi\)
\(194\) −41.4701 −2.97738
\(195\) 0 0
\(196\) 0 0
\(197\) − 8.85439i − 0.630849i −0.948951 0.315425i \(-0.897853\pi\)
0.948951 0.315425i \(-0.102147\pi\)
\(198\) 0 0
\(199\) 19.6938i 1.39605i 0.716071 + 0.698027i \(0.245939\pi\)
−0.716071 + 0.698027i \(0.754061\pi\)
\(200\) 1.25106i 0.0884630i
\(201\) 0 0
\(202\) 6.56855i 0.462161i
\(203\) 0 0
\(204\) 0 0
\(205\) 7.62731 0.532714
\(206\) 15.6595 1.09105
\(207\) 0 0
\(208\) − 10.5589i − 0.732125i
\(209\) 16.4470 1.13766
\(210\) 0 0
\(211\) −15.7769 −1.08613 −0.543064 0.839691i \(-0.682736\pi\)
−0.543064 + 0.839691i \(0.682736\pi\)
\(212\) − 20.6566i − 1.41870i
\(213\) 0 0
\(214\) −21.4723 −1.46782
\(215\) 4.88515 0.333164
\(216\) 0 0
\(217\) 0 0
\(218\) 0.256144i 0.0173483i
\(219\) 0 0
\(220\) − 10.8043i − 0.728428i
\(221\) − 13.0748i − 0.879507i
\(222\) 0 0
\(223\) − 16.5834i − 1.11050i −0.831682 0.555252i \(-0.812622\pi\)
0.831682 0.555252i \(-0.187378\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −39.6507 −2.63753
\(227\) −0.367489 −0.0243911 −0.0121956 0.999926i \(-0.503882\pi\)
−0.0121956 + 0.999926i \(0.503882\pi\)
\(228\) 0 0
\(229\) 1.99141i 0.131596i 0.997833 + 0.0657979i \(0.0209593\pi\)
−0.997833 + 0.0657979i \(0.979041\pi\)
\(230\) 7.54061 0.497213
\(231\) 0 0
\(232\) −8.95994 −0.588249
\(233\) 11.8456i 0.776029i 0.921653 + 0.388014i \(0.126839\pi\)
−0.921653 + 0.388014i \(0.873161\pi\)
\(234\) 0 0
\(235\) 2.24777 0.146629
\(236\) 15.5906 1.01486
\(237\) 0 0
\(238\) 0 0
\(239\) − 0.815591i − 0.0527562i −0.999652 0.0263781i \(-0.991603\pi\)
0.999652 0.0263781i \(-0.00839738\pi\)
\(240\) 0 0
\(241\) − 24.8363i − 1.59985i −0.600103 0.799923i \(-0.704874\pi\)
0.600103 0.799923i \(-0.295126\pi\)
\(242\) 13.8714i 0.891690i
\(243\) 0 0
\(244\) − 36.2353i − 2.31973i
\(245\) 0 0
\(246\) 0 0
\(247\) 16.6822 1.06146
\(248\) 5.32715 0.338274
\(249\) 0 0
\(250\) − 2.14110i − 0.135415i
\(251\) 22.3983 1.41377 0.706884 0.707330i \(-0.250100\pi\)
0.706884 + 0.707330i \(0.250100\pi\)
\(252\) 0 0
\(253\) −14.7239 −0.925686
\(254\) 10.6873i 0.670578i
\(255\) 0 0
\(256\) 3.06970 0.191856
\(257\) −21.6129 −1.34818 −0.674088 0.738651i \(-0.735463\pi\)
−0.674088 + 0.738651i \(0.735463\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) − 10.9589i − 0.679640i
\(261\) 0 0
\(262\) − 14.2018i − 0.877393i
\(263\) 8.94959i 0.551856i 0.961178 + 0.275928i \(0.0889851\pi\)
−0.961178 + 0.275928i \(0.911015\pi\)
\(264\) 0 0
\(265\) 7.99310i 0.491012i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.85191 −0.296378
\(269\) −4.12371 −0.251427 −0.125714 0.992067i \(-0.540122\pi\)
−0.125714 + 0.992067i \(0.540122\pi\)
\(270\) 0 0
\(271\) 12.1187i 0.736157i 0.929795 + 0.368078i \(0.119984\pi\)
−0.929795 + 0.368078i \(0.880016\pi\)
\(272\) 7.67731 0.465505
\(273\) 0 0
\(274\) 42.2764 2.55401
\(275\) 4.18075i 0.252109i
\(276\) 0 0
\(277\) −29.9437 −1.79914 −0.899572 0.436773i \(-0.856121\pi\)
−0.899572 + 0.436773i \(0.856121\pi\)
\(278\) −33.8658 −2.03113
\(279\) 0 0
\(280\) 0 0
\(281\) − 0.257513i − 0.0153619i −0.999971 0.00768097i \(-0.997555\pi\)
0.999971 0.00768097i \(-0.00244495\pi\)
\(282\) 0 0
\(283\) − 12.1600i − 0.722835i −0.932404 0.361418i \(-0.882293\pi\)
0.932404 0.361418i \(-0.117707\pi\)
\(284\) − 42.2400i − 2.50648i
\(285\) 0 0
\(286\) 37.9588i 2.24455i
\(287\) 0 0
\(288\) 0 0
\(289\) −7.49335 −0.440785
\(290\) 15.3343 0.900463
\(291\) 0 0
\(292\) − 28.8425i − 1.68788i
\(293\) 4.83106 0.282234 0.141117 0.989993i \(-0.454931\pi\)
0.141117 + 0.989993i \(0.454931\pi\)
\(294\) 0 0
\(295\) −6.03279 −0.351242
\(296\) 1.53204i 0.0890483i
\(297\) 0 0
\(298\) −17.1085 −0.991071
\(299\) −14.9345 −0.863686
\(300\) 0 0
\(301\) 0 0
\(302\) − 42.9676i − 2.47250i
\(303\) 0 0
\(304\) 9.79551i 0.561811i
\(305\) 14.0213i 0.802857i
\(306\) 0 0
\(307\) − 14.9603i − 0.853831i −0.904292 0.426915i \(-0.859600\pi\)
0.904292 0.426915i \(-0.140400\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −9.11706 −0.517814
\(311\) −5.44050 −0.308503 −0.154251 0.988032i \(-0.549297\pi\)
−0.154251 + 0.988032i \(0.549297\pi\)
\(312\) 0 0
\(313\) 28.4987i 1.61084i 0.592703 + 0.805421i \(0.298061\pi\)
−0.592703 + 0.805421i \(0.701939\pi\)
\(314\) −15.5326 −0.876553
\(315\) 0 0
\(316\) −40.3881 −2.27201
\(317\) 10.0937i 0.566917i 0.958985 + 0.283458i \(0.0914818\pi\)
−0.958985 + 0.283458i \(0.908518\pi\)
\(318\) 0 0
\(319\) −29.9421 −1.67644
\(320\) 11.7921 0.659200
\(321\) 0 0
\(322\) 0 0
\(323\) 12.1296i 0.674908i
\(324\) 0 0
\(325\) 4.24055i 0.235223i
\(326\) − 2.23258i − 0.123651i
\(327\) 0 0
\(328\) 9.54220i 0.526880i
\(329\) 0 0
\(330\) 0 0
\(331\) −2.83527 −0.155841 −0.0779204 0.996960i \(-0.524828\pi\)
−0.0779204 + 0.996960i \(0.524828\pi\)
\(332\) 44.0728 2.41881
\(333\) 0 0
\(334\) − 21.9935i − 1.20343i
\(335\) 1.87745 0.102576
\(336\) 0 0
\(337\) −15.7316 −0.856954 −0.428477 0.903553i \(-0.640950\pi\)
−0.428477 + 0.903553i \(0.640950\pi\)
\(338\) 10.6675i 0.580233i
\(339\) 0 0
\(340\) 7.96815 0.432134
\(341\) 17.8021 0.964039
\(342\) 0 0
\(343\) 0 0
\(344\) 6.11160i 0.329515i
\(345\) 0 0
\(346\) 19.7335i 1.06088i
\(347\) 10.9920i 0.590083i 0.955484 + 0.295042i \(0.0953335\pi\)
−0.955484 + 0.295042i \(0.904667\pi\)
\(348\) 0 0
\(349\) 28.4095i 1.52073i 0.649498 + 0.760363i \(0.274979\pi\)
−0.649498 + 0.760363i \(0.725021\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −32.7495 −1.74555
\(353\) −14.0852 −0.749681 −0.374840 0.927089i \(-0.622302\pi\)
−0.374840 + 0.927089i \(0.622302\pi\)
\(354\) 0 0
\(355\) 16.3448i 0.867492i
\(356\) −7.86919 −0.417066
\(357\) 0 0
\(358\) 23.7195 1.25362
\(359\) − 9.56173i − 0.504649i −0.967643 0.252324i \(-0.918805\pi\)
0.967643 0.252324i \(-0.0811950\pi\)
\(360\) 0 0
\(361\) 3.52382 0.185464
\(362\) −15.3933 −0.809054
\(363\) 0 0
\(364\) 0 0
\(365\) 11.1606i 0.584173i
\(366\) 0 0
\(367\) 0.293915i 0.0153423i 0.999971 + 0.00767113i \(0.00244182\pi\)
−0.999971 + 0.00767113i \(0.997558\pi\)
\(368\) − 8.76930i − 0.457131i
\(369\) 0 0
\(370\) − 2.62199i − 0.136311i
\(371\) 0 0
\(372\) 0 0
\(373\) −12.4392 −0.644075 −0.322038 0.946727i \(-0.604368\pi\)
−0.322038 + 0.946727i \(0.604368\pi\)
\(374\) −27.5997 −1.42715
\(375\) 0 0
\(376\) 2.81209i 0.145023i
\(377\) −30.3704 −1.56415
\(378\) 0 0
\(379\) −29.9052 −1.53613 −0.768063 0.640375i \(-0.778779\pi\)
−0.768063 + 0.640375i \(0.778779\pi\)
\(380\) 10.1666i 0.521536i
\(381\) 0 0
\(382\) 38.7143 1.98080
\(383\) 14.4938 0.740599 0.370300 0.928912i \(-0.379255\pi\)
0.370300 + 0.928912i \(0.379255\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 21.9423i 1.11683i
\(387\) 0 0
\(388\) 50.0544i 2.54113i
\(389\) 21.4184i 1.08595i 0.839748 + 0.542977i \(0.182703\pi\)
−0.839748 + 0.542977i \(0.817297\pi\)
\(390\) 0 0
\(391\) − 10.8588i − 0.549155i
\(392\) 0 0
\(393\) 0 0
\(394\) −18.9581 −0.955097
\(395\) 15.6282 0.786341
\(396\) 0 0
\(397\) − 39.0198i − 1.95835i −0.203024 0.979174i \(-0.565077\pi\)
0.203024 0.979174i \(-0.434923\pi\)
\(398\) 42.1663 2.11361
\(399\) 0 0
\(400\) −2.48998 −0.124499
\(401\) 26.9225i 1.34444i 0.740350 + 0.672222i \(0.234660\pi\)
−0.740350 + 0.672222i \(0.765340\pi\)
\(402\) 0 0
\(403\) 18.0568 0.899471
\(404\) 7.92823 0.394444
\(405\) 0 0
\(406\) 0 0
\(407\) 5.11975i 0.253776i
\(408\) 0 0
\(409\) 13.5166i 0.668353i 0.942511 + 0.334176i \(0.108458\pi\)
−0.942511 + 0.334176i \(0.891542\pi\)
\(410\) − 16.3308i − 0.806522i
\(411\) 0 0
\(412\) − 18.9010i − 0.931188i
\(413\) 0 0
\(414\) 0 0
\(415\) −17.0540 −0.837150
\(416\) −33.2179 −1.62864
\(417\) 0 0
\(418\) − 35.2146i − 1.72240i
\(419\) −1.52935 −0.0747138 −0.0373569 0.999302i \(-0.511894\pi\)
−0.0373569 + 0.999302i \(0.511894\pi\)
\(420\) 0 0
\(421\) 5.22312 0.254559 0.127280 0.991867i \(-0.459375\pi\)
0.127280 + 0.991867i \(0.459375\pi\)
\(422\) 33.7800i 1.64438i
\(423\) 0 0
\(424\) −9.99982 −0.485634
\(425\) −3.08329 −0.149561
\(426\) 0 0
\(427\) 0 0
\(428\) 25.9171i 1.25275i
\(429\) 0 0
\(430\) − 10.4596i − 0.504406i
\(431\) − 23.7489i − 1.14394i −0.820273 0.571972i \(-0.806179\pi\)
0.820273 0.571972i \(-0.193821\pi\)
\(432\) 0 0
\(433\) − 37.7340i − 1.81338i −0.421799 0.906689i \(-0.638601\pi\)
0.421799 0.906689i \(-0.361399\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.309166 0.0148064
\(437\) 13.8548 0.662767
\(438\) 0 0
\(439\) 26.1830i 1.24965i 0.780767 + 0.624823i \(0.214829\pi\)
−0.780767 + 0.624823i \(0.785171\pi\)
\(440\) −5.23035 −0.249347
\(441\) 0 0
\(442\) −27.9945 −1.33156
\(443\) − 11.6259i − 0.552361i −0.961106 0.276181i \(-0.910931\pi\)
0.961106 0.276181i \(-0.0890688\pi\)
\(444\) 0 0
\(445\) 3.04499 0.144346
\(446\) −35.5066 −1.68129
\(447\) 0 0
\(448\) 0 0
\(449\) 27.8649i 1.31502i 0.753444 + 0.657512i \(0.228391\pi\)
−0.753444 + 0.657512i \(0.771609\pi\)
\(450\) 0 0
\(451\) 31.8879i 1.50154i
\(452\) 47.8584i 2.25107i
\(453\) 0 0
\(454\) 0.786831i 0.0369278i
\(455\) 0 0
\(456\) 0 0
\(457\) 26.5423 1.24160 0.620799 0.783970i \(-0.286808\pi\)
0.620799 + 0.783970i \(0.286808\pi\)
\(458\) 4.26380 0.199234
\(459\) 0 0
\(460\) − 9.10151i − 0.424360i
\(461\) −20.0220 −0.932516 −0.466258 0.884649i \(-0.654398\pi\)
−0.466258 + 0.884649i \(0.654398\pi\)
\(462\) 0 0
\(463\) 10.1206 0.470342 0.235171 0.971954i \(-0.424435\pi\)
0.235171 + 0.971954i \(0.424435\pi\)
\(464\) − 17.8330i − 0.827874i
\(465\) 0 0
\(466\) 25.3625 1.17490
\(467\) 35.9145 1.66193 0.830963 0.556327i \(-0.187790\pi\)
0.830963 + 0.556327i \(0.187790\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) − 4.81271i − 0.221994i
\(471\) 0 0
\(472\) − 7.54736i − 0.347395i
\(473\) 20.4236i 0.939077i
\(474\) 0 0
\(475\) − 3.93398i − 0.180503i
\(476\) 0 0
\(477\) 0 0
\(478\) −1.74626 −0.0798721
\(479\) 28.0405 1.28120 0.640602 0.767873i \(-0.278685\pi\)
0.640602 + 0.767873i \(0.278685\pi\)
\(480\) 0 0
\(481\) 5.19297i 0.236779i
\(482\) −53.1770 −2.42214
\(483\) 0 0
\(484\) 16.7428 0.761038
\(485\) − 19.3686i − 0.879483i
\(486\) 0 0
\(487\) 35.2987 1.59954 0.799769 0.600308i \(-0.204955\pi\)
0.799769 + 0.600308i \(0.204955\pi\)
\(488\) −17.5414 −0.794063
\(489\) 0 0
\(490\) 0 0
\(491\) − 0.959904i − 0.0433199i −0.999765 0.0216599i \(-0.993105\pi\)
0.999765 0.0216599i \(-0.00689511\pi\)
\(492\) 0 0
\(493\) − 22.0822i − 0.994532i
\(494\) − 35.7183i − 1.60704i
\(495\) 0 0
\(496\) 10.6026i 0.476072i
\(497\) 0 0
\(498\) 0 0
\(499\) 37.7831 1.69141 0.845703 0.533654i \(-0.179182\pi\)
0.845703 + 0.533654i \(0.179182\pi\)
\(500\) −2.58431 −0.115574
\(501\) 0 0
\(502\) − 47.9570i − 2.14042i
\(503\) −29.1078 −1.29785 −0.648927 0.760850i \(-0.724782\pi\)
−0.648927 + 0.760850i \(0.724782\pi\)
\(504\) 0 0
\(505\) −3.06784 −0.136517
\(506\) 31.5254i 1.40147i
\(507\) 0 0
\(508\) 12.8995 0.572324
\(509\) −6.39121 −0.283285 −0.141643 0.989918i \(-0.545238\pi\)
−0.141643 + 0.989918i \(0.545238\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 25.7352i − 1.13734i
\(513\) 0 0
\(514\) 46.2754i 2.04112i
\(515\) 7.31378i 0.322284i
\(516\) 0 0
\(517\) 9.39738i 0.413296i
\(518\) 0 0
\(519\) 0 0
\(520\) −5.30516 −0.232647
\(521\) −27.1037 −1.18743 −0.593716 0.804674i \(-0.702340\pi\)
−0.593716 + 0.804674i \(0.702340\pi\)
\(522\) 0 0
\(523\) − 20.0524i − 0.876829i −0.898773 0.438415i \(-0.855540\pi\)
0.898773 0.438415i \(-0.144460\pi\)
\(524\) −17.1416 −0.748835
\(525\) 0 0
\(526\) 19.1620 0.835501
\(527\) 13.1290i 0.571908i
\(528\) 0 0
\(529\) 10.5966 0.460723
\(530\) 17.1140 0.743385
\(531\) 0 0
\(532\) 0 0
\(533\) 32.3440i 1.40097i
\(534\) 0 0
\(535\) − 10.0286i − 0.433576i
\(536\) 2.34880i 0.101453i
\(537\) 0 0
\(538\) 8.82927i 0.380657i
\(539\) 0 0
\(540\) 0 0
\(541\) −18.0339 −0.775338 −0.387669 0.921799i \(-0.626720\pi\)
−0.387669 + 0.921799i \(0.626720\pi\)
\(542\) 25.9473 1.11453
\(543\) 0 0
\(544\) − 24.1526i − 1.03553i
\(545\) −0.119632 −0.00512447
\(546\) 0 0
\(547\) 15.3974 0.658345 0.329173 0.944270i \(-0.393230\pi\)
0.329173 + 0.944270i \(0.393230\pi\)
\(548\) − 51.0276i − 2.17979i
\(549\) 0 0
\(550\) 8.95140 0.381689
\(551\) 28.1748 1.20029
\(552\) 0 0
\(553\) 0 0
\(554\) 64.1125i 2.72388i
\(555\) 0 0
\(556\) 40.8759i 1.73353i
\(557\) 2.76314i 0.117078i 0.998285 + 0.0585389i \(0.0186442\pi\)
−0.998285 + 0.0585389i \(0.981356\pi\)
\(558\) 0 0
\(559\) 20.7157i 0.876181i
\(560\) 0 0
\(561\) 0 0
\(562\) −0.551361 −0.0232578
\(563\) 41.4623 1.74743 0.873713 0.486442i \(-0.161705\pi\)
0.873713 + 0.486442i \(0.161705\pi\)
\(564\) 0 0
\(565\) − 18.5189i − 0.779094i
\(566\) −26.0357 −1.09436
\(567\) 0 0
\(568\) −20.4483 −0.857990
\(569\) − 4.09457i − 0.171653i −0.996310 0.0858266i \(-0.972647\pi\)
0.996310 0.0858266i \(-0.0273531\pi\)
\(570\) 0 0
\(571\) −11.1852 −0.468087 −0.234043 0.972226i \(-0.575196\pi\)
−0.234043 + 0.972226i \(0.575196\pi\)
\(572\) 45.8163 1.91567
\(573\) 0 0
\(574\) 0 0
\(575\) 3.52184i 0.146871i
\(576\) 0 0
\(577\) − 2.24718i − 0.0935513i −0.998905 0.0467756i \(-0.985105\pi\)
0.998905 0.0467756i \(-0.0148946\pi\)
\(578\) 16.0440i 0.667342i
\(579\) 0 0
\(580\) − 18.5085i − 0.768525i
\(581\) 0 0
\(582\) 0 0
\(583\) −33.4171 −1.38400
\(584\) −13.9626 −0.577775
\(585\) 0 0
\(586\) − 10.3438i − 0.427298i
\(587\) −8.04727 −0.332147 −0.166073 0.986113i \(-0.553109\pi\)
−0.166073 + 0.986113i \(0.553109\pi\)
\(588\) 0 0
\(589\) −16.7514 −0.690228
\(590\) 12.9168i 0.531776i
\(591\) 0 0
\(592\) −3.04923 −0.125322
\(593\) −18.7307 −0.769179 −0.384589 0.923088i \(-0.625657\pi\)
−0.384589 + 0.923088i \(0.625657\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.6500i 0.845857i
\(597\) 0 0
\(598\) 31.9763i 1.30761i
\(599\) − 28.1486i − 1.15012i −0.818112 0.575060i \(-0.804979\pi\)
0.818112 0.575060i \(-0.195021\pi\)
\(600\) 0 0
\(601\) 21.1621i 0.863221i 0.902060 + 0.431610i \(0.142054\pi\)
−0.902060 + 0.431610i \(0.857946\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −51.8618 −2.11023
\(605\) −6.47866 −0.263395
\(606\) 0 0
\(607\) 46.4470i 1.88522i 0.333889 + 0.942612i \(0.391639\pi\)
−0.333889 + 0.942612i \(0.608361\pi\)
\(608\) 30.8164 1.24977
\(609\) 0 0
\(610\) 30.0210 1.21551
\(611\) 9.53179i 0.385615i
\(612\) 0 0
\(613\) 12.5001 0.504874 0.252437 0.967613i \(-0.418768\pi\)
0.252437 + 0.967613i \(0.418768\pi\)
\(614\) −32.0315 −1.29269
\(615\) 0 0
\(616\) 0 0
\(617\) 14.0495i 0.565610i 0.959177 + 0.282805i \(0.0912649\pi\)
−0.959177 + 0.282805i \(0.908735\pi\)
\(618\) 0 0
\(619\) 12.6776i 0.509556i 0.967000 + 0.254778i \(0.0820024\pi\)
−0.967000 + 0.254778i \(0.917998\pi\)
\(620\) 11.0043i 0.441943i
\(621\) 0 0
\(622\) 11.6487i 0.467069i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 61.0186 2.43879
\(627\) 0 0
\(628\) 18.7478i 0.748118i
\(629\) −3.77579 −0.150551
\(630\) 0 0
\(631\) 11.8905 0.473354 0.236677 0.971588i \(-0.423942\pi\)
0.236677 + 0.971588i \(0.423942\pi\)
\(632\) 19.5518i 0.777728i
\(633\) 0 0
\(634\) 21.6115 0.858304
\(635\) −4.99148 −0.198081
\(636\) 0 0
\(637\) 0 0
\(638\) 64.1090i 2.53810i
\(639\) 0 0
\(640\) − 9.58132i − 0.378735i
\(641\) 10.3455i 0.408624i 0.978906 + 0.204312i \(0.0654957\pi\)
−0.978906 + 0.204312i \(0.934504\pi\)
\(642\) 0 0
\(643\) − 39.5611i − 1.56014i −0.625693 0.780070i \(-0.715184\pi\)
0.625693 0.780070i \(-0.284816\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 25.9706 1.02180
\(647\) −5.33850 −0.209878 −0.104939 0.994479i \(-0.533465\pi\)
−0.104939 + 0.994479i \(0.533465\pi\)
\(648\) 0 0
\(649\) − 25.2216i − 0.990033i
\(650\) 9.07943 0.356125
\(651\) 0 0
\(652\) −2.69472 −0.105533
\(653\) − 14.0866i − 0.551251i −0.961265 0.275625i \(-0.911115\pi\)
0.961265 0.275625i \(-0.0888849\pi\)
\(654\) 0 0
\(655\) 6.63297 0.259172
\(656\) −18.9918 −0.741506
\(657\) 0 0
\(658\) 0 0
\(659\) 13.6532i 0.531853i 0.963993 + 0.265926i \(0.0856778\pi\)
−0.963993 + 0.265926i \(0.914322\pi\)
\(660\) 0 0
\(661\) − 5.23274i − 0.203530i −0.994808 0.101765i \(-0.967551\pi\)
0.994808 0.101765i \(-0.0324490\pi\)
\(662\) 6.07060i 0.235941i
\(663\) 0 0
\(664\) − 21.3356i − 0.827980i
\(665\) 0 0
\(666\) 0 0
\(667\) −25.2231 −0.976641
\(668\) −26.5461 −1.02710
\(669\) 0 0
\(670\) − 4.01981i − 0.155299i
\(671\) −58.6195 −2.26298
\(672\) 0 0
\(673\) 26.9352 1.03827 0.519137 0.854691i \(-0.326253\pi\)
0.519137 + 0.854691i \(0.326253\pi\)
\(674\) 33.6829i 1.29742i
\(675\) 0 0
\(676\) 12.8756 0.495216
\(677\) 29.8797 1.14837 0.574184 0.818726i \(-0.305319\pi\)
0.574184 + 0.818726i \(0.305319\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) − 3.85736i − 0.147923i
\(681\) 0 0
\(682\) − 38.1161i − 1.45954i
\(683\) − 29.8268i − 1.14129i −0.821196 0.570646i \(-0.806693\pi\)
0.821196 0.570646i \(-0.193307\pi\)
\(684\) 0 0
\(685\) 19.7452i 0.754424i
\(686\) 0 0
\(687\) 0 0
\(688\) −12.1639 −0.463744
\(689\) −33.8951 −1.29130
\(690\) 0 0
\(691\) − 33.5305i − 1.27556i −0.770218 0.637781i \(-0.779852\pi\)
0.770218 0.637781i \(-0.220148\pi\)
\(692\) 23.8183 0.905436
\(693\) 0 0
\(694\) 23.5350 0.893377
\(695\) − 15.8170i − 0.599973i
\(696\) 0 0
\(697\) −23.5172 −0.890777
\(698\) 60.8276 2.30236
\(699\) 0 0
\(700\) 0 0
\(701\) − 25.5057i − 0.963338i −0.876353 0.481669i \(-0.840031\pi\)
0.876353 0.481669i \(-0.159969\pi\)
\(702\) 0 0
\(703\) − 4.81755i − 0.181697i
\(704\) 49.2999i 1.85806i
\(705\) 0 0
\(706\) 30.1578i 1.13501i
\(707\) 0 0
\(708\) 0 0
\(709\) −9.29640 −0.349134 −0.174567 0.984645i \(-0.555852\pi\)
−0.174567 + 0.984645i \(0.555852\pi\)
\(710\) 34.9958 1.31337
\(711\) 0 0
\(712\) 3.80946i 0.142765i
\(713\) 14.9964 0.561621
\(714\) 0 0
\(715\) −17.7287 −0.663014
\(716\) − 28.6295i − 1.06993i
\(717\) 0 0
\(718\) −20.4726 −0.764031
\(719\) −11.3186 −0.422113 −0.211057 0.977474i \(-0.567690\pi\)
−0.211057 + 0.977474i \(0.567690\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 7.54484i − 0.280790i
\(723\) 0 0
\(724\) 18.5797i 0.690509i
\(725\) 7.16190i 0.265986i
\(726\) 0 0
\(727\) − 11.3507i − 0.420976i −0.977596 0.210488i \(-0.932495\pi\)
0.977596 0.210488i \(-0.0675053\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 23.8960 0.884430
\(731\) −15.0623 −0.557100
\(732\) 0 0
\(733\) 27.4434i 1.01364i 0.862051 + 0.506822i \(0.169180\pi\)
−0.862051 + 0.506822i \(0.830820\pi\)
\(734\) 0.629302 0.0232280
\(735\) 0 0
\(736\) −27.5880 −1.01691
\(737\) 7.84916i 0.289127i
\(738\) 0 0
\(739\) −30.4714 −1.12091 −0.560454 0.828185i \(-0.689373\pi\)
−0.560454 + 0.828185i \(0.689373\pi\)
\(740\) −3.16474 −0.116338
\(741\) 0 0
\(742\) 0 0
\(743\) − 14.7965i − 0.542830i −0.962462 0.271415i \(-0.912508\pi\)
0.962462 0.271415i \(-0.0874916\pi\)
\(744\) 0 0
\(745\) − 7.99054i − 0.292751i
\(746\) 26.6335i 0.975120i
\(747\) 0 0
\(748\) 33.3128i 1.21804i
\(749\) 0 0
\(750\) 0 0
\(751\) 24.6806 0.900610 0.450305 0.892875i \(-0.351315\pi\)
0.450305 + 0.892875i \(0.351315\pi\)
\(752\) −5.59690 −0.204098
\(753\) 0 0
\(754\) 65.0260i 2.36811i
\(755\) 20.0680 0.730349
\(756\) 0 0
\(757\) −0.747953 −0.0271848 −0.0135924 0.999908i \(-0.504327\pi\)
−0.0135924 + 0.999908i \(0.504327\pi\)
\(758\) 64.0299i 2.32567i
\(759\) 0 0
\(760\) 4.92163 0.178526
\(761\) 35.5771 1.28967 0.644834 0.764322i \(-0.276926\pi\)
0.644834 + 0.764322i \(0.276926\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) − 46.7281i − 1.69056i
\(765\) 0 0
\(766\) − 31.0327i − 1.12126i
\(767\) − 25.5823i − 0.923724i
\(768\) 0 0
\(769\) 24.6978i 0.890625i 0.895375 + 0.445312i \(0.146907\pi\)
−0.895375 + 0.445312i \(0.853093\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 26.4843 0.953192
\(773\) −4.35654 −0.156694 −0.0783469 0.996926i \(-0.524964\pi\)
−0.0783469 + 0.996926i \(0.524964\pi\)
\(774\) 0 0
\(775\) − 4.25812i − 0.152956i
\(776\) 24.2312 0.869850
\(777\) 0 0
\(778\) 45.8588 1.64412
\(779\) − 30.0057i − 1.07506i
\(780\) 0 0
\(781\) −68.3335 −2.44516
\(782\) −23.2499 −0.831413
\(783\) 0 0
\(784\) 0 0
\(785\) − 7.25448i − 0.258923i
\(786\) 0 0
\(787\) − 4.96114i − 0.176845i −0.996083 0.0884227i \(-0.971817\pi\)
0.996083 0.0884227i \(-0.0281826\pi\)
\(788\) 22.8825i 0.815154i
\(789\) 0 0
\(790\) − 33.4616i − 1.19051i
\(791\) 0 0
\(792\) 0 0
\(793\) −59.4580 −2.11141
\(794\) −83.5453 −2.96491
\(795\) 0 0
\(796\) − 50.8947i − 1.80392i
\(797\) −12.1509 −0.430406 −0.215203 0.976569i \(-0.569041\pi\)
−0.215203 + 0.976569i \(0.569041\pi\)
\(798\) 0 0
\(799\) −6.93053 −0.245185
\(800\) 7.83340i 0.276952i
\(801\) 0 0
\(802\) 57.6436 2.03547
\(803\) −46.6597 −1.64659
\(804\) 0 0
\(805\) 0 0
\(806\) − 38.6613i − 1.36179i
\(807\) 0 0
\(808\) − 3.83804i − 0.135022i
\(809\) 13.6668i 0.480498i 0.970711 + 0.240249i \(0.0772290\pi\)
−0.970711 + 0.240249i \(0.922771\pi\)
\(810\) 0 0
\(811\) − 49.4766i − 1.73736i −0.495376 0.868679i \(-0.664970\pi\)
0.495376 0.868679i \(-0.335030\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 10.9619 0.384214
\(815\) 1.04273 0.0365251
\(816\) 0 0
\(817\) − 19.2181i − 0.672355i
\(818\) 28.9404 1.01188
\(819\) 0 0
\(820\) −19.7113 −0.688349
\(821\) − 8.63972i − 0.301528i −0.988570 0.150764i \(-0.951827\pi\)
0.988570 0.150764i \(-0.0481734\pi\)
\(822\) 0 0
\(823\) −8.53861 −0.297637 −0.148819 0.988865i \(-0.547547\pi\)
−0.148819 + 0.988865i \(0.547547\pi\)
\(824\) −9.14995 −0.318754
\(825\) 0 0
\(826\) 0 0
\(827\) − 0.166257i − 0.00578131i −0.999996 0.00289066i \(-0.999080\pi\)
0.999996 0.00289066i \(-0.000920126\pi\)
\(828\) 0 0
\(829\) − 26.9687i − 0.936663i −0.883553 0.468331i \(-0.844855\pi\)
0.883553 0.468331i \(-0.155145\pi\)
\(830\) 36.5144i 1.26743i
\(831\) 0 0
\(832\) 50.0051i 1.73361i
\(833\) 0 0
\(834\) 0 0
\(835\) 10.2720 0.355479
\(836\) −42.5040 −1.47003
\(837\) 0 0
\(838\) 3.27450i 0.113116i
\(839\) 33.9620 1.17250 0.586249 0.810131i \(-0.300604\pi\)
0.586249 + 0.810131i \(0.300604\pi\)
\(840\) 0 0
\(841\) −22.2928 −0.768718
\(842\) − 11.1832i − 0.385399i
\(843\) 0 0
\(844\) 40.7724 1.40344
\(845\) −4.98223 −0.171394
\(846\) 0 0
\(847\) 0 0
\(848\) − 19.9026i − 0.683459i
\(849\) 0 0
\(850\) 6.60162i 0.226434i
\(851\) 4.31285i 0.147843i
\(852\) 0 0
\(853\) 28.4906i 0.975500i 0.872983 + 0.487750i \(0.162182\pi\)
−0.872983 + 0.487750i \(0.837818\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 12.5464 0.428827
\(857\) −1.65476 −0.0565255 −0.0282628 0.999601i \(-0.508998\pi\)
−0.0282628 + 0.999601i \(0.508998\pi\)
\(858\) 0 0
\(859\) − 17.2579i − 0.588834i −0.955677 0.294417i \(-0.904875\pi\)
0.955677 0.294417i \(-0.0951254\pi\)
\(860\) −12.6247 −0.430499
\(861\) 0 0
\(862\) −50.8487 −1.73191
\(863\) − 52.7745i − 1.79647i −0.439519 0.898233i \(-0.644851\pi\)
0.439519 0.898233i \(-0.355149\pi\)
\(864\) 0 0
\(865\) −9.21652 −0.313371
\(866\) −80.7921 −2.74543
\(867\) 0 0
\(868\) 0 0
\(869\) 65.3377i 2.21643i
\(870\) 0 0
\(871\) 7.96142i 0.269763i
\(872\) − 0.149666i − 0.00506834i
\(873\) 0 0
\(874\) − 29.6646i − 1.00342i
\(875\) 0 0
\(876\) 0 0
\(877\) −44.8989 −1.51613 −0.758064 0.652180i \(-0.773855\pi\)
−0.758064 + 0.652180i \(0.773855\pi\)
\(878\) 56.0603 1.89194
\(879\) 0 0
\(880\) − 10.4100i − 0.350920i
\(881\) 24.1868 0.814875 0.407437 0.913233i \(-0.366422\pi\)
0.407437 + 0.913233i \(0.366422\pi\)
\(882\) 0 0
\(883\) 20.3843 0.685988 0.342994 0.939338i \(-0.388559\pi\)
0.342994 + 0.939338i \(0.388559\pi\)
\(884\) 33.7893i 1.13646i
\(885\) 0 0
\(886\) −24.8921 −0.836267
\(887\) 17.5964 0.590831 0.295415 0.955369i \(-0.404542\pi\)
0.295415 + 0.955369i \(0.404542\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) − 6.51963i − 0.218539i
\(891\) 0 0
\(892\) 42.8565i 1.43494i
\(893\) − 8.84269i − 0.295909i
\(894\) 0 0
\(895\) 11.0782i 0.370304i
\(896\) 0 0
\(897\) 0 0
\(898\) 59.6614 1.99093
\(899\) 30.4962 1.01711
\(900\) 0 0
\(901\) − 24.6450i − 0.821044i
\(902\) 68.2751 2.27331
\(903\) 0 0
\(904\) 23.1681 0.770561
\(905\) − 7.18944i − 0.238985i
\(906\) 0 0
\(907\) −19.0178 −0.631475 −0.315738 0.948846i \(-0.602252\pi\)
−0.315738 + 0.948846i \(0.602252\pi\)
\(908\) 0.949705 0.0315171
\(909\) 0 0
\(910\) 0 0
\(911\) − 24.1354i − 0.799640i −0.916594 0.399820i \(-0.869073\pi\)
0.916594 0.399820i \(-0.130927\pi\)
\(912\) 0 0
\(913\) − 71.2986i − 2.35964i
\(914\) − 56.8298i − 1.87976i
\(915\) 0 0
\(916\) − 5.14640i − 0.170042i
\(917\) 0 0
\(918\) 0 0
\(919\) 37.0034 1.22063 0.610315 0.792159i \(-0.291043\pi\)
0.610315 + 0.792159i \(0.291043\pi\)
\(920\) −4.40602 −0.145262
\(921\) 0 0
\(922\) 42.8690i 1.41182i
\(923\) −69.3109 −2.28140
\(924\) 0 0
\(925\) 1.22460 0.0402646
\(926\) − 21.6691i − 0.712091i
\(927\) 0 0
\(928\) −56.1020 −1.84164
\(929\) 37.6178 1.23420 0.617100 0.786884i \(-0.288307\pi\)
0.617100 + 0.786884i \(0.288307\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) − 30.6126i − 1.00275i
\(933\) 0 0
\(934\) − 76.8966i − 2.51613i
\(935\) − 12.8904i − 0.421563i
\(936\) 0 0
\(937\) 48.5109i 1.58478i 0.610013 + 0.792391i \(0.291164\pi\)
−0.610013 + 0.792391i \(0.708836\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −5.80894 −0.189467
\(941\) 18.1829 0.592745 0.296373 0.955072i \(-0.404223\pi\)
0.296373 + 0.955072i \(0.404223\pi\)
\(942\) 0 0
\(943\) 26.8622i 0.874753i
\(944\) 15.0215 0.488908
\(945\) 0 0
\(946\) 43.7289 1.42175
\(947\) 28.3545i 0.921398i 0.887556 + 0.460699i \(0.152401\pi\)
−0.887556 + 0.460699i \(0.847599\pi\)
\(948\) 0 0
\(949\) −47.3271 −1.53630
\(950\) −8.42304 −0.273279
\(951\) 0 0
\(952\) 0 0
\(953\) − 44.3923i − 1.43801i −0.695005 0.719004i \(-0.744598\pi\)
0.695005 0.719004i \(-0.255402\pi\)
\(954\) 0 0
\(955\) 18.0815i 0.585104i
\(956\) 2.10774i 0.0681691i
\(957\) 0 0
\(958\) − 60.0375i − 1.93972i
\(959\) 0 0
\(960\) 0 0
\(961\) 12.8684 0.415110
\(962\) 11.1187 0.358480
\(963\) 0 0
\(964\) 64.1846i 2.06725i
\(965\) −10.2481 −0.329899
\(966\) 0 0
\(967\) −44.9331 −1.44495 −0.722475 0.691397i \(-0.756996\pi\)
−0.722475 + 0.691397i \(0.756996\pi\)
\(968\) − 8.10516i − 0.260510i
\(969\) 0 0
\(970\) −41.4701 −1.33152
\(971\) −14.3993 −0.462097 −0.231048 0.972942i \(-0.574216\pi\)
−0.231048 + 0.972942i \(0.574216\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) − 75.5781i − 2.42168i
\(975\) 0 0
\(976\) − 34.9127i − 1.11753i
\(977\) − 22.4408i − 0.717946i −0.933348 0.358973i \(-0.883127\pi\)
0.933348 0.358973i \(-0.116873\pi\)
\(978\) 0 0
\(979\) 12.7303i 0.406864i
\(980\) 0 0
\(981\) 0 0
\(982\) −2.05525 −0.0655857
\(983\) −41.3894 −1.32012 −0.660058 0.751214i \(-0.729468\pi\)
−0.660058 + 0.751214i \(0.729468\pi\)
\(984\) 0 0
\(985\) − 8.85439i − 0.282124i
\(986\) −47.2801 −1.50571
\(987\) 0 0
\(988\) −43.1119 −1.37157
\(989\) 17.2047i 0.547078i
\(990\) 0 0
\(991\) −26.9764 −0.856934 −0.428467 0.903557i \(-0.640946\pi\)
−0.428467 + 0.903557i \(0.640946\pi\)
\(992\) 33.3556 1.05904
\(993\) 0 0
\(994\) 0 0
\(995\) 19.6938i 0.624335i
\(996\) 0 0
\(997\) − 9.95252i − 0.315200i −0.987503 0.157600i \(-0.949624\pi\)
0.987503 0.157600i \(-0.0503756\pi\)
\(998\) − 80.8975i − 2.56076i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.b.d.881.2 yes 16
3.2 odd 2 2205.2.b.c.881.15 yes 16
7.6 odd 2 2205.2.b.c.881.2 16
21.20 even 2 inner 2205.2.b.d.881.15 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2205.2.b.c.881.2 16 7.6 odd 2
2205.2.b.c.881.15 yes 16 3.2 odd 2
2205.2.b.d.881.2 yes 16 1.1 even 1 trivial
2205.2.b.d.881.15 yes 16 21.20 even 2 inner