Properties

Label 2205.2.a.bf.1.4
Level $2205$
Weight $2$
Character 2205.1
Self dual yes
Analytic conductor $17.607$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(1,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,8,-4,0,0,-12,0,4,-8,0,0,0,0,12,8,0,8,-8,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4352.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 735)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.27133\) of defining polynomial
Character \(\chi\) \(=\) 2205.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.68554 q^{2} +0.841058 q^{4} -1.00000 q^{5} -1.95345 q^{8} -1.68554 q^{10} -1.77522 q^{11} +3.05320 q^{13} -4.97474 q^{16} +7.59587 q^{17} +3.12845 q^{19} -0.841058 q^{20} -2.99222 q^{22} +4.18165 q^{23} +1.00000 q^{25} +5.14631 q^{26} -7.08532 q^{29} +0.871553 q^{31} -4.47824 q^{32} +12.8032 q^{34} +9.91375 q^{37} +5.27314 q^{38} +1.95345 q^{40} +2.76744 q^{41} +0.317883 q^{43} -1.49307 q^{44} +7.04836 q^{46} +10.4853 q^{47} +1.68554 q^{50} +2.56792 q^{52} -3.63899 q^{53} +1.77522 q^{55} -11.9426 q^{58} -9.57060 q^{59} +6.58579 q^{61} +1.46904 q^{62} +2.40120 q^{64} -3.05320 q^{65} +14.0202 q^{67} +6.38857 q^{68} -6.13853 q^{71} +7.68897 q^{73} +16.7101 q^{74} +2.63121 q^{76} +14.0811 q^{79} +4.97474 q^{80} +4.66464 q^{82} +12.8284 q^{83} -7.59587 q^{85} +0.535806 q^{86} +3.46780 q^{88} -4.82843 q^{89} +3.51701 q^{92} +17.6734 q^{94} -3.12845 q^{95} -16.6238 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 8 q^{4} - 4 q^{5} - 12 q^{8} + 4 q^{10} - 8 q^{11} + 12 q^{16} + 8 q^{17} + 8 q^{19} - 8 q^{20} + 4 q^{25} - 8 q^{29} + 8 q^{31} - 28 q^{32} + 8 q^{34} + 8 q^{37} + 4 q^{38} + 12 q^{40}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.68554 1.19186 0.595930 0.803037i \(-0.296784\pi\)
0.595930 + 0.803037i \(0.296784\pi\)
\(3\) 0 0
\(4\) 0.841058 0.420529
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) −1.95345 −0.690648
\(9\) 0 0
\(10\) −1.68554 −0.533016
\(11\) −1.77522 −0.535250 −0.267625 0.963523i \(-0.586239\pi\)
−0.267625 + 0.963523i \(0.586239\pi\)
\(12\) 0 0
\(13\) 3.05320 0.846807 0.423403 0.905941i \(-0.360835\pi\)
0.423403 + 0.905941i \(0.360835\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.97474 −1.24368
\(17\) 7.59587 1.84227 0.921134 0.389246i \(-0.127264\pi\)
0.921134 + 0.389246i \(0.127264\pi\)
\(18\) 0 0
\(19\) 3.12845 0.717715 0.358858 0.933392i \(-0.383166\pi\)
0.358858 + 0.933392i \(0.383166\pi\)
\(20\) −0.841058 −0.188066
\(21\) 0 0
\(22\) −2.99222 −0.637943
\(23\) 4.18165 0.871935 0.435967 0.899962i \(-0.356406\pi\)
0.435967 + 0.899962i \(0.356406\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 5.14631 1.00927
\(27\) 0 0
\(28\) 0 0
\(29\) −7.08532 −1.31571 −0.657856 0.753144i \(-0.728536\pi\)
−0.657856 + 0.753144i \(0.728536\pi\)
\(30\) 0 0
\(31\) 0.871553 0.156536 0.0782678 0.996932i \(-0.475061\pi\)
0.0782678 + 0.996932i \(0.475061\pi\)
\(32\) −4.47824 −0.791649
\(33\) 0 0
\(34\) 12.8032 2.19572
\(35\) 0 0
\(36\) 0 0
\(37\) 9.91375 1.62981 0.814905 0.579594i \(-0.196789\pi\)
0.814905 + 0.579594i \(0.196789\pi\)
\(38\) 5.27314 0.855415
\(39\) 0 0
\(40\) 1.95345 0.308867
\(41\) 2.76744 0.432201 0.216101 0.976371i \(-0.430666\pi\)
0.216101 + 0.976371i \(0.430666\pi\)
\(42\) 0 0
\(43\) 0.317883 0.0484767 0.0242384 0.999706i \(-0.492284\pi\)
0.0242384 + 0.999706i \(0.492284\pi\)
\(44\) −1.49307 −0.225088
\(45\) 0 0
\(46\) 7.04836 1.03922
\(47\) 10.4853 1.52944 0.764718 0.644365i \(-0.222878\pi\)
0.764718 + 0.644365i \(0.222878\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.68554 0.238372
\(51\) 0 0
\(52\) 2.56792 0.356107
\(53\) −3.63899 −0.499854 −0.249927 0.968265i \(-0.580407\pi\)
−0.249927 + 0.968265i \(0.580407\pi\)
\(54\) 0 0
\(55\) 1.77522 0.239371
\(56\) 0 0
\(57\) 0 0
\(58\) −11.9426 −1.56814
\(59\) −9.57060 −1.24599 −0.622993 0.782227i \(-0.714084\pi\)
−0.622993 + 0.782227i \(0.714084\pi\)
\(60\) 0 0
\(61\) 6.58579 0.843224 0.421612 0.906776i \(-0.361465\pi\)
0.421612 + 0.906776i \(0.361465\pi\)
\(62\) 1.46904 0.186568
\(63\) 0 0
\(64\) 2.40120 0.300150
\(65\) −3.05320 −0.378703
\(66\) 0 0
\(67\) 14.0202 1.71283 0.856417 0.516284i \(-0.172685\pi\)
0.856417 + 0.516284i \(0.172685\pi\)
\(68\) 6.38857 0.774727
\(69\) 0 0
\(70\) 0 0
\(71\) −6.13853 −0.728509 −0.364255 0.931299i \(-0.618676\pi\)
−0.364255 + 0.931299i \(0.618676\pi\)
\(72\) 0 0
\(73\) 7.68897 0.899926 0.449963 0.893047i \(-0.351437\pi\)
0.449963 + 0.893047i \(0.351437\pi\)
\(74\) 16.7101 1.94250
\(75\) 0 0
\(76\) 2.63121 0.301820
\(77\) 0 0
\(78\) 0 0
\(79\) 14.0811 1.58425 0.792126 0.610357i \(-0.208974\pi\)
0.792126 + 0.610357i \(0.208974\pi\)
\(80\) 4.97474 0.556193
\(81\) 0 0
\(82\) 4.66464 0.515123
\(83\) 12.8284 1.40810 0.704051 0.710149i \(-0.251372\pi\)
0.704051 + 0.710149i \(0.251372\pi\)
\(84\) 0 0
\(85\) −7.59587 −0.823887
\(86\) 0.535806 0.0577775
\(87\) 0 0
\(88\) 3.46780 0.369669
\(89\) −4.82843 −0.511812 −0.255906 0.966702i \(-0.582374\pi\)
−0.255906 + 0.966702i \(0.582374\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.51701 0.366674
\(93\) 0 0
\(94\) 17.6734 1.82287
\(95\) −3.12845 −0.320972
\(96\) 0 0
\(97\) −16.6238 −1.68789 −0.843946 0.536428i \(-0.819773\pi\)
−0.843946 + 0.536428i \(0.819773\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.841058 0.0841058
\(101\) −12.4243 −1.23626 −0.618132 0.786075i \(-0.712110\pi\)
−0.618132 + 0.786075i \(0.712110\pi\)
\(102\) 0 0
\(103\) 3.91375 0.385633 0.192817 0.981235i \(-0.438238\pi\)
0.192817 + 0.981235i \(0.438238\pi\)
\(104\) −5.96427 −0.584845
\(105\) 0 0
\(106\) −6.13368 −0.595756
\(107\) −3.73210 −0.360795 −0.180398 0.983594i \(-0.557738\pi\)
−0.180398 + 0.983594i \(0.557738\pi\)
\(108\) 0 0
\(109\) 7.65685 0.733394 0.366697 0.930341i \(-0.380489\pi\)
0.366697 + 0.930341i \(0.380489\pi\)
\(110\) 2.99222 0.285297
\(111\) 0 0
\(112\) 0 0
\(113\) −19.4023 −1.82521 −0.912605 0.408842i \(-0.865933\pi\)
−0.912605 + 0.408842i \(0.865933\pi\)
\(114\) 0 0
\(115\) −4.18165 −0.389941
\(116\) −5.95917 −0.553295
\(117\) 0 0
\(118\) −16.1317 −1.48504
\(119\) 0 0
\(120\) 0 0
\(121\) −7.84858 −0.713508
\(122\) 11.1006 1.00500
\(123\) 0 0
\(124\) 0.733027 0.0658277
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −15.1463 −1.34402 −0.672009 0.740543i \(-0.734568\pi\)
−0.672009 + 0.740543i \(0.734568\pi\)
\(128\) 13.0038 1.14939
\(129\) 0 0
\(130\) −5.14631 −0.451361
\(131\) 13.5252 1.18170 0.590850 0.806781i \(-0.298792\pi\)
0.590850 + 0.806781i \(0.298792\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 23.6316 2.04146
\(135\) 0 0
\(136\) −14.8381 −1.27236
\(137\) −2.73988 −0.234084 −0.117042 0.993127i \(-0.537341\pi\)
−0.117042 + 0.993127i \(0.537341\pi\)
\(138\) 0 0
\(139\) 6.67889 0.566496 0.283248 0.959047i \(-0.408588\pi\)
0.283248 + 0.959047i \(0.408588\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −10.3468 −0.868280
\(143\) −5.42012 −0.453253
\(144\) 0 0
\(145\) 7.08532 0.588404
\(146\) 12.9601 1.07259
\(147\) 0 0
\(148\) 8.33804 0.685383
\(149\) −1.36423 −0.111762 −0.0558812 0.998437i \(-0.517797\pi\)
−0.0558812 + 0.998437i \(0.517797\pi\)
\(150\) 0 0
\(151\) −23.8022 −1.93700 −0.968499 0.249017i \(-0.919893\pi\)
−0.968499 + 0.249017i \(0.919893\pi\)
\(152\) −6.11126 −0.495688
\(153\) 0 0
\(154\) 0 0
\(155\) −0.871553 −0.0700048
\(156\) 0 0
\(157\) 12.7101 1.01437 0.507187 0.861836i \(-0.330686\pi\)
0.507187 + 0.861836i \(0.330686\pi\)
\(158\) 23.7344 1.88821
\(159\) 0 0
\(160\) 4.47824 0.354036
\(161\) 0 0
\(162\) 0 0
\(163\) −9.70227 −0.759941 −0.379970 0.924999i \(-0.624066\pi\)
−0.379970 + 0.924999i \(0.624066\pi\)
\(164\) 2.32758 0.181753
\(165\) 0 0
\(166\) 21.6229 1.67826
\(167\) −12.8486 −0.994253 −0.497127 0.867678i \(-0.665612\pi\)
−0.497127 + 0.867678i \(0.665612\pi\)
\(168\) 0 0
\(169\) −3.67794 −0.282919
\(170\) −12.8032 −0.981958
\(171\) 0 0
\(172\) 0.267358 0.0203859
\(173\) −15.9949 −1.21607 −0.608035 0.793910i \(-0.708042\pi\)
−0.608035 + 0.793910i \(0.708042\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 8.83127 0.665682
\(177\) 0 0
\(178\) −8.13853 −0.610008
\(179\) 24.8807 1.85967 0.929835 0.367976i \(-0.119949\pi\)
0.929835 + 0.367976i \(0.119949\pi\)
\(180\) 0 0
\(181\) 3.18583 0.236801 0.118400 0.992966i \(-0.462223\pi\)
0.118400 + 0.992966i \(0.462223\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.16864 −0.602200
\(185\) −9.91375 −0.728873
\(186\) 0 0
\(187\) −13.4844 −0.986073
\(188\) 8.81873 0.643172
\(189\) 0 0
\(190\) −5.27314 −0.382553
\(191\) 2.34676 0.169805 0.0849026 0.996389i \(-0.472942\pi\)
0.0849026 + 0.996389i \(0.472942\pi\)
\(192\) 0 0
\(193\) 23.1307 1.66499 0.832494 0.554035i \(-0.186912\pi\)
0.832494 + 0.554035i \(0.186912\pi\)
\(194\) −28.0202 −2.01173
\(195\) 0 0
\(196\) 0 0
\(197\) 3.03895 0.216516 0.108258 0.994123i \(-0.465473\pi\)
0.108258 + 0.994123i \(0.465473\pi\)
\(198\) 0 0
\(199\) 4.42200 0.313467 0.156734 0.987641i \(-0.449904\pi\)
0.156734 + 0.987641i \(0.449904\pi\)
\(200\) −1.95345 −0.138130
\(201\) 0 0
\(202\) −20.9417 −1.47345
\(203\) 0 0
\(204\) 0 0
\(205\) −2.76744 −0.193286
\(206\) 6.59680 0.459621
\(207\) 0 0
\(208\) −15.1889 −1.05316
\(209\) −5.55369 −0.384157
\(210\) 0 0
\(211\) 4.57153 0.314717 0.157359 0.987542i \(-0.449702\pi\)
0.157359 + 0.987542i \(0.449702\pi\)
\(212\) −3.06060 −0.210203
\(213\) 0 0
\(214\) −6.29061 −0.430017
\(215\) −0.317883 −0.0216795
\(216\) 0 0
\(217\) 0 0
\(218\) 12.9060 0.874102
\(219\) 0 0
\(220\) 1.49307 0.100662
\(221\) 23.1917 1.56004
\(222\) 0 0
\(223\) 4.53581 0.303740 0.151870 0.988400i \(-0.451470\pi\)
0.151870 + 0.988400i \(0.451470\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −32.7034 −2.17539
\(227\) 8.44955 0.560817 0.280408 0.959881i \(-0.409530\pi\)
0.280408 + 0.959881i \(0.409530\pi\)
\(228\) 0 0
\(229\) 19.0711 1.26025 0.630126 0.776493i \(-0.283003\pi\)
0.630126 + 0.776493i \(0.283003\pi\)
\(230\) −7.04836 −0.464755
\(231\) 0 0
\(232\) 13.8408 0.908693
\(233\) −9.08303 −0.595049 −0.297524 0.954714i \(-0.596161\pi\)
−0.297524 + 0.954714i \(0.596161\pi\)
\(234\) 0 0
\(235\) −10.4853 −0.683984
\(236\) −8.04944 −0.523974
\(237\) 0 0
\(238\) 0 0
\(239\) 17.1532 1.10955 0.554773 0.832002i \(-0.312805\pi\)
0.554773 + 0.832002i \(0.312805\pi\)
\(240\) 0 0
\(241\) −19.9839 −1.28728 −0.643638 0.765330i \(-0.722576\pi\)
−0.643638 + 0.765330i \(0.722576\pi\)
\(242\) −13.2291 −0.850401
\(243\) 0 0
\(244\) 5.53903 0.354600
\(245\) 0 0
\(246\) 0 0
\(247\) 9.55179 0.607766
\(248\) −1.70253 −0.108111
\(249\) 0 0
\(250\) −1.68554 −0.106603
\(251\) −4.93484 −0.311484 −0.155742 0.987798i \(-0.549777\pi\)
−0.155742 + 0.987798i \(0.549777\pi\)
\(252\) 0 0
\(253\) −7.42336 −0.466703
\(254\) −25.5298 −1.60188
\(255\) 0 0
\(256\) 17.1161 1.06976
\(257\) −1.55045 −0.0967141 −0.0483571 0.998830i \(-0.515399\pi\)
−0.0483571 + 0.998830i \(0.515399\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.56792 −0.159256
\(261\) 0 0
\(262\) 22.7973 1.40842
\(263\) −13.1165 −0.808797 −0.404399 0.914583i \(-0.632519\pi\)
−0.404399 + 0.914583i \(0.632519\pi\)
\(264\) 0 0
\(265\) 3.63899 0.223541
\(266\) 0 0
\(267\) 0 0
\(268\) 11.7918 0.720297
\(269\) 4.69676 0.286366 0.143183 0.989696i \(-0.454266\pi\)
0.143183 + 0.989696i \(0.454266\pi\)
\(270\) 0 0
\(271\) −17.6339 −1.07118 −0.535591 0.844477i \(-0.679911\pi\)
−0.535591 + 0.844477i \(0.679911\pi\)
\(272\) −37.7874 −2.29120
\(273\) 0 0
\(274\) −4.61819 −0.278995
\(275\) −1.77522 −0.107050
\(276\) 0 0
\(277\) −15.8528 −0.952500 −0.476250 0.879310i \(-0.658004\pi\)
−0.476250 + 0.879310i \(0.658004\pi\)
\(278\) 11.2576 0.675184
\(279\) 0 0
\(280\) 0 0
\(281\) −16.6779 −0.994923 −0.497461 0.867486i \(-0.665734\pi\)
−0.497461 + 0.867486i \(0.665734\pi\)
\(282\) 0 0
\(283\) 12.8129 0.761645 0.380823 0.924648i \(-0.375641\pi\)
0.380823 + 0.924648i \(0.375641\pi\)
\(284\) −5.16286 −0.306359
\(285\) 0 0
\(286\) −9.13585 −0.540214
\(287\) 0 0
\(288\) 0 0
\(289\) 40.6972 2.39395
\(290\) 11.9426 0.701295
\(291\) 0 0
\(292\) 6.46687 0.378445
\(293\) 6.57153 0.383913 0.191957 0.981403i \(-0.438517\pi\)
0.191957 + 0.981403i \(0.438517\pi\)
\(294\) 0 0
\(295\) 9.57060 0.557222
\(296\) −19.3660 −1.12562
\(297\) 0 0
\(298\) −2.29948 −0.133205
\(299\) 12.7674 0.738360
\(300\) 0 0
\(301\) 0 0
\(302\) −40.1197 −2.30863
\(303\) 0 0
\(304\) −15.5632 −0.892611
\(305\) −6.58579 −0.377101
\(306\) 0 0
\(307\) 15.3137 0.874000 0.437000 0.899462i \(-0.356041\pi\)
0.437000 + 0.899462i \(0.356041\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.46904 −0.0834359
\(311\) −15.7464 −0.892894 −0.446447 0.894810i \(-0.647311\pi\)
−0.446447 + 0.894810i \(0.647311\pi\)
\(312\) 0 0
\(313\) −20.0165 −1.13140 −0.565701 0.824610i \(-0.691394\pi\)
−0.565701 + 0.824610i \(0.691394\pi\)
\(314\) 21.4234 1.20899
\(315\) 0 0
\(316\) 11.8431 0.666225
\(317\) 22.8664 1.28431 0.642154 0.766576i \(-0.278041\pi\)
0.642154 + 0.766576i \(0.278041\pi\)
\(318\) 0 0
\(319\) 12.5780 0.704234
\(320\) −2.40120 −0.134231
\(321\) 0 0
\(322\) 0 0
\(323\) 23.7633 1.32222
\(324\) 0 0
\(325\) 3.05320 0.169361
\(326\) −16.3536 −0.905743
\(327\) 0 0
\(328\) −5.40604 −0.298499
\(329\) 0 0
\(330\) 0 0
\(331\) −12.3990 −0.681512 −0.340756 0.940152i \(-0.610683\pi\)
−0.340756 + 0.940152i \(0.610683\pi\)
\(332\) 10.7895 0.592148
\(333\) 0 0
\(334\) −21.6569 −1.18501
\(335\) −14.0202 −0.766003
\(336\) 0 0
\(337\) 0.625303 0.0340624 0.0170312 0.999855i \(-0.494579\pi\)
0.0170312 + 0.999855i \(0.494579\pi\)
\(338\) −6.19933 −0.337199
\(339\) 0 0
\(340\) −6.38857 −0.346469
\(341\) −1.54720 −0.0837856
\(342\) 0 0
\(343\) 0 0
\(344\) −0.620968 −0.0334804
\(345\) 0 0
\(346\) −26.9601 −1.44938
\(347\) 1.71653 0.0921481 0.0460740 0.998938i \(-0.485329\pi\)
0.0460740 + 0.998938i \(0.485329\pi\)
\(348\) 0 0
\(349\) −15.0491 −0.805557 −0.402779 0.915297i \(-0.631956\pi\)
−0.402779 + 0.915297i \(0.631956\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 7.94988 0.423730
\(353\) −22.4633 −1.19560 −0.597799 0.801646i \(-0.703958\pi\)
−0.597799 + 0.801646i \(0.703958\pi\)
\(354\) 0 0
\(355\) 6.13853 0.325799
\(356\) −4.06099 −0.215232
\(357\) 0 0
\(358\) 41.9375 2.21647
\(359\) −3.43208 −0.181138 −0.0905690 0.995890i \(-0.528869\pi\)
−0.0905690 + 0.995890i \(0.528869\pi\)
\(360\) 0 0
\(361\) −9.21282 −0.484885
\(362\) 5.36985 0.282233
\(363\) 0 0
\(364\) 0 0
\(365\) −7.68897 −0.402459
\(366\) 0 0
\(367\) 24.1908 1.26275 0.631375 0.775478i \(-0.282491\pi\)
0.631375 + 0.775478i \(0.282491\pi\)
\(368\) −20.8026 −1.08441
\(369\) 0 0
\(370\) −16.7101 −0.868715
\(371\) 0 0
\(372\) 0 0
\(373\) −0.856934 −0.0443704 −0.0221852 0.999754i \(-0.507062\pi\)
−0.0221852 + 0.999754i \(0.507062\pi\)
\(374\) −22.7285 −1.17526
\(375\) 0 0
\(376\) −20.4824 −1.05630
\(377\) −21.6329 −1.11415
\(378\) 0 0
\(379\) 5.63159 0.289275 0.144638 0.989485i \(-0.453798\pi\)
0.144638 + 0.989485i \(0.453798\pi\)
\(380\) −2.63121 −0.134978
\(381\) 0 0
\(382\) 3.95556 0.202384
\(383\) 5.39996 0.275925 0.137963 0.990437i \(-0.455945\pi\)
0.137963 + 0.990437i \(0.455945\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 38.9879 1.98443
\(387\) 0 0
\(388\) −13.9816 −0.709808
\(389\) −14.2485 −0.722430 −0.361215 0.932483i \(-0.617638\pi\)
−0.361215 + 0.932483i \(0.617638\pi\)
\(390\) 0 0
\(391\) 31.7633 1.60634
\(392\) 0 0
\(393\) 0 0
\(394\) 5.12229 0.258057
\(395\) −14.0811 −0.708499
\(396\) 0 0
\(397\) −11.6532 −0.584860 −0.292430 0.956287i \(-0.594464\pi\)
−0.292430 + 0.956287i \(0.594464\pi\)
\(398\) 7.45347 0.373609
\(399\) 0 0
\(400\) −4.97474 −0.248737
\(401\) 2.65778 0.132723 0.0663617 0.997796i \(-0.478861\pi\)
0.0663617 + 0.997796i \(0.478861\pi\)
\(402\) 0 0
\(403\) 2.66103 0.132555
\(404\) −10.4496 −0.519885
\(405\) 0 0
\(406\) 0 0
\(407\) −17.5991 −0.872356
\(408\) 0 0
\(409\) −26.9206 −1.33114 −0.665569 0.746337i \(-0.731811\pi\)
−0.665569 + 0.746337i \(0.731811\pi\)
\(410\) −4.66464 −0.230370
\(411\) 0 0
\(412\) 3.29169 0.162170
\(413\) 0 0
\(414\) 0 0
\(415\) −12.8284 −0.629723
\(416\) −13.6730 −0.670374
\(417\) 0 0
\(418\) −9.36099 −0.457861
\(419\) 15.1917 0.742165 0.371082 0.928600i \(-0.378987\pi\)
0.371082 + 0.928600i \(0.378987\pi\)
\(420\) 0 0
\(421\) −0.757744 −0.0369302 −0.0184651 0.999830i \(-0.505878\pi\)
−0.0184651 + 0.999830i \(0.505878\pi\)
\(422\) 7.70552 0.375099
\(423\) 0 0
\(424\) 7.10858 0.345223
\(425\) 7.59587 0.368454
\(426\) 0 0
\(427\) 0 0
\(428\) −3.13891 −0.151725
\(429\) 0 0
\(430\) −0.535806 −0.0258389
\(431\) −23.1091 −1.11313 −0.556563 0.830806i \(-0.687880\pi\)
−0.556563 + 0.830806i \(0.687880\pi\)
\(432\) 0 0
\(433\) 15.4522 0.742587 0.371294 0.928516i \(-0.378914\pi\)
0.371294 + 0.928516i \(0.378914\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.43986 0.308413
\(437\) 13.0821 0.625801
\(438\) 0 0
\(439\) −28.5843 −1.36425 −0.682127 0.731234i \(-0.738945\pi\)
−0.682127 + 0.731234i \(0.738945\pi\)
\(440\) −3.46780 −0.165321
\(441\) 0 0
\(442\) 39.0907 1.85935
\(443\) 22.1110 1.05052 0.525262 0.850941i \(-0.323967\pi\)
0.525262 + 0.850941i \(0.323967\pi\)
\(444\) 0 0
\(445\) 4.82843 0.228889
\(446\) 7.64530 0.362015
\(447\) 0 0
\(448\) 0 0
\(449\) 26.4393 1.24775 0.623875 0.781524i \(-0.285557\pi\)
0.623875 + 0.781524i \(0.285557\pi\)
\(450\) 0 0
\(451\) −4.91282 −0.231336
\(452\) −16.3184 −0.767554
\(453\) 0 0
\(454\) 14.2421 0.668415
\(455\) 0 0
\(456\) 0 0
\(457\) 35.0063 1.63753 0.818763 0.574132i \(-0.194660\pi\)
0.818763 + 0.574132i \(0.194660\pi\)
\(458\) 32.1451 1.50204
\(459\) 0 0
\(460\) −3.51701 −0.163982
\(461\) 8.77790 0.408828 0.204414 0.978885i \(-0.434471\pi\)
0.204414 + 0.978885i \(0.434471\pi\)
\(462\) 0 0
\(463\) −42.1655 −1.95960 −0.979799 0.199983i \(-0.935911\pi\)
−0.979799 + 0.199983i \(0.935911\pi\)
\(464\) 35.2476 1.63633
\(465\) 0 0
\(466\) −15.3098 −0.709215
\(467\) 11.1275 0.514919 0.257460 0.966289i \(-0.417115\pi\)
0.257460 + 0.966289i \(0.417115\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −17.6734 −0.815213
\(471\) 0 0
\(472\) 18.6957 0.860538
\(473\) −0.564314 −0.0259472
\(474\) 0 0
\(475\) 3.12845 0.143543
\(476\) 0 0
\(477\) 0 0
\(478\) 28.9124 1.32242
\(479\) 24.5949 1.12377 0.561886 0.827215i \(-0.310076\pi\)
0.561886 + 0.827215i \(0.310076\pi\)
\(480\) 0 0
\(481\) 30.2687 1.38013
\(482\) −33.6837 −1.53425
\(483\) 0 0
\(484\) −6.60112 −0.300051
\(485\) 16.6238 0.754848
\(486\) 0 0
\(487\) −33.1665 −1.50292 −0.751458 0.659781i \(-0.770649\pi\)
−0.751458 + 0.659781i \(0.770649\pi\)
\(488\) −12.8650 −0.582371
\(489\) 0 0
\(490\) 0 0
\(491\) −25.8513 −1.16665 −0.583326 0.812238i \(-0.698249\pi\)
−0.583326 + 0.812238i \(0.698249\pi\)
\(492\) 0 0
\(493\) −53.8191 −2.42389
\(494\) 16.1000 0.724371
\(495\) 0 0
\(496\) −4.33575 −0.194681
\(497\) 0 0
\(498\) 0 0
\(499\) 0.610504 0.0273299 0.0136650 0.999907i \(-0.495650\pi\)
0.0136650 + 0.999907i \(0.495650\pi\)
\(500\) −0.841058 −0.0376133
\(501\) 0 0
\(502\) −8.31788 −0.371245
\(503\) 9.49080 0.423174 0.211587 0.977359i \(-0.432137\pi\)
0.211587 + 0.977359i \(0.432137\pi\)
\(504\) 0 0
\(505\) 12.4243 0.552874
\(506\) −12.5124 −0.556244
\(507\) 0 0
\(508\) −12.7389 −0.565199
\(509\) −21.6673 −0.960387 −0.480193 0.877163i \(-0.659434\pi\)
−0.480193 + 0.877163i \(0.659434\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 2.84232 0.125614
\(513\) 0 0
\(514\) −2.61334 −0.115270
\(515\) −3.91375 −0.172460
\(516\) 0 0
\(517\) −18.6137 −0.818630
\(518\) 0 0
\(519\) 0 0
\(520\) 5.96427 0.261551
\(521\) 34.3939 1.50683 0.753413 0.657548i \(-0.228406\pi\)
0.753413 + 0.657548i \(0.228406\pi\)
\(522\) 0 0
\(523\) 22.7779 0.996008 0.498004 0.867175i \(-0.334066\pi\)
0.498004 + 0.867175i \(0.334066\pi\)
\(524\) 11.3755 0.496940
\(525\) 0 0
\(526\) −22.1084 −0.963973
\(527\) 6.62020 0.288380
\(528\) 0 0
\(529\) −5.51379 −0.239730
\(530\) 6.13368 0.266430
\(531\) 0 0
\(532\) 0 0
\(533\) 8.44955 0.365991
\(534\) 0 0
\(535\) 3.73210 0.161353
\(536\) −27.3876 −1.18297
\(537\) 0 0
\(538\) 7.91659 0.341308
\(539\) 0 0
\(540\) 0 0
\(541\) 27.4045 1.17821 0.589107 0.808055i \(-0.299480\pi\)
0.589107 + 0.808055i \(0.299480\pi\)
\(542\) −29.7227 −1.27670
\(543\) 0 0
\(544\) −34.0161 −1.45843
\(545\) −7.65685 −0.327984
\(546\) 0 0
\(547\) −18.1421 −0.775702 −0.387851 0.921722i \(-0.626782\pi\)
−0.387851 + 0.921722i \(0.626782\pi\)
\(548\) −2.30440 −0.0984391
\(549\) 0 0
\(550\) −2.99222 −0.127589
\(551\) −22.1661 −0.944306
\(552\) 0 0
\(553\) 0 0
\(554\) −26.7205 −1.13525
\(555\) 0 0
\(556\) 5.61734 0.238228
\(557\) −22.0582 −0.934635 −0.467318 0.884090i \(-0.654780\pi\)
−0.467318 + 0.884090i \(0.654780\pi\)
\(558\) 0 0
\(559\) 0.970563 0.0410504
\(560\) 0 0
\(561\) 0 0
\(562\) −28.1114 −1.18581
\(563\) −10.1577 −0.428096 −0.214048 0.976823i \(-0.568665\pi\)
−0.214048 + 0.976823i \(0.568665\pi\)
\(564\) 0 0
\(565\) 19.4023 0.816259
\(566\) 21.5966 0.907774
\(567\) 0 0
\(568\) 11.9913 0.503143
\(569\) 42.5256 1.78277 0.891383 0.453251i \(-0.149736\pi\)
0.891383 + 0.453251i \(0.149736\pi\)
\(570\) 0 0
\(571\) −22.7688 −0.952844 −0.476422 0.879217i \(-0.658067\pi\)
−0.476422 + 0.879217i \(0.658067\pi\)
\(572\) −4.55864 −0.190606
\(573\) 0 0
\(574\) 0 0
\(575\) 4.18165 0.174387
\(576\) 0 0
\(577\) −40.4467 −1.68382 −0.841909 0.539619i \(-0.818568\pi\)
−0.841909 + 0.539619i \(0.818568\pi\)
\(578\) 68.5969 2.85325
\(579\) 0 0
\(580\) 5.95917 0.247441
\(581\) 0 0
\(582\) 0 0
\(583\) 6.46002 0.267547
\(584\) −15.0200 −0.621532
\(585\) 0 0
\(586\) 11.0766 0.457570
\(587\) 21.7918 0.899443 0.449721 0.893169i \(-0.351523\pi\)
0.449721 + 0.893169i \(0.351523\pi\)
\(588\) 0 0
\(589\) 2.72661 0.112348
\(590\) 16.1317 0.664130
\(591\) 0 0
\(592\) −49.3183 −2.02697
\(593\) −2.09084 −0.0858605 −0.0429303 0.999078i \(-0.513669\pi\)
−0.0429303 + 0.999078i \(0.513669\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.14740 −0.0469993
\(597\) 0 0
\(598\) 21.5201 0.880021
\(599\) 21.7247 0.887647 0.443824 0.896114i \(-0.353622\pi\)
0.443824 + 0.896114i \(0.353622\pi\)
\(600\) 0 0
\(601\) 15.6711 0.639238 0.319619 0.947546i \(-0.396445\pi\)
0.319619 + 0.947546i \(0.396445\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.0191 −0.814564
\(605\) 7.84858 0.319090
\(606\) 0 0
\(607\) 15.3688 0.623801 0.311901 0.950115i \(-0.399034\pi\)
0.311901 + 0.950115i \(0.399034\pi\)
\(608\) −14.0100 −0.568179
\(609\) 0 0
\(610\) −11.1006 −0.449451
\(611\) 32.0137 1.29514
\(612\) 0 0
\(613\) −24.9958 −1.00957 −0.504786 0.863245i \(-0.668429\pi\)
−0.504786 + 0.863245i \(0.668429\pi\)
\(614\) 25.8119 1.04168
\(615\) 0 0
\(616\) 0 0
\(617\) −23.9738 −0.965148 −0.482574 0.875855i \(-0.660298\pi\)
−0.482574 + 0.875855i \(0.660298\pi\)
\(618\) 0 0
\(619\) −7.31466 −0.294001 −0.147000 0.989136i \(-0.546962\pi\)
−0.147000 + 0.989136i \(0.546962\pi\)
\(620\) −0.733027 −0.0294391
\(621\) 0 0
\(622\) −26.5412 −1.06420
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −33.7388 −1.34847
\(627\) 0 0
\(628\) 10.6899 0.426573
\(629\) 75.3035 3.00255
\(630\) 0 0
\(631\) 1.18204 0.0470561 0.0235281 0.999723i \(-0.492510\pi\)
0.0235281 + 0.999723i \(0.492510\pi\)
\(632\) −27.5068 −1.09416
\(633\) 0 0
\(634\) 38.5424 1.53071
\(635\) 15.1463 0.601063
\(636\) 0 0
\(637\) 0 0
\(638\) 21.2008 0.839348
\(639\) 0 0
\(640\) −13.0038 −0.514021
\(641\) 40.6917 1.60722 0.803612 0.595154i \(-0.202909\pi\)
0.803612 + 0.595154i \(0.202909\pi\)
\(642\) 0 0
\(643\) 20.2771 0.799649 0.399824 0.916592i \(-0.369071\pi\)
0.399824 + 0.916592i \(0.369071\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 40.0540 1.57590
\(647\) 39.8990 1.56859 0.784295 0.620388i \(-0.213025\pi\)
0.784295 + 0.620388i \(0.213025\pi\)
\(648\) 0 0
\(649\) 16.9900 0.666914
\(650\) 5.14631 0.201855
\(651\) 0 0
\(652\) −8.16018 −0.319577
\(653\) −7.10318 −0.277969 −0.138985 0.990295i \(-0.544384\pi\)
−0.138985 + 0.990295i \(0.544384\pi\)
\(654\) 0 0
\(655\) −13.5252 −0.528473
\(656\) −13.7673 −0.537522
\(657\) 0 0
\(658\) 0 0
\(659\) 20.8404 0.811826 0.405913 0.913912i \(-0.366954\pi\)
0.405913 + 0.913912i \(0.366954\pi\)
\(660\) 0 0
\(661\) 41.5545 1.61628 0.808141 0.588989i \(-0.200474\pi\)
0.808141 + 0.588989i \(0.200474\pi\)
\(662\) −20.8991 −0.812267
\(663\) 0 0
\(664\) −25.0597 −0.972503
\(665\) 0 0
\(666\) 0 0
\(667\) −29.6283 −1.14721
\(668\) −10.8064 −0.418113
\(669\) 0 0
\(670\) −23.6316 −0.912968
\(671\) −11.6912 −0.451335
\(672\) 0 0
\(673\) −5.34943 −0.206206 −0.103103 0.994671i \(-0.532877\pi\)
−0.103103 + 0.994671i \(0.532877\pi\)
\(674\) 1.05397 0.0405976
\(675\) 0 0
\(676\) −3.09336 −0.118976
\(677\) −2.83488 −0.108953 −0.0544766 0.998515i \(-0.517349\pi\)
−0.0544766 + 0.998515i \(0.517349\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 14.8381 0.569016
\(681\) 0 0
\(682\) −2.60787 −0.0998607
\(683\) −23.1724 −0.886666 −0.443333 0.896357i \(-0.646204\pi\)
−0.443333 + 0.896357i \(0.646204\pi\)
\(684\) 0 0
\(685\) 2.73988 0.104685
\(686\) 0 0
\(687\) 0 0
\(688\) −1.58139 −0.0602898
\(689\) −11.1106 −0.423280
\(690\) 0 0
\(691\) −38.9678 −1.48240 −0.741202 0.671283i \(-0.765744\pi\)
−0.741202 + 0.671283i \(0.765744\pi\)
\(692\) −13.4526 −0.511393
\(693\) 0 0
\(694\) 2.89328 0.109828
\(695\) −6.67889 −0.253345
\(696\) 0 0
\(697\) 21.0211 0.796230
\(698\) −25.3658 −0.960111
\(699\) 0 0
\(700\) 0 0
\(701\) −20.2421 −0.764533 −0.382267 0.924052i \(-0.624856\pi\)
−0.382267 + 0.924052i \(0.624856\pi\)
\(702\) 0 0
\(703\) 31.0146 1.16974
\(704\) −4.26266 −0.160655
\(705\) 0 0
\(706\) −37.8628 −1.42499
\(707\) 0 0
\(708\) 0 0
\(709\) −32.2128 −1.20978 −0.604889 0.796310i \(-0.706782\pi\)
−0.604889 + 0.796310i \(0.706782\pi\)
\(710\) 10.3468 0.388307
\(711\) 0 0
\(712\) 9.43208 0.353482
\(713\) 3.64453 0.136489
\(714\) 0 0
\(715\) 5.42012 0.202701
\(716\) 20.9261 0.782046
\(717\) 0 0
\(718\) −5.78492 −0.215891
\(719\) 8.45867 0.315455 0.157728 0.987483i \(-0.449583\pi\)
0.157728 + 0.987483i \(0.449583\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.5286 −0.577915
\(723\) 0 0
\(724\) 2.67947 0.0995816
\(725\) −7.08532 −0.263142
\(726\) 0 0
\(727\) −11.6550 −0.432260 −0.216130 0.976365i \(-0.569343\pi\)
−0.216130 + 0.976365i \(0.569343\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −12.9601 −0.479675
\(731\) 2.41460 0.0893072
\(732\) 0 0
\(733\) 13.0182 0.480840 0.240420 0.970669i \(-0.422715\pi\)
0.240420 + 0.970669i \(0.422715\pi\)
\(734\) 40.7747 1.50502
\(735\) 0 0
\(736\) −18.7265 −0.690266
\(737\) −24.8889 −0.916794
\(738\) 0 0
\(739\) −24.3413 −0.895409 −0.447704 0.894182i \(-0.647758\pi\)
−0.447704 + 0.894182i \(0.647758\pi\)
\(740\) −8.33804 −0.306512
\(741\) 0 0
\(742\) 0 0
\(743\) 12.1174 0.444545 0.222272 0.974985i \(-0.428653\pi\)
0.222272 + 0.974985i \(0.428653\pi\)
\(744\) 0 0
\(745\) 1.36423 0.0499816
\(746\) −1.44440 −0.0528833
\(747\) 0 0
\(748\) −11.3411 −0.414673
\(749\) 0 0
\(750\) 0 0
\(751\) 11.3779 0.415187 0.207594 0.978215i \(-0.433437\pi\)
0.207594 + 0.978215i \(0.433437\pi\)
\(752\) −52.1615 −1.90214
\(753\) 0 0
\(754\) −36.4633 −1.32791
\(755\) 23.8022 0.866252
\(756\) 0 0
\(757\) −30.5664 −1.11096 −0.555478 0.831531i \(-0.687465\pi\)
−0.555478 + 0.831531i \(0.687465\pi\)
\(758\) 9.49230 0.344776
\(759\) 0 0
\(760\) 6.11126 0.221679
\(761\) −10.3128 −0.373838 −0.186919 0.982375i \(-0.559850\pi\)
−0.186919 + 0.982375i \(0.559850\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.97376 0.0714081
\(765\) 0 0
\(766\) 9.10187 0.328864
\(767\) −29.2210 −1.05511
\(768\) 0 0
\(769\) 4.12788 0.148855 0.0744276 0.997226i \(-0.476287\pi\)
0.0744276 + 0.997226i \(0.476287\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 19.4543 0.700176
\(773\) 13.1041 0.471323 0.235661 0.971835i \(-0.424274\pi\)
0.235661 + 0.971835i \(0.424274\pi\)
\(774\) 0 0
\(775\) 0.871553 0.0313071
\(776\) 32.4737 1.16574
\(777\) 0 0
\(778\) −24.0165 −0.861035
\(779\) 8.65778 0.310197
\(780\) 0 0
\(781\) 10.8972 0.389934
\(782\) 53.5384 1.91453
\(783\) 0 0
\(784\) 0 0
\(785\) −12.7101 −0.453641
\(786\) 0 0
\(787\) 8.39444 0.299230 0.149615 0.988744i \(-0.452197\pi\)
0.149615 + 0.988744i \(0.452197\pi\)
\(788\) 2.55594 0.0910514
\(789\) 0 0
\(790\) −23.7344 −0.844432
\(791\) 0 0
\(792\) 0 0
\(793\) 20.1078 0.714047
\(794\) −19.6421 −0.697070
\(795\) 0 0
\(796\) 3.71916 0.131822
\(797\) 16.8032 0.595199 0.297599 0.954691i \(-0.403814\pi\)
0.297599 + 0.954691i \(0.403814\pi\)
\(798\) 0 0
\(799\) 79.6448 2.81763
\(800\) −4.47824 −0.158330
\(801\) 0 0
\(802\) 4.47981 0.158188
\(803\) −13.6496 −0.481685
\(804\) 0 0
\(805\) 0 0
\(806\) 4.48528 0.157987
\(807\) 0 0
\(808\) 24.2702 0.853823
\(809\) −19.6926 −0.692354 −0.346177 0.938169i \(-0.612520\pi\)
−0.346177 + 0.938169i \(0.612520\pi\)
\(810\) 0 0
\(811\) 17.3568 0.609481 0.304740 0.952435i \(-0.401430\pi\)
0.304740 + 0.952435i \(0.401430\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −29.6641 −1.03973
\(815\) 9.70227 0.339856
\(816\) 0 0
\(817\) 0.994481 0.0347925
\(818\) −45.3758 −1.58653
\(819\) 0 0
\(820\) −2.32758 −0.0812825
\(821\) −35.9696 −1.25535 −0.627674 0.778476i \(-0.715993\pi\)
−0.627674 + 0.778476i \(0.715993\pi\)
\(822\) 0 0
\(823\) −31.1463 −1.08569 −0.542846 0.839832i \(-0.682653\pi\)
−0.542846 + 0.839832i \(0.682653\pi\)
\(824\) −7.64530 −0.266337
\(825\) 0 0
\(826\) 0 0
\(827\) 52.2577 1.81718 0.908589 0.417691i \(-0.137161\pi\)
0.908589 + 0.417691i \(0.137161\pi\)
\(828\) 0 0
\(829\) 4.55083 0.158057 0.0790284 0.996872i \(-0.474818\pi\)
0.0790284 + 0.996872i \(0.474818\pi\)
\(830\) −21.6229 −0.750541
\(831\) 0 0
\(832\) 7.33135 0.254169
\(833\) 0 0
\(834\) 0 0
\(835\) 12.8486 0.444644
\(836\) −4.67098 −0.161549
\(837\) 0 0
\(838\) 25.6063 0.884556
\(839\) −43.3994 −1.49832 −0.749158 0.662392i \(-0.769541\pi\)
−0.749158 + 0.662392i \(0.769541\pi\)
\(840\) 0 0
\(841\) 21.2018 0.731096
\(842\) −1.27721 −0.0440156
\(843\) 0 0
\(844\) 3.84493 0.132348
\(845\) 3.67794 0.126525
\(846\) 0 0
\(847\) 0 0
\(848\) 18.1030 0.621660
\(849\) 0 0
\(850\) 12.8032 0.439145
\(851\) 41.4558 1.42109
\(852\) 0 0
\(853\) −11.9238 −0.408263 −0.204132 0.978943i \(-0.565437\pi\)
−0.204132 + 0.978943i \(0.565437\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 7.29045 0.249183
\(857\) 34.5003 1.17851 0.589254 0.807947i \(-0.299422\pi\)
0.589254 + 0.807947i \(0.299422\pi\)
\(858\) 0 0
\(859\) 48.5311 1.65586 0.827930 0.560831i \(-0.189518\pi\)
0.827930 + 0.560831i \(0.189518\pi\)
\(860\) −0.267358 −0.00911685
\(861\) 0 0
\(862\) −38.9514 −1.32669
\(863\) −37.2431 −1.26777 −0.633884 0.773428i \(-0.718540\pi\)
−0.633884 + 0.773428i \(0.718540\pi\)
\(864\) 0 0
\(865\) 15.9949 0.543843
\(866\) 26.0454 0.885059
\(867\) 0 0
\(868\) 0 0
\(869\) −24.9972 −0.847971
\(870\) 0 0
\(871\) 42.8064 1.45044
\(872\) −14.9573 −0.506517
\(873\) 0 0
\(874\) 22.0504 0.745866
\(875\) 0 0
\(876\) 0 0
\(877\) 22.4399 0.757740 0.378870 0.925450i \(-0.376313\pi\)
0.378870 + 0.925450i \(0.376313\pi\)
\(878\) −48.1801 −1.62600
\(879\) 0 0
\(880\) −8.83127 −0.297702
\(881\) −15.4844 −0.521681 −0.260841 0.965382i \(-0.584000\pi\)
−0.260841 + 0.965382i \(0.584000\pi\)
\(882\) 0 0
\(883\) 7.19173 0.242021 0.121011 0.992651i \(-0.461387\pi\)
0.121011 + 0.992651i \(0.461387\pi\)
\(884\) 19.5056 0.656044
\(885\) 0 0
\(886\) 37.2690 1.25208
\(887\) −26.8201 −0.900530 −0.450265 0.892895i \(-0.648670\pi\)
−0.450265 + 0.892895i \(0.648670\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 8.13853 0.272804
\(891\) 0 0
\(892\) 3.81488 0.127732
\(893\) 32.8026 1.09770
\(894\) 0 0
\(895\) −24.8807 −0.831670
\(896\) 0 0
\(897\) 0 0
\(898\) 44.5647 1.48714
\(899\) −6.17523 −0.205956
\(900\) 0 0
\(901\) −27.6413 −0.920865
\(902\) −8.28077 −0.275720
\(903\) 0 0
\(904\) 37.9013 1.26058
\(905\) −3.18583 −0.105900
\(906\) 0 0
\(907\) 22.5054 0.747281 0.373640 0.927574i \(-0.378109\pi\)
0.373640 + 0.927574i \(0.378109\pi\)
\(908\) 7.10657 0.235840
\(909\) 0 0
\(910\) 0 0
\(911\) 41.8798 1.38754 0.693769 0.720197i \(-0.255949\pi\)
0.693769 + 0.720197i \(0.255949\pi\)
\(912\) 0 0
\(913\) −22.7733 −0.753687
\(914\) 59.0046 1.95170
\(915\) 0 0
\(916\) 16.0399 0.529973
\(917\) 0 0
\(918\) 0 0
\(919\) −13.8119 −0.455613 −0.227807 0.973706i \(-0.573155\pi\)
−0.227807 + 0.973706i \(0.573155\pi\)
\(920\) 8.16864 0.269312
\(921\) 0 0
\(922\) 14.7955 0.487265
\(923\) −18.7422 −0.616906
\(924\) 0 0
\(925\) 9.91375 0.325962
\(926\) −71.0719 −2.33557
\(927\) 0 0
\(928\) 31.7298 1.04158
\(929\) −1.12291 −0.0368414 −0.0184207 0.999830i \(-0.505864\pi\)
−0.0184207 + 0.999830i \(0.505864\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7.63936 −0.250235
\(933\) 0 0
\(934\) 18.7559 0.613711
\(935\) 13.4844 0.440985
\(936\) 0 0
\(937\) 1.43208 0.0467839 0.0233920 0.999726i \(-0.492553\pi\)
0.0233920 + 0.999726i \(0.492553\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −8.81873 −0.287635
\(941\) 19.6972 0.642109 0.321055 0.947061i \(-0.395963\pi\)
0.321055 + 0.947061i \(0.395963\pi\)
\(942\) 0 0
\(943\) 11.5725 0.376851
\(944\) 47.6112 1.54961
\(945\) 0 0
\(946\) −0.951175 −0.0309254
\(947\) −25.1807 −0.818264 −0.409132 0.912475i \(-0.634168\pi\)
−0.409132 + 0.912475i \(0.634168\pi\)
\(948\) 0 0
\(949\) 23.4760 0.762063
\(950\) 5.27314 0.171083
\(951\) 0 0
\(952\) 0 0
\(953\) −47.0884 −1.52534 −0.762671 0.646786i \(-0.776113\pi\)
−0.762671 + 0.646786i \(0.776113\pi\)
\(954\) 0 0
\(955\) −2.34676 −0.0759392
\(956\) 14.4268 0.466596
\(957\) 0 0
\(958\) 41.4558 1.33938
\(959\) 0 0
\(960\) 0 0
\(961\) −30.2404 −0.975497
\(962\) 51.0192 1.64493
\(963\) 0 0
\(964\) −16.8076 −0.541337
\(965\) −23.1307 −0.744605
\(966\) 0 0
\(967\) −2.32113 −0.0746425 −0.0373212 0.999303i \(-0.511882\pi\)
−0.0373212 + 0.999303i \(0.511882\pi\)
\(968\) 15.3318 0.492783
\(969\) 0 0
\(970\) 28.0202 0.899673
\(971\) −12.5592 −0.403044 −0.201522 0.979484i \(-0.564589\pi\)
−0.201522 + 0.979484i \(0.564589\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −55.9035 −1.79126
\(975\) 0 0
\(976\) −32.7626 −1.04870
\(977\) 9.66637 0.309255 0.154627 0.987973i \(-0.450582\pi\)
0.154627 + 0.987973i \(0.450582\pi\)
\(978\) 0 0
\(979\) 8.57153 0.273947
\(980\) 0 0
\(981\) 0 0
\(982\) −43.5734 −1.39048
\(983\) −46.0559 −1.46895 −0.734477 0.678633i \(-0.762573\pi\)
−0.734477 + 0.678633i \(0.762573\pi\)
\(984\) 0 0
\(985\) −3.03895 −0.0968290
\(986\) −90.7145 −2.88894
\(987\) 0 0
\(988\) 8.03361 0.255583
\(989\) 1.32928 0.0422686
\(990\) 0 0
\(991\) 27.8138 0.883534 0.441767 0.897130i \(-0.354352\pi\)
0.441767 + 0.897130i \(0.354352\pi\)
\(992\) −3.90303 −0.123921
\(993\) 0 0
\(994\) 0 0
\(995\) −4.42200 −0.140187
\(996\) 0 0
\(997\) −46.5505 −1.47427 −0.737134 0.675746i \(-0.763822\pi\)
−0.737134 + 0.675746i \(0.763822\pi\)
\(998\) 1.02903 0.0325734
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.a.bf.1.4 4
3.2 odd 2 735.2.a.n.1.1 4
7.6 odd 2 2205.2.a.bg.1.4 4
15.14 odd 2 3675.2.a.bl.1.4 4
21.2 odd 6 735.2.i.n.361.4 8
21.5 even 6 735.2.i.m.361.4 8
21.11 odd 6 735.2.i.n.226.4 8
21.17 even 6 735.2.i.m.226.4 8
21.20 even 2 735.2.a.o.1.1 yes 4
105.104 even 2 3675.2.a.bk.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.a.n.1.1 4 3.2 odd 2
735.2.a.o.1.1 yes 4 21.20 even 2
735.2.i.m.226.4 8 21.17 even 6
735.2.i.m.361.4 8 21.5 even 6
735.2.i.n.226.4 8 21.11 odd 6
735.2.i.n.361.4 8 21.2 odd 6
2205.2.a.bf.1.4 4 1.1 even 1 trivial
2205.2.a.bg.1.4 4 7.6 odd 2
3675.2.a.bk.1.4 4 105.104 even 2
3675.2.a.bl.1.4 4 15.14 odd 2