Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(31,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 0, 6]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.31");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.s (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 | −1.99781 | + | 0.0935586i | −3.38992 | − | 4.66582i | 3.98249 | − | 0.373825i | −0.690983 | − | 2.12663i | 7.20895 | + | 9.00428i | −3.89563 | + | 5.36188i | −7.92129 | + | 1.11943i | −7.49721 | + | 23.0740i | 1.57942 | + | 4.18395i |
31.2 | −1.96516 | − | 0.371672i | 0.447988 | + | 0.616603i | 3.72372 | + | 1.46079i | −0.690983 | − | 2.12663i | −0.651195 | − | 1.37823i | −5.62557 | + | 7.74293i | −6.77478 | − | 4.25469i | 2.60165 | − | 8.00705i | 0.567486 | + | 4.43598i |
31.3 | −1.94215 | + | 0.477555i | 2.93429 | + | 4.03870i | 3.54388 | − | 1.85497i | −0.690983 | − | 2.12663i | −7.62752 | − | 6.44247i | 0.424350 | − | 0.584067i | −5.99690 | + | 5.29502i | −4.91989 | + | 15.1419i | 2.35757 | + | 3.80024i |
31.4 | −1.66947 | + | 1.10131i | 1.47345 | + | 2.02803i | 1.57424 | − | 3.67719i | −0.690983 | − | 2.12663i | −4.69337 | − | 1.76301i | 2.86785 | − | 3.94726i | 1.42157 | + | 7.87268i | 0.839295 | − | 2.58308i | 3.49564 | + | 2.78935i |
31.5 | −1.63161 | + | 1.15665i | −1.85697 | − | 2.55591i | 1.32432 | − | 3.77441i | −0.690983 | − | 2.12663i | 5.98615 | + | 2.02238i | 3.39664 | − | 4.67507i | 2.20489 | + | 7.69015i | −0.303148 | + | 0.932993i | 3.58718 | + | 2.67061i |
31.6 | −1.57173 | − | 1.23680i | 1.77551 | + | 2.44378i | 0.940640 | + | 3.88783i | −0.690983 | − | 2.12663i | 0.231859 | − | 6.03691i | −0.489029 | + | 0.673091i | 3.33004 | − | 7.27398i | −0.0384734 | + | 0.118409i | −1.54418 | + | 4.19708i |
31.7 | −1.56762 | − | 1.24200i | −2.15722 | − | 2.96915i | 0.914856 | + | 3.89397i | −0.690983 | − | 2.12663i | −0.306006 | + | 7.33377i | 6.01155 | − | 8.27419i | 3.40218 | − | 7.24052i | −1.38114 | + | 4.25070i | −1.55808 | + | 4.19194i |
31.8 | −1.07903 | − | 1.68395i | −2.03349 | − | 2.79886i | −1.67137 | + | 3.63408i | −0.690983 | − | 2.12663i | −2.51894 | + | 6.44437i | −6.89923 | + | 9.49598i | 7.92307 | − | 1.10678i | −0.917387 | + | 2.82343i | −2.83554 | + | 3.45828i |
31.9 | −1.06001 | + | 1.69599i | −0.573224 | − | 0.788975i | −1.75275 | − | 3.59553i | −0.690983 | − | 2.12663i | 1.94572 | − | 0.135859i | −4.04910 | + | 5.57311i | 7.95592 | + | 0.838656i | 2.48726 | − | 7.65499i | 4.33918 | + | 1.08235i |
31.10 | −0.759891 | − | 1.85002i | 0.449591 | + | 0.618809i | −2.84513 | + | 2.81162i | −0.690983 | − | 2.12663i | 0.803167 | − | 1.30198i | 3.24183 | − | 4.46200i | 7.36354 | + | 3.12701i | 2.60036 | − | 8.00309i | −3.40923 | + | 2.89434i |
31.11 | −0.367625 | − | 1.96592i | 3.13168 | + | 4.31039i | −3.72970 | + | 1.44544i | −0.690983 | − | 2.12663i | 7.32262 | − | 7.74126i | −5.92221 | + | 8.15122i | 4.21276 | + | 6.80093i | −5.99089 | + | 18.4381i | −3.92676 | + | 2.14022i |
31.12 | −0.139310 | + | 1.99514i | 0.573224 | + | 0.788975i | −3.96119 | − | 0.555886i | −0.690983 | − | 2.12663i | −1.65397 | + | 1.03375i | 4.04910 | − | 5.57311i | 1.66091 | − | 7.82569i | 2.48726 | − | 7.65499i | 4.33918 | − | 1.08235i |
31.13 | 0.486802 | − | 1.93985i | −1.63335 | − | 2.24812i | −3.52605 | − | 1.88865i | −0.690983 | − | 2.12663i | −5.15613 | + | 2.07407i | −2.89334 | + | 3.98235i | −5.38018 | + | 5.92061i | 0.394966 | − | 1.21558i | −4.46171 | + | 0.305158i |
31.14 | 0.640141 | + | 1.89479i | 1.85697 | + | 2.55591i | −3.18044 | + | 2.42586i | −0.690983 | − | 2.12663i | −3.65417 | + | 5.15471i | −3.39664 | + | 4.67507i | −6.63242 | − | 4.47336i | −0.303148 | + | 0.932993i | 3.58718 | − | 2.67061i |
31.15 | 0.703296 | + | 1.87226i | −1.47345 | − | 2.02803i | −3.01075 | + | 2.63351i | −0.690983 | − | 2.12663i | 2.76074 | − | 4.18500i | −2.86785 | + | 3.94726i | −7.04808 | − | 3.78479i | 0.839295 | − | 2.58308i | 3.49564 | − | 2.78935i |
31.16 | 0.746385 | − | 1.85551i | 1.63335 | + | 2.24812i | −2.88582 | − | 2.76985i | −0.690983 | − | 2.12663i | 5.39051 | − | 1.35274i | 2.89334 | − | 3.98235i | −7.29340 | + | 3.28729i | 0.394966 | − | 1.21558i | −4.46171 | − | 0.305158i |
31.17 | 1.29053 | + | 1.52792i | −2.93429 | − | 4.03870i | −0.669057 | + | 3.94365i | −0.690983 | − | 2.12663i | 2.38400 | − | 9.69541i | −0.424350 | + | 0.584067i | −6.88900 | + | 4.06714i | −4.91989 | + | 15.1419i | 2.35757 | − | 3.80024i |
31.18 | 1.45296 | − | 1.37438i | −3.13168 | − | 4.31039i | 0.222157 | − | 3.99383i | −0.690983 | − | 2.12663i | −10.4743 | − | 1.95868i | 5.92221 | − | 8.15122i | −5.16625 | − | 6.10818i | −5.99089 | + | 18.4381i | −3.92676 | − | 2.14022i |
31.19 | 1.56127 | + | 1.24997i | 3.38992 | + | 4.66582i | 0.875130 | + | 3.90309i | −0.690983 | − | 2.12663i | −0.539578 | + | 11.5219i | 3.89563 | − | 5.36188i | −3.51245 | + | 7.18768i | −7.49721 | + | 23.0740i | 1.57942 | − | 4.18395i |
31.20 | 1.70218 | − | 1.05004i | −0.449591 | − | 0.618809i | 1.79482 | − | 3.57472i | −0.690983 | − | 2.12663i | −1.41506 | − | 0.581233i | −3.24183 | + | 4.46200i | −0.698506 | − | 7.96945i | 2.60036 | − | 8.00309i | −3.40923 | − | 2.89434i |
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
44.h | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.s.b | ✓ | 96 |
4.b | odd | 2 | 1 | inner | 220.3.s.b | ✓ | 96 |
11.c | even | 5 | 1 | inner | 220.3.s.b | ✓ | 96 |
44.h | odd | 10 | 1 | inner | 220.3.s.b | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.s.b | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
220.3.s.b | ✓ | 96 | 4.b | odd | 2 | 1 | inner |
220.3.s.b | ✓ | 96 | 11.c | even | 5 | 1 | inner |
220.3.s.b | ✓ | 96 | 44.h | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{96} - 140 T_{3}^{94} + 11350 T_{3}^{92} - 700874 T_{3}^{90} + 36753095 T_{3}^{88} + \cdots + 95\!\cdots\!00 \) acting on \(S_{3}^{\mathrm{new}}(220, [\chi])\).