Properties

Label 220.2.m.b.141.1
Level $220$
Weight $2$
Character 220.141
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(81,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.m (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 141.1
Root \(-0.762262 + 2.34600i\) of defining polynomial
Character \(\chi\) \(=\) 220.141
Dual form 220.2.m.b.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686611 + 0.498852i) q^{3} +(0.309017 + 0.951057i) q^{5} +(0.762262 + 0.553816i) q^{7} +(-0.704470 + 2.16813i) q^{9} +(3.28679 - 0.443888i) q^{11} +(-1.40919 + 4.33705i) q^{13} +(-0.686611 - 0.498852i) q^{15} +(0.759560 + 2.33769i) q^{17} +(1.84433 - 1.33998i) q^{19} -0.799650 q^{21} +0.329578 q^{23} +(-0.809017 + 0.587785i) q^{25} +(-1.38467 - 4.26157i) q^{27} +(1.08914 + 0.791305i) q^{29} +(1.49730 - 4.60821i) q^{31} +(-2.03531 + 1.94440i) q^{33} +(-0.291158 + 0.896093i) q^{35} +(-5.07332 - 3.68598i) q^{37} +(-1.19598 - 3.68084i) q^{39} +(8.84266 - 6.42457i) q^{41} -12.4713 q^{43} -2.27971 q^{45} +(7.81335 - 5.67673i) q^{47} +(-1.88879 - 5.81309i) q^{49} +(-1.68768 - 1.22617i) q^{51} +(-1.70869 + 5.25879i) q^{53} +(1.43784 + 2.98875i) q^{55} +(-0.597882 + 1.84009i) q^{57} +(-1.62511 - 1.18071i) q^{59} +(0.321724 + 0.990166i) q^{61} +(-1.73774 + 1.26254i) q^{63} -4.56024 q^{65} +9.08143 q^{67} +(-0.226292 + 0.164411i) q^{69} +(-2.51786 - 7.74917i) q^{71} +(1.12511 + 0.817439i) q^{73} +(0.262262 - 0.807160i) q^{75} +(2.75122 + 1.48191i) q^{77} +(-2.23774 + 6.88705i) q^{79} +(-2.45636 - 1.78465i) q^{81} +(-0.443240 - 1.36415i) q^{83} +(-1.98855 + 1.44477i) q^{85} -1.14256 q^{87} +16.5037 q^{89} +(-3.47610 + 2.52553i) q^{91} +(1.27075 + 3.91098i) q^{93} +(1.84433 + 1.33998i) q^{95} +(-1.98974 + 6.12380i) q^{97} +(-1.35303 + 7.43890i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{3} - 2 q^{5} - q^{7} + 3 q^{9} + 5 q^{11} + 4 q^{13} + 5 q^{15} + 9 q^{17} - 7 q^{19} - 28 q^{21} - 10 q^{23} - 2 q^{25} - 10 q^{27} - q^{29} + 22 q^{31} + q^{33} + 4 q^{35} + 4 q^{37} + 27 q^{39}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.686611 + 0.498852i −0.396415 + 0.288012i −0.768079 0.640355i \(-0.778787\pi\)
0.371664 + 0.928367i \(0.378787\pi\)
\(4\) 0 0
\(5\) 0.309017 + 0.951057i 0.138197 + 0.425325i
\(6\) 0 0
\(7\) 0.762262 + 0.553816i 0.288108 + 0.209323i 0.722446 0.691427i \(-0.243018\pi\)
−0.434338 + 0.900750i \(0.643018\pi\)
\(8\) 0 0
\(9\) −0.704470 + 2.16813i −0.234823 + 0.722712i
\(10\) 0 0
\(11\) 3.28679 0.443888i 0.991003 0.133837i
\(12\) 0 0
\(13\) −1.40919 + 4.33705i −0.390840 + 1.20288i 0.541315 + 0.840820i \(0.317927\pi\)
−0.932155 + 0.362061i \(0.882073\pi\)
\(14\) 0 0
\(15\) −0.686611 0.498852i −0.177282 0.128803i
\(16\) 0 0
\(17\) 0.759560 + 2.33769i 0.184220 + 0.566972i 0.999934 0.0114839i \(-0.00365551\pi\)
−0.815714 + 0.578456i \(0.803656\pi\)
\(18\) 0 0
\(19\) 1.84433 1.33998i 0.423117 0.307413i −0.355774 0.934572i \(-0.615783\pi\)
0.778891 + 0.627159i \(0.215783\pi\)
\(20\) 0 0
\(21\) −0.799650 −0.174498
\(22\) 0 0
\(23\) 0.329578 0.0687217 0.0343609 0.999409i \(-0.489060\pi\)
0.0343609 + 0.999409i \(0.489060\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0 0
\(27\) −1.38467 4.26157i −0.266479 0.820140i
\(28\) 0 0
\(29\) 1.08914 + 0.791305i 0.202248 + 0.146942i 0.684299 0.729201i \(-0.260108\pi\)
−0.482051 + 0.876143i \(0.660108\pi\)
\(30\) 0 0
\(31\) 1.49730 4.60821i 0.268923 0.827659i −0.721841 0.692059i \(-0.756704\pi\)
0.990764 0.135600i \(-0.0432962\pi\)
\(32\) 0 0
\(33\) −2.03531 + 1.94440i −0.354302 + 0.338476i
\(34\) 0 0
\(35\) −0.291158 + 0.896093i −0.0492147 + 0.151467i
\(36\) 0 0
\(37\) −5.07332 3.68598i −0.834049 0.605972i 0.0866532 0.996239i \(-0.472383\pi\)
−0.920702 + 0.390267i \(0.872383\pi\)
\(38\) 0 0
\(39\) −1.19598 3.68084i −0.191510 0.589407i
\(40\) 0 0
\(41\) 8.84266 6.42457i 1.38099 1.00335i 0.384204 0.923248i \(-0.374476\pi\)
0.996787 0.0801003i \(-0.0255241\pi\)
\(42\) 0 0
\(43\) −12.4713 −1.90186 −0.950929 0.309409i \(-0.899869\pi\)
−0.950929 + 0.309409i \(0.899869\pi\)
\(44\) 0 0
\(45\) −2.27971 −0.339839
\(46\) 0 0
\(47\) 7.81335 5.67673i 1.13969 0.828036i 0.152618 0.988285i \(-0.451230\pi\)
0.987077 + 0.160249i \(0.0512297\pi\)
\(48\) 0 0
\(49\) −1.88879 5.81309i −0.269827 0.830441i
\(50\) 0 0
\(51\) −1.68768 1.22617i −0.236323 0.171698i
\(52\) 0 0
\(53\) −1.70869 + 5.25879i −0.234706 + 0.722351i 0.762454 + 0.647042i \(0.223994\pi\)
−0.997160 + 0.0753087i \(0.976006\pi\)
\(54\) 0 0
\(55\) 1.43784 + 2.98875i 0.193878 + 0.403003i
\(56\) 0 0
\(57\) −0.597882 + 1.84009i −0.0791914 + 0.243726i
\(58\) 0 0
\(59\) −1.62511 1.18071i −0.211571 0.153715i 0.476953 0.878929i \(-0.341741\pi\)
−0.688524 + 0.725213i \(0.741741\pi\)
\(60\) 0 0
\(61\) 0.321724 + 0.990166i 0.0411926 + 0.126778i 0.969538 0.244941i \(-0.0787686\pi\)
−0.928345 + 0.371719i \(0.878769\pi\)
\(62\) 0 0
\(63\) −1.73774 + 1.26254i −0.218934 + 0.159065i
\(64\) 0 0
\(65\) −4.56024 −0.565628
\(66\) 0 0
\(67\) 9.08143 1.10947 0.554736 0.832026i \(-0.312819\pi\)
0.554736 + 0.832026i \(0.312819\pi\)
\(68\) 0 0
\(69\) −0.226292 + 0.164411i −0.0272423 + 0.0197927i
\(70\) 0 0
\(71\) −2.51786 7.74917i −0.298815 0.919658i −0.981913 0.189331i \(-0.939368\pi\)
0.683098 0.730326i \(-0.260632\pi\)
\(72\) 0 0
\(73\) 1.12511 + 0.817439i 0.131684 + 0.0956740i 0.651677 0.758496i \(-0.274066\pi\)
−0.519993 + 0.854170i \(0.674066\pi\)
\(74\) 0 0
\(75\) 0.262262 0.807160i 0.0302834 0.0932028i
\(76\) 0 0
\(77\) 2.75122 + 1.48191i 0.313531 + 0.168880i
\(78\) 0 0
\(79\) −2.23774 + 6.88705i −0.251765 + 0.774854i 0.742685 + 0.669641i \(0.233552\pi\)
−0.994450 + 0.105212i \(0.966448\pi\)
\(80\) 0 0
\(81\) −2.45636 1.78465i −0.272928 0.198294i
\(82\) 0 0
\(83\) −0.443240 1.36415i −0.0486519 0.149735i 0.923779 0.382926i \(-0.125083\pi\)
−0.972431 + 0.233190i \(0.925083\pi\)
\(84\) 0 0
\(85\) −1.98855 + 1.44477i −0.215689 + 0.156707i
\(86\) 0 0
\(87\) −1.14256 −0.122495
\(88\) 0 0
\(89\) 16.5037 1.74939 0.874694 0.484675i \(-0.161062\pi\)
0.874694 + 0.484675i \(0.161062\pi\)
\(90\) 0 0
\(91\) −3.47610 + 2.52553i −0.364394 + 0.264748i
\(92\) 0 0
\(93\) 1.27075 + 3.91098i 0.131771 + 0.405549i
\(94\) 0 0
\(95\) 1.84433 + 1.33998i 0.189224 + 0.137479i
\(96\) 0 0
\(97\) −1.98974 + 6.12380i −0.202028 + 0.621777i 0.797795 + 0.602929i \(0.206000\pi\)
−0.999822 + 0.0188481i \(0.994000\pi\)
\(98\) 0 0
\(99\) −1.35303 + 7.43890i −0.135985 + 0.747638i
\(100\) 0 0
\(101\) −4.05983 + 12.4949i −0.403968 + 1.24329i 0.517785 + 0.855511i \(0.326757\pi\)
−0.921753 + 0.387776i \(0.873243\pi\)
\(102\) 0 0
\(103\) 0.724251 + 0.526199i 0.0713626 + 0.0518480i 0.622895 0.782306i \(-0.285957\pi\)
−0.551532 + 0.834154i \(0.685957\pi\)
\(104\) 0 0
\(105\) −0.247105 0.760512i −0.0241150 0.0742184i
\(106\) 0 0
\(107\) 3.27371 2.37849i 0.316481 0.229937i −0.418191 0.908359i \(-0.637336\pi\)
0.734673 + 0.678422i \(0.237336\pi\)
\(108\) 0 0
\(109\) −5.97843 −0.572630 −0.286315 0.958136i \(-0.592430\pi\)
−0.286315 + 0.958136i \(0.592430\pi\)
\(110\) 0 0
\(111\) 5.32216 0.505157
\(112\) 0 0
\(113\) 10.1658 7.38590i 0.956320 0.694807i 0.00402683 0.999992i \(-0.498718\pi\)
0.952293 + 0.305185i \(0.0987182\pi\)
\(114\) 0 0
\(115\) 0.101845 + 0.313447i 0.00949711 + 0.0292291i
\(116\) 0 0
\(117\) −8.41057 6.11064i −0.777558 0.564929i
\(118\) 0 0
\(119\) −0.715663 + 2.20259i −0.0656047 + 0.201911i
\(120\) 0 0
\(121\) 10.6059 2.91793i 0.964175 0.265267i
\(122\) 0 0
\(123\) −2.86656 + 8.82235i −0.258469 + 0.795485i
\(124\) 0 0
\(125\) −0.809017 0.587785i −0.0723607 0.0525731i
\(126\) 0 0
\(127\) 3.63548 + 11.1889i 0.322597 + 0.992852i 0.972514 + 0.232846i \(0.0748038\pi\)
−0.649917 + 0.760006i \(0.725196\pi\)
\(128\) 0 0
\(129\) 8.56294 6.22134i 0.753925 0.547759i
\(130\) 0 0
\(131\) 7.89441 0.689737 0.344869 0.938651i \(-0.387923\pi\)
0.344869 + 0.938651i \(0.387923\pi\)
\(132\) 0 0
\(133\) 2.14796 0.186252
\(134\) 0 0
\(135\) 3.62511 2.63380i 0.312000 0.226681i
\(136\) 0 0
\(137\) −2.57961 7.93924i −0.220391 0.678295i −0.998727 0.0504461i \(-0.983936\pi\)
0.778335 0.627849i \(-0.216064\pi\)
\(138\) 0 0
\(139\) −7.40686 5.38140i −0.628242 0.456444i 0.227549 0.973767i \(-0.426929\pi\)
−0.855791 + 0.517322i \(0.826929\pi\)
\(140\) 0 0
\(141\) −2.53288 + 7.79541i −0.213307 + 0.656492i
\(142\) 0 0
\(143\) −2.70655 + 14.8805i −0.226333 + 1.24437i
\(144\) 0 0
\(145\) −0.416014 + 1.28036i −0.0345481 + 0.106328i
\(146\) 0 0
\(147\) 4.19673 + 3.04911i 0.346141 + 0.251486i
\(148\) 0 0
\(149\) 3.92394 + 12.0766i 0.321462 + 0.989357i 0.973013 + 0.230752i \(0.0741187\pi\)
−0.651551 + 0.758605i \(0.725881\pi\)
\(150\) 0 0
\(151\) −12.1177 + 8.80406i −0.986128 + 0.716464i −0.959070 0.283170i \(-0.908614\pi\)
−0.0270582 + 0.999634i \(0.508614\pi\)
\(152\) 0 0
\(153\) −5.60350 −0.453016
\(154\) 0 0
\(155\) 4.84536 0.389189
\(156\) 0 0
\(157\) −11.8231 + 8.59000i −0.943588 + 0.685557i −0.949282 0.314427i \(-0.898188\pi\)
0.00569346 + 0.999984i \(0.498188\pi\)
\(158\) 0 0
\(159\) −1.45016 4.46313i −0.115005 0.353949i
\(160\) 0 0
\(161\) 0.251225 + 0.182525i 0.0197993 + 0.0143850i
\(162\) 0 0
\(163\) 6.21384 19.1242i 0.486705 1.49792i −0.342791 0.939412i \(-0.611372\pi\)
0.829496 0.558513i \(-0.188628\pi\)
\(164\) 0 0
\(165\) −2.47818 1.33484i −0.192926 0.103917i
\(166\) 0 0
\(167\) 1.06357 3.27332i 0.0823013 0.253297i −0.901435 0.432913i \(-0.857486\pi\)
0.983737 + 0.179616i \(0.0574856\pi\)
\(168\) 0 0
\(169\) −6.30694 4.58226i −0.485149 0.352481i
\(170\) 0 0
\(171\) 1.60599 + 4.94272i 0.122813 + 0.377980i
\(172\) 0 0
\(173\) 12.3730 8.98951i 0.940701 0.683459i −0.00788813 0.999969i \(-0.502511\pi\)
0.948589 + 0.316509i \(0.102511\pi\)
\(174\) 0 0
\(175\) −0.942208 −0.0712242
\(176\) 0 0
\(177\) 1.70482 0.128142
\(178\) 0 0
\(179\) −4.04508 + 2.93893i −0.302344 + 0.219666i −0.728604 0.684935i \(-0.759831\pi\)
0.426261 + 0.904600i \(0.359831\pi\)
\(180\) 0 0
\(181\) −7.92291 24.3842i −0.588905 1.81246i −0.582988 0.812481i \(-0.698116\pi\)
−0.00591755 0.999982i \(-0.501884\pi\)
\(182\) 0 0
\(183\) −0.714846 0.519366i −0.0528429 0.0383926i
\(184\) 0 0
\(185\) 1.93784 5.96404i 0.142473 0.438485i
\(186\) 0 0
\(187\) 3.53418 + 7.34631i 0.258445 + 0.537216i
\(188\) 0 0
\(189\) 1.30464 4.01528i 0.0948990 0.292069i
\(190\) 0 0
\(191\) −3.63548 2.64133i −0.263054 0.191120i 0.448438 0.893814i \(-0.351980\pi\)
−0.711493 + 0.702694i \(0.751980\pi\)
\(192\) 0 0
\(193\) −7.47562 23.0076i −0.538107 1.65612i −0.736839 0.676068i \(-0.763682\pi\)
0.198732 0.980054i \(-0.436318\pi\)
\(194\) 0 0
\(195\) 3.13111 2.27489i 0.224224 0.162908i
\(196\) 0 0
\(197\) −11.5021 −0.819493 −0.409747 0.912199i \(-0.634383\pi\)
−0.409747 + 0.912199i \(0.634383\pi\)
\(198\) 0 0
\(199\) −11.1210 −0.788346 −0.394173 0.919036i \(-0.628969\pi\)
−0.394173 + 0.919036i \(0.628969\pi\)
\(200\) 0 0
\(201\) −6.23541 + 4.53029i −0.439812 + 0.319542i
\(202\) 0 0
\(203\) 0.391971 + 1.20636i 0.0275110 + 0.0846701i
\(204\) 0 0
\(205\) 8.84266 + 6.42457i 0.617598 + 0.448711i
\(206\) 0 0
\(207\) −0.232178 + 0.714569i −0.0161375 + 0.0496660i
\(208\) 0 0
\(209\) 5.46710 5.22291i 0.378167 0.361276i
\(210\) 0 0
\(211\) −5.65011 + 17.3893i −0.388970 + 1.19713i 0.544589 + 0.838703i \(0.316686\pi\)
−0.933559 + 0.358423i \(0.883314\pi\)
\(212\) 0 0
\(213\) 5.59448 + 4.06463i 0.383327 + 0.278504i
\(214\) 0 0
\(215\) −3.85385 11.8609i −0.262830 0.808909i
\(216\) 0 0
\(217\) 3.69343 2.68344i 0.250727 0.182163i
\(218\) 0 0
\(219\) −1.18029 −0.0797568
\(220\) 0 0
\(221\) −11.2090 −0.754000
\(222\) 0 0
\(223\) 20.8931 15.1797i 1.39910 1.01651i 0.404308 0.914623i \(-0.367512\pi\)
0.994796 0.101886i \(-0.0324877\pi\)
\(224\) 0 0
\(225\) −0.704470 2.16813i −0.0469647 0.144542i
\(226\) 0 0
\(227\) −18.7633 13.6323i −1.24536 0.904808i −0.247418 0.968909i \(-0.579582\pi\)
−0.997943 + 0.0641012i \(0.979582\pi\)
\(228\) 0 0
\(229\) 3.08618 9.49829i 0.203941 0.627665i −0.795815 0.605540i \(-0.792957\pi\)
0.999755 0.0221245i \(-0.00704303\pi\)
\(230\) 0 0
\(231\) −2.62828 + 0.354955i −0.172928 + 0.0233543i
\(232\) 0 0
\(233\) 7.06302 21.7377i 0.462714 1.42409i −0.399122 0.916898i \(-0.630685\pi\)
0.861835 0.507188i \(-0.169315\pi\)
\(234\) 0 0
\(235\) 7.81335 + 5.67673i 0.509687 + 0.370309i
\(236\) 0 0
\(237\) −1.89916 5.84502i −0.123364 0.379675i
\(238\) 0 0
\(239\) −15.6493 + 11.3699i −1.01227 + 0.735458i −0.964684 0.263409i \(-0.915153\pi\)
−0.0475874 + 0.998867i \(0.515153\pi\)
\(240\) 0 0
\(241\) 9.52407 0.613499 0.306750 0.951790i \(-0.400759\pi\)
0.306750 + 0.951790i \(0.400759\pi\)
\(242\) 0 0
\(243\) 16.0195 1.02765
\(244\) 0 0
\(245\) 4.94491 3.59269i 0.315919 0.229528i
\(246\) 0 0
\(247\) 3.21255 + 9.88722i 0.204410 + 0.629109i
\(248\) 0 0
\(249\) 0.984843 + 0.715531i 0.0624119 + 0.0453449i
\(250\) 0 0
\(251\) −1.50914 + 4.64465i −0.0952560 + 0.293168i −0.987320 0.158741i \(-0.949257\pi\)
0.892064 + 0.451908i \(0.149257\pi\)
\(252\) 0 0
\(253\) 1.08325 0.146296i 0.0681035 0.00919754i
\(254\) 0 0
\(255\) 0.644637 1.98399i 0.0403687 0.124242i
\(256\) 0 0
\(257\) −10.3965 7.55349i −0.648515 0.471174i 0.214250 0.976779i \(-0.431269\pi\)
−0.862765 + 0.505605i \(0.831269\pi\)
\(258\) 0 0
\(259\) −1.82584 5.61937i −0.113452 0.349171i
\(260\) 0 0
\(261\) −2.48292 + 1.80395i −0.153689 + 0.111662i
\(262\) 0 0
\(263\) −20.6566 −1.27374 −0.636869 0.770972i \(-0.719771\pi\)
−0.636869 + 0.770972i \(0.719771\pi\)
\(264\) 0 0
\(265\) −5.52942 −0.339670
\(266\) 0 0
\(267\) −11.3316 + 8.23290i −0.693484 + 0.503845i
\(268\) 0 0
\(269\) 5.49936 + 16.9253i 0.335302 + 1.03195i 0.966573 + 0.256391i \(0.0825335\pi\)
−0.631271 + 0.775562i \(0.717466\pi\)
\(270\) 0 0
\(271\) 4.25453 + 3.09109i 0.258444 + 0.187771i 0.709461 0.704745i \(-0.248939\pi\)
−0.451017 + 0.892515i \(0.648939\pi\)
\(272\) 0 0
\(273\) 1.12686 3.46812i 0.0682007 0.209900i
\(274\) 0 0
\(275\) −2.39815 + 2.29104i −0.144614 + 0.138155i
\(276\) 0 0
\(277\) −6.66619 + 20.5164i −0.400533 + 1.23271i 0.524036 + 0.851696i \(0.324426\pi\)
−0.924568 + 0.381016i \(0.875574\pi\)
\(278\) 0 0
\(279\) 8.93642 + 6.49269i 0.535009 + 0.388707i
\(280\) 0 0
\(281\) 7.40576 + 22.7926i 0.441790 + 1.35969i 0.885966 + 0.463751i \(0.153497\pi\)
−0.444175 + 0.895940i \(0.646503\pi\)
\(282\) 0 0
\(283\) −7.10455 + 5.16176i −0.422321 + 0.306835i −0.778571 0.627556i \(-0.784055\pi\)
0.356250 + 0.934391i \(0.384055\pi\)
\(284\) 0 0
\(285\) −1.93479 −0.114607
\(286\) 0 0
\(287\) 10.2984 0.607898
\(288\) 0 0
\(289\) 8.86545 6.44113i 0.521497 0.378890i
\(290\) 0 0
\(291\) −1.68869 5.19725i −0.0989927 0.304668i
\(292\) 0 0
\(293\) 23.1853 + 16.8451i 1.35450 + 0.984100i 0.998774 + 0.0495096i \(0.0157658\pi\)
0.355724 + 0.934591i \(0.384234\pi\)
\(294\) 0 0
\(295\) 0.620736 1.91043i 0.0361407 0.111229i
\(296\) 0 0
\(297\) −6.44277 13.3922i −0.373847 0.777096i
\(298\) 0 0
\(299\) −0.464439 + 1.42939i −0.0268592 + 0.0826640i
\(300\) 0 0
\(301\) −9.50641 6.90681i −0.547941 0.398102i
\(302\) 0 0
\(303\) −3.44557 10.6044i −0.197943 0.609206i
\(304\) 0 0
\(305\) −0.842285 + 0.611956i −0.0482291 + 0.0350405i
\(306\) 0 0
\(307\) 34.3848 1.96244 0.981221 0.192885i \(-0.0617846\pi\)
0.981221 + 0.192885i \(0.0617846\pi\)
\(308\) 0 0
\(309\) −0.759774 −0.0432221
\(310\) 0 0
\(311\) −22.6729 + 16.4728i −1.28566 + 0.934086i −0.999708 0.0241576i \(-0.992310\pi\)
−0.285952 + 0.958244i \(0.592310\pi\)
\(312\) 0 0
\(313\) 7.87062 + 24.2233i 0.444874 + 1.36918i 0.882622 + 0.470083i \(0.155776\pi\)
−0.437749 + 0.899097i \(0.644224\pi\)
\(314\) 0 0
\(315\) −1.73774 1.26254i −0.0979104 0.0711361i
\(316\) 0 0
\(317\) −4.65875 + 14.3381i −0.261661 + 0.805311i 0.730782 + 0.682610i \(0.239155\pi\)
−0.992444 + 0.122700i \(0.960845\pi\)
\(318\) 0 0
\(319\) 3.93101 + 2.11739i 0.220095 + 0.118551i
\(320\) 0 0
\(321\) −1.06125 + 3.26619i −0.0592332 + 0.182301i
\(322\) 0 0
\(323\) 4.53333 + 3.29366i 0.252241 + 0.183264i
\(324\) 0 0
\(325\) −1.40919 4.33705i −0.0781679 0.240576i
\(326\) 0 0
\(327\) 4.10486 2.98235i 0.226999 0.164924i
\(328\) 0 0
\(329\) 9.09968 0.501682
\(330\) 0 0
\(331\) −12.8112 −0.704167 −0.352084 0.935969i \(-0.614527\pi\)
−0.352084 + 0.935969i \(0.614527\pi\)
\(332\) 0 0
\(333\) 11.5657 8.40298i 0.633797 0.460480i
\(334\) 0 0
\(335\) 2.80631 + 8.63695i 0.153325 + 0.471887i
\(336\) 0 0
\(337\) 16.6043 + 12.0637i 0.904495 + 0.657154i 0.939617 0.342229i \(-0.111182\pi\)
−0.0351217 + 0.999383i \(0.511182\pi\)
\(338\) 0 0
\(339\) −3.29549 + 10.1425i −0.178987 + 0.550864i
\(340\) 0 0
\(341\) 2.87577 15.8108i 0.155732 0.856205i
\(342\) 0 0
\(343\) 3.81774 11.7498i 0.206138 0.634429i
\(344\) 0 0
\(345\) −0.226292 0.164411i −0.0121831 0.00885157i
\(346\) 0 0
\(347\) 2.59715 + 7.99320i 0.139422 + 0.429097i 0.996252 0.0865026i \(-0.0275691\pi\)
−0.856829 + 0.515600i \(0.827569\pi\)
\(348\) 0 0
\(349\) 2.20976 1.60548i 0.118286 0.0859395i −0.527070 0.849822i \(-0.676709\pi\)
0.645355 + 0.763883i \(0.276709\pi\)
\(350\) 0 0
\(351\) 20.4339 1.09068
\(352\) 0 0
\(353\) −14.0021 −0.745255 −0.372627 0.927981i \(-0.621543\pi\)
−0.372627 + 0.927981i \(0.621543\pi\)
\(354\) 0 0
\(355\) 6.59184 4.78925i 0.349859 0.254187i
\(356\) 0 0
\(357\) −0.607382 1.86933i −0.0321461 0.0989354i
\(358\) 0 0
\(359\) −8.71166 6.32939i −0.459784 0.334053i 0.333663 0.942693i \(-0.391715\pi\)
−0.793447 + 0.608640i \(0.791715\pi\)
\(360\) 0 0
\(361\) −4.26533 + 13.1274i −0.224491 + 0.690913i
\(362\) 0 0
\(363\) −5.82653 + 7.29427i −0.305813 + 0.382850i
\(364\) 0 0
\(365\) −0.429753 + 1.32264i −0.0224943 + 0.0692303i
\(366\) 0 0
\(367\) 18.9540 + 13.7709i 0.989393 + 0.718836i 0.959788 0.280725i \(-0.0905750\pi\)
0.0296051 + 0.999562i \(0.490575\pi\)
\(368\) 0 0
\(369\) 7.69994 + 23.6980i 0.400843 + 1.23367i
\(370\) 0 0
\(371\) −4.21487 + 3.06228i −0.218825 + 0.158986i
\(372\) 0 0
\(373\) −14.7156 −0.761946 −0.380973 0.924586i \(-0.624411\pi\)
−0.380973 + 0.924586i \(0.624411\pi\)
\(374\) 0 0
\(375\) 0.848698 0.0438266
\(376\) 0 0
\(377\) −4.96673 + 3.60854i −0.255800 + 0.185849i
\(378\) 0 0
\(379\) −6.97516 21.4673i −0.358290 1.10270i −0.954077 0.299561i \(-0.903160\pi\)
0.595787 0.803142i \(-0.296840\pi\)
\(380\) 0 0
\(381\) −8.07775 5.86883i −0.413836 0.300669i
\(382\) 0 0
\(383\) 5.77885 17.7855i 0.295285 0.908794i −0.687840 0.725862i \(-0.741441\pi\)
0.983126 0.182932i \(-0.0585589\pi\)
\(384\) 0 0
\(385\) −0.559210 + 3.07451i −0.0285000 + 0.156691i
\(386\) 0 0
\(387\) 8.78567 27.0395i 0.446601 1.37450i
\(388\) 0 0
\(389\) −6.67054 4.84643i −0.338210 0.245724i 0.405696 0.914008i \(-0.367029\pi\)
−0.743906 + 0.668284i \(0.767029\pi\)
\(390\) 0 0
\(391\) 0.250334 + 0.770449i 0.0126599 + 0.0389633i
\(392\) 0 0
\(393\) −5.42039 + 3.93814i −0.273422 + 0.198653i
\(394\) 0 0
\(395\) −7.24147 −0.364358
\(396\) 0 0
\(397\) −22.4624 −1.12736 −0.563678 0.825994i \(-0.690614\pi\)
−0.563678 + 0.825994i \(0.690614\pi\)
\(398\) 0 0
\(399\) −1.47481 + 1.07152i −0.0738331 + 0.0536429i
\(400\) 0 0
\(401\) 2.59699 + 7.99272i 0.129688 + 0.399137i 0.994726 0.102568i \(-0.0327061\pi\)
−0.865038 + 0.501706i \(0.832706\pi\)
\(402\) 0 0
\(403\) 17.8760 + 12.9877i 0.890469 + 0.646964i
\(404\) 0 0
\(405\) 0.938244 2.88762i 0.0466217 0.143487i
\(406\) 0 0
\(407\) −18.3111 9.86305i −0.907647 0.488893i
\(408\) 0 0
\(409\) 6.53339 20.1077i 0.323055 0.994262i −0.649256 0.760570i \(-0.724919\pi\)
0.972311 0.233691i \(-0.0750805\pi\)
\(410\) 0 0
\(411\) 5.73170 + 4.16432i 0.282724 + 0.205411i
\(412\) 0 0
\(413\) −0.584862 1.80002i −0.0287792 0.0885732i
\(414\) 0 0
\(415\) 1.16042 0.843092i 0.0569626 0.0413858i
\(416\) 0 0
\(417\) 7.77015 0.380506
\(418\) 0 0
\(419\) −9.73051 −0.475367 −0.237683 0.971343i \(-0.576388\pi\)
−0.237683 + 0.971343i \(0.576388\pi\)
\(420\) 0 0
\(421\) −24.4847 + 17.7892i −1.19331 + 0.866993i −0.993610 0.112864i \(-0.963998\pi\)
−0.199702 + 0.979857i \(0.563998\pi\)
\(422\) 0 0
\(423\) 6.80365 + 20.9395i 0.330805 + 1.01811i
\(424\) 0 0
\(425\) −1.98855 1.44477i −0.0964590 0.0700816i
\(426\) 0 0
\(427\) −0.303131 + 0.932942i −0.0146695 + 0.0451482i
\(428\) 0 0
\(429\) −5.56481 11.5673i −0.268671 0.558473i
\(430\) 0 0
\(431\) 10.5456 32.4561i 0.507964 1.56335i −0.287765 0.957701i \(-0.592912\pi\)
0.795729 0.605652i \(-0.207088\pi\)
\(432\) 0 0
\(433\) −6.15731 4.47354i −0.295901 0.214985i 0.429922 0.902866i \(-0.358541\pi\)
−0.725823 + 0.687881i \(0.758541\pi\)
\(434\) 0 0
\(435\) −0.353070 1.08664i −0.0169284 0.0521003i
\(436\) 0 0
\(437\) 0.607849 0.441628i 0.0290774 0.0211259i
\(438\) 0 0
\(439\) 11.9039 0.568142 0.284071 0.958803i \(-0.408315\pi\)
0.284071 + 0.958803i \(0.408315\pi\)
\(440\) 0 0
\(441\) 13.9342 0.663531
\(442\) 0 0
\(443\) 0.469025 0.340767i 0.0222841 0.0161903i −0.576587 0.817035i \(-0.695616\pi\)
0.598872 + 0.800845i \(0.295616\pi\)
\(444\) 0 0
\(445\) 5.09992 + 15.6959i 0.241760 + 0.744059i
\(446\) 0 0
\(447\) −8.71868 6.33449i −0.412379 0.299611i
\(448\) 0 0
\(449\) −10.4366 + 32.1207i −0.492536 + 1.51587i 0.328226 + 0.944599i \(0.393549\pi\)
−0.820762 + 0.571270i \(0.806451\pi\)
\(450\) 0 0
\(451\) 26.2121 25.0413i 1.23428 1.17915i
\(452\) 0 0
\(453\) 3.92825 12.0899i 0.184565 0.568034i
\(454\) 0 0
\(455\) −3.47610 2.52553i −0.162962 0.118399i
\(456\) 0 0
\(457\) 3.02760 + 9.31798i 0.141625 + 0.435877i 0.996562 0.0828556i \(-0.0264040\pi\)
−0.854937 + 0.518733i \(0.826404\pi\)
\(458\) 0 0
\(459\) 8.91047 6.47384i 0.415905 0.302173i
\(460\) 0 0
\(461\) 20.7030 0.964235 0.482117 0.876107i \(-0.339868\pi\)
0.482117 + 0.876107i \(0.339868\pi\)
\(462\) 0 0
\(463\) −29.9244 −1.39071 −0.695353 0.718669i \(-0.744752\pi\)
−0.695353 + 0.718669i \(0.744752\pi\)
\(464\) 0 0
\(465\) −3.32688 + 2.41712i −0.154280 + 0.112091i
\(466\) 0 0
\(467\) −9.12293 28.0775i −0.422159 1.29927i −0.905689 0.423944i \(-0.860645\pi\)
0.483530 0.875328i \(-0.339355\pi\)
\(468\) 0 0
\(469\) 6.92243 + 5.02944i 0.319648 + 0.232238i
\(470\) 0 0
\(471\) 3.83275 11.7960i 0.176604 0.543530i
\(472\) 0 0
\(473\) −40.9906 + 5.53587i −1.88475 + 0.254540i
\(474\) 0 0
\(475\) −0.704470 + 2.16813i −0.0323233 + 0.0994809i
\(476\) 0 0
\(477\) −10.1981 7.40932i −0.466937 0.339250i
\(478\) 0 0
\(479\) −6.26391 19.2783i −0.286205 0.880849i −0.986035 0.166539i \(-0.946741\pi\)
0.699830 0.714310i \(-0.253259\pi\)
\(480\) 0 0
\(481\) 23.1356 16.8090i 1.05489 0.766423i
\(482\) 0 0
\(483\) −0.263547 −0.0119918
\(484\) 0 0
\(485\) −6.43894 −0.292377
\(486\) 0 0
\(487\) 3.07876 2.23685i 0.139512 0.101361i −0.515840 0.856685i \(-0.672520\pi\)
0.655352 + 0.755323i \(0.272520\pi\)
\(488\) 0 0
\(489\) 5.27367 + 16.2307i 0.238484 + 0.733977i
\(490\) 0 0
\(491\) −34.7675 25.2601i −1.56904 1.13997i −0.928072 0.372400i \(-0.878535\pi\)
−0.640964 0.767571i \(-0.721465\pi\)
\(492\) 0 0
\(493\) −1.02256 + 3.14711i −0.0460536 + 0.141738i
\(494\) 0 0
\(495\) −7.49293 + 1.01194i −0.336782 + 0.0454832i
\(496\) 0 0
\(497\) 2.37235 7.30133i 0.106414 0.327509i
\(498\) 0 0
\(499\) 4.75867 + 3.45738i 0.213027 + 0.154773i 0.689182 0.724588i \(-0.257970\pi\)
−0.476155 + 0.879361i \(0.657970\pi\)
\(500\) 0 0
\(501\) 0.902647 + 2.77806i 0.0403273 + 0.124115i
\(502\) 0 0
\(503\) −24.6768 + 17.9288i −1.10029 + 0.799404i −0.981106 0.193469i \(-0.938026\pi\)
−0.119179 + 0.992873i \(0.538026\pi\)
\(504\) 0 0
\(505\) −13.1379 −0.584629
\(506\) 0 0
\(507\) 6.61628 0.293839
\(508\) 0 0
\(509\) 13.6522 9.91890i 0.605123 0.439648i −0.242571 0.970134i \(-0.577991\pi\)
0.847694 + 0.530486i \(0.177991\pi\)
\(510\) 0 0
\(511\) 0.404917 + 1.24621i 0.0179125 + 0.0551289i
\(512\) 0 0
\(513\) −8.26420 6.00429i −0.364873 0.265096i
\(514\) 0 0
\(515\) −0.276639 + 0.851408i −0.0121902 + 0.0375175i
\(516\) 0 0
\(517\) 23.1610 22.1265i 1.01862 0.973121i
\(518\) 0 0
\(519\) −4.01100 + 12.3446i −0.176063 + 0.541867i
\(520\) 0 0
\(521\) −1.34854 0.979773i −0.0590807 0.0429246i 0.557853 0.829940i \(-0.311625\pi\)
−0.616934 + 0.787015i \(0.711625\pi\)
\(522\) 0 0
\(523\) −10.4720 32.2294i −0.457908 1.40930i −0.867687 0.497110i \(-0.834394\pi\)
0.409780 0.912185i \(-0.365606\pi\)
\(524\) 0 0
\(525\) 0.646930 0.470022i 0.0282343 0.0205135i
\(526\) 0 0
\(527\) 11.9098 0.518800
\(528\) 0 0
\(529\) −22.8914 −0.995277
\(530\) 0 0
\(531\) 3.70478 2.69168i 0.160774 0.116809i
\(532\) 0 0
\(533\) 15.4026 + 47.4045i 0.667163 + 2.05332i
\(534\) 0 0
\(535\) 3.27371 + 2.37849i 0.141535 + 0.102831i
\(536\) 0 0
\(537\) 1.31131 4.03580i 0.0565872 0.174158i
\(538\) 0 0
\(539\) −8.78840 18.2680i −0.378543 0.786857i
\(540\) 0 0
\(541\) 9.05402 27.8654i 0.389263 1.19803i −0.544078 0.839035i \(-0.683120\pi\)
0.933340 0.358993i \(-0.116880\pi\)
\(542\) 0 0
\(543\) 17.6041 + 12.7901i 0.755463 + 0.548876i
\(544\) 0 0
\(545\) −1.84744 5.68583i −0.0791355 0.243554i
\(546\) 0 0
\(547\) −29.8639 + 21.6974i −1.27689 + 0.927714i −0.999454 0.0330304i \(-0.989484\pi\)
−0.277435 + 0.960745i \(0.589484\pi\)
\(548\) 0 0
\(549\) −2.37346 −0.101297
\(550\) 0 0
\(551\) 3.06906 0.130746
\(552\) 0 0
\(553\) −5.51990 + 4.01044i −0.234730 + 0.170541i
\(554\) 0 0
\(555\) 1.64464 + 5.06167i 0.0698109 + 0.214856i
\(556\) 0 0
\(557\) 13.7246 + 9.97149i 0.581529 + 0.422506i 0.839275 0.543707i \(-0.182980\pi\)
−0.257746 + 0.966213i \(0.582980\pi\)
\(558\) 0 0
\(559\) 17.5745 54.0887i 0.743321 2.28771i
\(560\) 0 0
\(561\) −6.09133 3.28102i −0.257176 0.138525i
\(562\) 0 0
\(563\) 0.385700 1.18706i 0.0162553 0.0500287i −0.942600 0.333924i \(-0.891627\pi\)
0.958855 + 0.283896i \(0.0916270\pi\)
\(564\) 0 0
\(565\) 10.1658 + 7.38590i 0.427679 + 0.310727i
\(566\) 0 0
\(567\) −0.884021 2.72074i −0.0371254 0.114260i
\(568\) 0 0
\(569\) −17.8719 + 12.9847i −0.749228 + 0.544346i −0.895588 0.444885i \(-0.853244\pi\)
0.146359 + 0.989232i \(0.453244\pi\)
\(570\) 0 0
\(571\) 43.8975 1.83705 0.918527 0.395358i \(-0.129379\pi\)
0.918527 + 0.395358i \(0.129379\pi\)
\(572\) 0 0
\(573\) 3.81380 0.159324
\(574\) 0 0
\(575\) −0.266634 + 0.193721i −0.0111194 + 0.00807872i
\(576\) 0 0
\(577\) 5.60251 + 17.2428i 0.233236 + 0.717826i 0.997351 + 0.0727454i \(0.0231761\pi\)
−0.764115 + 0.645080i \(0.776824\pi\)
\(578\) 0 0
\(579\) 16.6102 + 12.0680i 0.690297 + 0.501530i
\(580\) 0 0
\(581\) 0.417624 1.28531i 0.0173260 0.0533238i
\(582\) 0 0
\(583\) −3.28177 + 18.0430i −0.135917 + 0.747265i
\(584\) 0 0
\(585\) 3.21255 9.88722i 0.132823 0.408786i
\(586\) 0 0
\(587\) −15.3792 11.1736i −0.634766 0.461184i 0.223282 0.974754i \(-0.428323\pi\)
−0.858048 + 0.513570i \(0.828323\pi\)
\(588\) 0 0
\(589\) −3.41341 10.5054i −0.140647 0.432867i
\(590\) 0 0
\(591\) 7.89749 5.73786i 0.324859 0.236024i
\(592\) 0 0
\(593\) −42.6545 −1.75161 −0.875804 0.482666i \(-0.839668\pi\)
−0.875804 + 0.482666i \(0.839668\pi\)
\(594\) 0 0
\(595\) −2.31593 −0.0949441
\(596\) 0 0
\(597\) 7.63579 5.54773i 0.312512 0.227053i
\(598\) 0 0
\(599\) 8.27674 + 25.4732i 0.338178 + 1.04081i 0.965135 + 0.261752i \(0.0843002\pi\)
−0.626957 + 0.779054i \(0.715700\pi\)
\(600\) 0 0
\(601\) 11.8373 + 8.60028i 0.482853 + 0.350813i 0.802429 0.596748i \(-0.203541\pi\)
−0.319576 + 0.947560i \(0.603541\pi\)
\(602\) 0 0
\(603\) −6.39759 + 19.6898i −0.260530 + 0.801829i
\(604\) 0 0
\(605\) 6.05253 + 9.18514i 0.246070 + 0.373429i
\(606\) 0 0
\(607\) 0.310627 0.956013i 0.0126080 0.0388034i −0.944555 0.328354i \(-0.893506\pi\)
0.957163 + 0.289551i \(0.0935060\pi\)
\(608\) 0 0
\(609\) −0.870929 0.632767i −0.0352918 0.0256410i
\(610\) 0 0
\(611\) 13.6097 + 41.8865i 0.550591 + 1.69455i
\(612\) 0 0
\(613\) 0.213546 0.155150i 0.00862505 0.00626647i −0.583464 0.812139i \(-0.698303\pi\)
0.592089 + 0.805872i \(0.298303\pi\)
\(614\) 0 0
\(615\) −9.27637 −0.374059
\(616\) 0 0
\(617\) −5.14458 −0.207113 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(618\) 0 0
\(619\) −38.2308 + 27.7763i −1.53663 + 1.11643i −0.584221 + 0.811595i \(0.698600\pi\)
−0.952407 + 0.304830i \(0.901400\pi\)
\(620\) 0 0
\(621\) −0.456356 1.40452i −0.0183129 0.0563614i
\(622\) 0 0
\(623\) 12.5801 + 9.14001i 0.504013 + 0.366187i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 0 0
\(627\) −1.14831 + 6.31338i −0.0458593 + 0.252132i
\(628\) 0 0
\(629\) 4.76318 14.6595i 0.189920 0.584514i
\(630\) 0 0
\(631\) 0.995219 + 0.723069i 0.0396190 + 0.0287849i 0.607419 0.794382i \(-0.292205\pi\)
−0.567799 + 0.823167i \(0.692205\pi\)
\(632\) 0 0
\(633\) −4.79524 14.7582i −0.190594 0.586587i
\(634\) 0 0
\(635\) −9.51782 + 6.91510i −0.377703 + 0.274417i
\(636\) 0 0
\(637\) 27.8733 1.10438
\(638\) 0 0
\(639\) 18.5750 0.734816
\(640\) 0 0
\(641\) 5.04917 3.66843i 0.199430 0.144894i −0.483588 0.875296i \(-0.660667\pi\)
0.683018 + 0.730401i \(0.260667\pi\)
\(642\) 0 0
\(643\) 1.42934 + 4.39907i 0.0563678 + 0.173482i 0.975277 0.220988i \(-0.0709281\pi\)
−0.918909 + 0.394470i \(0.870928\pi\)
\(644\) 0 0
\(645\) 8.56294 + 6.22134i 0.337166 + 0.244965i
\(646\) 0 0
\(647\) −2.98239 + 9.17886i −0.117250 + 0.360858i −0.992410 0.122976i \(-0.960756\pi\)
0.875160 + 0.483834i \(0.160756\pi\)
\(648\) 0 0
\(649\) −5.86549 3.15938i −0.230240 0.124016i
\(650\) 0 0
\(651\) −1.19731 + 3.68495i −0.0469264 + 0.144425i
\(652\) 0 0
\(653\) 24.0319 + 17.4602i 0.940442 + 0.683271i 0.948527 0.316696i \(-0.102574\pi\)
−0.00808493 + 0.999967i \(0.502574\pi\)
\(654\) 0 0
\(655\) 2.43951 + 7.50803i 0.0953194 + 0.293363i
\(656\) 0 0
\(657\) −2.56492 + 1.86353i −0.100067 + 0.0727030i
\(658\) 0 0
\(659\) 43.3285 1.68784 0.843920 0.536469i \(-0.180242\pi\)
0.843920 + 0.536469i \(0.180242\pi\)
\(660\) 0 0
\(661\) −9.88967 −0.384664 −0.192332 0.981330i \(-0.561605\pi\)
−0.192332 + 0.981330i \(0.561605\pi\)
\(662\) 0 0
\(663\) 7.69623 5.59164i 0.298897 0.217161i
\(664\) 0 0
\(665\) 0.663757 + 2.04283i 0.0257394 + 0.0792177i
\(666\) 0 0
\(667\) 0.358956 + 0.260797i 0.0138988 + 0.0100981i
\(668\) 0 0
\(669\) −6.77299 + 20.8451i −0.261859 + 0.805919i
\(670\) 0 0
\(671\) 1.49696 + 3.11165i 0.0577896 + 0.120124i
\(672\) 0 0
\(673\) −8.63603 + 26.5790i −0.332895 + 1.02454i 0.634855 + 0.772631i \(0.281060\pi\)
−0.967750 + 0.251913i \(0.918940\pi\)
\(674\) 0 0
\(675\) 3.62511 + 2.63380i 0.139530 + 0.101375i
\(676\) 0 0
\(677\) −0.813531 2.50379i −0.0312665 0.0962285i 0.934205 0.356736i \(-0.116110\pi\)
−0.965472 + 0.260507i \(0.916110\pi\)
\(678\) 0 0
\(679\) −4.90816 + 3.56599i −0.188358 + 0.136850i
\(680\) 0 0
\(681\) 19.6836 0.754276
\(682\) 0 0
\(683\) −24.4582 −0.935868 −0.467934 0.883763i \(-0.655001\pi\)
−0.467934 + 0.883763i \(0.655001\pi\)
\(684\) 0 0
\(685\) 6.75352 4.90672i 0.258039 0.187476i
\(686\) 0 0
\(687\) 2.61924 + 8.06118i 0.0999301 + 0.307553i
\(688\) 0 0
\(689\) −20.3998 14.8213i −0.777169 0.564647i
\(690\) 0 0
\(691\) −0.404553 + 1.24509i −0.0153899 + 0.0473653i −0.958457 0.285239i \(-0.907927\pi\)
0.943067 + 0.332604i \(0.107927\pi\)
\(692\) 0 0
\(693\) −5.15115 + 4.92106i −0.195676 + 0.186936i
\(694\) 0 0
\(695\) 2.82917 8.70729i 0.107316 0.330286i
\(696\) 0 0
\(697\) 21.7351 + 15.7915i 0.823277 + 0.598146i
\(698\) 0 0
\(699\) 5.99437 + 18.4488i 0.226728 + 0.697796i
\(700\) 0 0
\(701\) −0.215878 + 0.156844i −0.00815359 + 0.00592393i −0.591855 0.806045i \(-0.701604\pi\)
0.583701 + 0.811969i \(0.301604\pi\)
\(702\) 0 0
\(703\) −14.2960 −0.539184
\(704\) 0 0
\(705\) −8.19658 −0.308701
\(706\) 0 0
\(707\) −10.0145 + 7.27597i −0.376635 + 0.273641i
\(708\) 0 0
\(709\) −8.97210 27.6133i −0.336954 1.03704i −0.965751 0.259469i \(-0.916452\pi\)
0.628797 0.777569i \(-0.283548\pi\)
\(710\) 0 0
\(711\) −13.3556 9.70344i −0.500875 0.363907i
\(712\) 0 0
\(713\) 0.493476 1.51876i 0.0184808 0.0568781i
\(714\) 0 0
\(715\) −14.9885 + 2.02424i −0.560540 + 0.0757022i
\(716\) 0 0
\(717\) 5.07311 15.6134i 0.189459 0.583094i
\(718\) 0 0
\(719\) 37.7429 + 27.4218i 1.40757 + 1.02266i 0.993670 + 0.112340i \(0.0358346\pi\)
0.413903 + 0.910321i \(0.364165\pi\)
\(720\) 0 0
\(721\) 0.260652 + 0.802204i 0.00970718 + 0.0298756i
\(722\) 0 0
\(723\) −6.53933 + 4.75110i −0.243200 + 0.176695i
\(724\) 0 0
\(725\) −1.34625 −0.0499984
\(726\) 0 0
\(727\) −28.9126 −1.07231 −0.536154 0.844120i \(-0.680123\pi\)
−0.536154 + 0.844120i \(0.680123\pi\)
\(728\) 0 0
\(729\) −3.63008 + 2.63741i −0.134447 + 0.0976818i
\(730\) 0 0
\(731\) −9.47271 29.1540i −0.350361 1.07830i
\(732\) 0 0
\(733\) 25.3784 + 18.4385i 0.937371 + 0.681040i 0.947786 0.318906i \(-0.103315\pi\)
−0.0104153 + 0.999946i \(0.503315\pi\)
\(734\) 0 0
\(735\) −1.60301 + 4.93356i −0.0591279 + 0.181977i
\(736\) 0 0
\(737\) 29.8487 4.03114i 1.09949 0.148489i
\(738\) 0 0
\(739\) −3.43117 + 10.5601i −0.126218 + 0.388458i −0.994121 0.108275i \(-0.965467\pi\)
0.867903 + 0.496733i \(0.165467\pi\)
\(740\) 0 0
\(741\) −7.13803 5.18608i −0.262222 0.190516i
\(742\) 0 0
\(743\) −3.54691 10.9163i −0.130124 0.400479i 0.864676 0.502330i \(-0.167524\pi\)
−0.994800 + 0.101851i \(0.967524\pi\)
\(744\) 0 0
\(745\) −10.2730 + 7.46378i −0.376374 + 0.273452i
\(746\) 0 0
\(747\) 3.26991 0.119640
\(748\) 0 0
\(749\) 3.81267 0.139312
\(750\) 0 0
\(751\) −9.51030 + 6.90964i −0.347036 + 0.252136i −0.747624 0.664122i \(-0.768806\pi\)
0.400589 + 0.916258i \(0.368806\pi\)
\(752\) 0 0
\(753\) −1.28080 3.94190i −0.0466750 0.143651i
\(754\) 0 0
\(755\) −12.1177 8.80406i −0.441010 0.320412i
\(756\) 0 0
\(757\) 13.7801 42.4108i 0.500846 1.54145i −0.306797 0.951775i \(-0.599257\pi\)
0.807643 0.589671i \(-0.200743\pi\)
\(758\) 0 0
\(759\) −0.670793 + 0.640831i −0.0243482 + 0.0232607i
\(760\) 0 0
\(761\) 0.436560 1.34359i 0.0158253 0.0487052i −0.942832 0.333268i \(-0.891849\pi\)
0.958657 + 0.284563i \(0.0918485\pi\)
\(762\) 0 0
\(763\) −4.55713 3.31095i −0.164979 0.119864i
\(764\) 0 0
\(765\) −1.73158 5.32925i −0.0626053 0.192679i
\(766\) 0 0
\(767\) 7.41089 5.38432i 0.267592 0.194417i
\(768\) 0 0
\(769\) −7.86871 −0.283753 −0.141876 0.989884i \(-0.545314\pi\)
−0.141876 + 0.989884i \(0.545314\pi\)
\(770\) 0 0
\(771\) 10.9064 0.392785
\(772\) 0 0
\(773\) 21.9016 15.9124i 0.787746 0.572331i −0.119548 0.992828i \(-0.538145\pi\)
0.907294 + 0.420498i \(0.138145\pi\)
\(774\) 0 0
\(775\) 1.49730 + 4.60821i 0.0537845 + 0.165532i
\(776\) 0 0
\(777\) 4.05688 + 2.94749i 0.145540 + 0.105741i
\(778\) 0 0
\(779\) 7.69994 23.6980i 0.275879 0.849068i
\(780\) 0 0
\(781\) −11.7154 24.3522i −0.419211 0.871391i
\(782\) 0 0
\(783\) 1.86411 5.73713i 0.0666178 0.205028i
\(784\) 0 0
\(785\) −11.8231 8.59000i −0.421985 0.306590i
\(786\) 0 0
\(787\) 9.28963 + 28.5905i 0.331140 + 1.01914i 0.968593 + 0.248653i \(0.0799880\pi\)
−0.637453 + 0.770489i \(0.720012\pi\)
\(788\) 0 0
\(789\) 14.1830 10.3046i 0.504929 0.366852i
\(790\) 0 0
\(791\) 11.8394 0.420962
\(792\) 0 0
\(793\) −4.74777 −0.168598
\(794\) 0 0
\(795\) 3.79656 2.75836i 0.134650 0.0978291i
\(796\) 0 0
\(797\) −11.0801 34.1012i −0.392479 1.20793i −0.930908 0.365254i \(-0.880982\pi\)
0.538429 0.842671i \(-0.319018\pi\)
\(798\) 0 0
\(799\) 19.2051 + 13.9533i 0.679428 + 0.493634i
\(800\) 0 0
\(801\) −11.6264 + 35.7822i −0.410797 + 1.26430i
\(802\) 0 0
\(803\) 4.06084 + 2.18732i 0.143304 + 0.0771890i
\(804\) 0 0
\(805\) −0.0959593 + 0.295332i −0.00338212 + 0.0104091i
\(806\) 0 0
\(807\) −12.2191 8.87773i −0.430134 0.312511i
\(808\) 0 0
\(809\) −4.28457 13.1865i −0.150637 0.463614i 0.847055 0.531505i \(-0.178373\pi\)
−0.997693 + 0.0678905i \(0.978373\pi\)
\(810\) 0 0
\(811\) −26.8947 + 19.5401i −0.944401 + 0.686147i −0.949476 0.313840i \(-0.898385\pi\)
0.00507517 + 0.999987i \(0.498385\pi\)
\(812\) 0 0
\(813\) −4.46320 −0.156531
\(814\) 0 0
\(815\) 20.1084 0.704367
\(816\) 0 0
\(817\) −23.0012 + 16.7113i −0.804709 + 0.584655i
\(818\) 0 0
\(819\) −3.02689 9.31581i −0.105768 0.325521i
\(820\) 0 0
\(821\) −15.2385 11.0714i −0.531827 0.386395i 0.289214 0.957264i \(-0.406606\pi\)
−0.821041 + 0.570870i \(0.806606\pi\)
\(822\) 0 0
\(823\) 16.1196 49.6110i 0.561894 1.72933i −0.115111 0.993353i \(-0.536722\pi\)
0.677005 0.735978i \(-0.263278\pi\)
\(824\) 0 0
\(825\) 0.503711 2.76938i 0.0175370 0.0964173i
\(826\) 0 0
\(827\) −3.81680 + 11.7469i −0.132723 + 0.408480i −0.995229 0.0975673i \(-0.968894\pi\)
0.862506 + 0.506047i \(0.168894\pi\)
\(828\) 0 0
\(829\) −22.4628 16.3201i −0.780164 0.566822i 0.124864 0.992174i \(-0.460150\pi\)
−0.905028 + 0.425352i \(0.860150\pi\)
\(830\) 0 0
\(831\) −5.65758 17.4122i −0.196259 0.604024i
\(832\) 0 0
\(833\) 12.1545 8.83078i 0.421129 0.305968i
\(834\) 0 0
\(835\) 3.44178 0.119108
\(836\) 0 0
\(837\) −21.7115 −0.750458
\(838\) 0 0
\(839\) −8.75012 + 6.35733i −0.302088 + 0.219479i −0.728494 0.685052i \(-0.759779\pi\)
0.426406 + 0.904532i \(0.359779\pi\)
\(840\) 0 0
\(841\) −8.40144 25.8570i −0.289705 0.891619i
\(842\) 0 0
\(843\) −16.4550 11.9553i −0.566740 0.411761i
\(844\) 0 0
\(845\) 2.40904 7.41425i 0.0828734 0.255058i
\(846\) 0 0
\(847\) 9.70049 + 3.64950i 0.333313 + 0.125398i
\(848\) 0 0
\(849\) 2.30311 7.08824i 0.0790424 0.243268i
\(850\) 0 0
\(851\) −1.67205 1.21482i −0.0573173 0.0416434i
\(852\) 0 0
\(853\) −6.39884 19.6936i −0.219092 0.674296i −0.998838 0.0481996i \(-0.984652\pi\)
0.779746 0.626096i \(-0.215348\pi\)
\(854\) 0 0
\(855\) −4.20453 + 3.05477i −0.143792 + 0.104471i
\(856\) 0 0
\(857\) 10.9041 0.372478 0.186239 0.982504i \(-0.440370\pi\)
0.186239 + 0.982504i \(0.440370\pi\)
\(858\) 0 0
\(859\) −1.13276 −0.0386493 −0.0193246 0.999813i \(-0.506152\pi\)
−0.0193246 + 0.999813i \(0.506152\pi\)
\(860\) 0 0
\(861\) −7.07103 + 5.13740i −0.240980 + 0.175082i
\(862\) 0 0
\(863\) 8.24306 + 25.3695i 0.280597 + 0.863589i 0.987684 + 0.156462i \(0.0500089\pi\)
−0.707087 + 0.707127i \(0.749991\pi\)
\(864\) 0 0
\(865\) 12.3730 + 8.98951i 0.420694 + 0.305652i
\(866\) 0 0
\(867\) −2.87395 + 8.84509i −0.0976043 + 0.300395i
\(868\) 0 0
\(869\) −4.29789 + 23.6296i −0.145796 + 0.801578i
\(870\) 0 0
\(871\) −12.7975 + 39.3866i −0.433626 + 1.33456i
\(872\) 0 0
\(873\) −11.8755 8.62806i −0.401925 0.292016i
\(874\) 0 0
\(875\) −0.291158 0.896093i −0.00984294 0.0302935i
\(876\) 0 0
\(877\) 13.4997 9.80813i 0.455854 0.331197i −0.336049 0.941845i \(-0.609091\pi\)
0.791903 + 0.610648i \(0.209091\pi\)
\(878\) 0 0
\(879\) −24.3225 −0.820377
\(880\) 0 0
\(881\) 31.5034 1.06138 0.530689 0.847567i \(-0.321933\pi\)
0.530689 + 0.847567i \(0.321933\pi\)
\(882\) 0 0
\(883\) 19.6191 14.2541i 0.660236 0.479690i −0.206507 0.978445i \(-0.566209\pi\)
0.866743 + 0.498756i \(0.166209\pi\)
\(884\) 0 0
\(885\) 0.526817 + 1.62138i 0.0177088 + 0.0545020i
\(886\) 0 0
\(887\) −40.3969 29.3501i −1.35639 0.985478i −0.998665 0.0516529i \(-0.983551\pi\)
−0.357729 0.933825i \(-0.616449\pi\)
\(888\) 0 0
\(889\) −3.42538 + 10.5422i −0.114884 + 0.353575i
\(890\) 0 0
\(891\) −8.86570 4.77541i −0.297012 0.159982i
\(892\) 0 0
\(893\) 6.80365 20.9395i 0.227676 0.700713i
\(894\) 0 0
\(895\) −4.04508 2.93893i −0.135212 0.0982375i
\(896\) 0 0
\(897\) −0.394168 1.21312i −0.0131609 0.0405050i
\(898\) 0 0
\(899\) 5.27726 3.83416i 0.176007 0.127876i
\(900\) 0 0
\(901\) −13.5913 −0.452790
\(902\) 0 0
\(903\) 9.97268 0.331870
\(904\) 0 0
\(905\) 20.7424 15.0703i 0.689502 0.500953i
\(906\) 0 0
\(907\) 2.32700 + 7.16176i 0.0772666 + 0.237802i 0.982228 0.187691i \(-0.0601005\pi\)
−0.904961 + 0.425494i \(0.860100\pi\)
\(908\) 0 0
\(909\) −24.2306 17.6045i −0.803677 0.583905i
\(910\) 0 0
\(911\) −15.2789 + 47.0236i −0.506212 + 1.55796i 0.292510 + 0.956262i \(0.405509\pi\)
−0.798723 + 0.601699i \(0.794491\pi\)
\(912\) 0 0
\(913\) −2.06237 4.28693i −0.0682543 0.141877i
\(914\) 0 0
\(915\) 0.273047 0.840351i 0.00902665 0.0277812i
\(916\) 0 0
\(917\) 6.01761 + 4.37205i 0.198719 + 0.144378i
\(918\) 0 0
\(919\) −8.31031 25.5765i −0.274132 0.843691i −0.989448 0.144890i \(-0.953717\pi\)
0.715316 0.698801i \(-0.246283\pi\)
\(920\) 0 0
\(921\) −23.6090 + 17.1529i −0.777942 + 0.565208i
\(922\) 0 0
\(923\) 37.1567 1.22303
\(924\) 0 0
\(925\) 6.27097 0.206188
\(926\) 0 0
\(927\) −1.65108 + 1.19958i −0.0542287 + 0.0393995i
\(928\) 0 0
\(929\) 4.06864 + 12.5220i 0.133488 + 0.410833i 0.995352 0.0963066i \(-0.0307029\pi\)
−0.861864 + 0.507139i \(0.830703\pi\)
\(930\) 0 0
\(931\) −11.2730 8.19029i −0.369457 0.268426i
\(932\) 0 0
\(933\) 7.34994 22.6208i 0.240626 0.740572i
\(934\) 0 0
\(935\) −5.89464 + 5.63134i −0.192775 + 0.184165i
\(936\) 0 0
\(937\) −11.4905 + 35.3640i −0.375377 + 1.15529i 0.567847 + 0.823134i \(0.307777\pi\)
−0.943224 + 0.332158i \(0.892223\pi\)
\(938\) 0 0
\(939\) −17.4879 12.7057i −0.570695 0.414634i
\(940\) 0 0
\(941\) 4.63203 + 14.2559i 0.151000 + 0.464729i 0.997734 0.0672872i \(-0.0214344\pi\)
−0.846734 + 0.532017i \(0.821434\pi\)
\(942\) 0 0
\(943\) 2.91434 2.11739i 0.0949041 0.0689519i
\(944\) 0 0
\(945\) 4.22192 0.137339
\(946\) 0 0
\(947\) 41.0601 1.33428 0.667138 0.744934i \(-0.267519\pi\)
0.667138 + 0.744934i \(0.267519\pi\)
\(948\) 0 0
\(949\) −5.13076 + 3.72772i −0.166552 + 0.121007i
\(950\) 0 0
\(951\) −3.95387 12.1688i −0.128213 0.394599i
\(952\) 0 0
\(953\) −20.1508 14.6404i −0.652749 0.474250i 0.211457 0.977387i \(-0.432179\pi\)
−0.864207 + 0.503137i \(0.832179\pi\)
\(954\) 0 0
\(955\) 1.38863 4.27377i 0.0449351 0.138296i
\(956\) 0 0
\(957\) −3.75534 + 0.507168i −0.121393 + 0.0163944i
\(958\) 0 0
\(959\) 2.43053 7.48041i 0.0784860 0.241555i
\(960\) 0 0
\(961\) 6.08584 + 4.42162i 0.196317 + 0.142633i
\(962\) 0 0
\(963\) 2.85066 + 8.77341i 0.0918611 + 0.282719i
\(964\) 0 0
\(965\) 19.5714 14.2195i 0.630026 0.457741i
\(966\) 0 0
\(967\) −56.7325 −1.82439 −0.912197 0.409752i \(-0.865615\pi\)
−0.912197 + 0.409752i \(0.865615\pi\)
\(968\) 0 0
\(969\) −4.75568 −0.152775
\(970\) 0 0
\(971\) 0.852314 0.619242i 0.0273521 0.0198724i −0.574025 0.818838i \(-0.694619\pi\)
0.601377 + 0.798965i \(0.294619\pi\)
\(972\) 0 0
\(973\) −2.66566 8.20407i −0.0854573 0.263011i
\(974\) 0 0
\(975\) 3.13111 + 2.27489i 0.100276 + 0.0728547i
\(976\) 0 0
\(977\) 7.17033 22.0680i 0.229399 0.706018i −0.768416 0.639950i \(-0.778955\pi\)
0.997815 0.0660672i \(-0.0210452\pi\)
\(978\) 0 0
\(979\) 54.2441 7.32580i 1.73365 0.234134i
\(980\) 0 0
\(981\) 4.21162 12.9620i 0.134467 0.413846i
\(982\) 0 0
\(983\) 11.0190 + 8.00580i 0.351453 + 0.255345i 0.749478 0.662029i \(-0.230304\pi\)
−0.398025 + 0.917374i \(0.630304\pi\)
\(984\) 0 0
\(985\) −3.55436 10.9392i −0.113251 0.348551i
\(986\) 0 0
\(987\) −6.24794 + 4.53940i −0.198874 + 0.144491i
\(988\) 0 0
\(989\) −4.11027 −0.130699
\(990\) 0 0
\(991\) 0.947848 0.0301094 0.0150547 0.999887i \(-0.495208\pi\)
0.0150547 + 0.999887i \(0.495208\pi\)
\(992\) 0 0
\(993\) 8.79631 6.39089i 0.279142 0.202809i
\(994\) 0 0
\(995\) −3.43657 10.5767i −0.108947 0.335304i
\(996\) 0 0
\(997\) 40.6527 + 29.5359i 1.28749 + 0.935413i 0.999751 0.0222975i \(-0.00709809\pi\)
0.287734 + 0.957710i \(0.407098\pi\)
\(998\) 0 0
\(999\) −8.68321 + 26.7242i −0.274725 + 0.845515i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.m.b.141.1 8
3.2 odd 2 1980.2.z.d.361.2 8
4.3 odd 2 880.2.bo.c.801.2 8
5.2 odd 4 1100.2.cb.b.449.3 16
5.3 odd 4 1100.2.cb.b.449.2 16
5.4 even 2 1100.2.n.b.801.2 8
11.4 even 5 2420.2.a.k.1.3 4
11.5 even 5 inner 220.2.m.b.181.1 yes 8
11.7 odd 10 2420.2.a.l.1.3 4
33.5 odd 10 1980.2.z.d.181.2 8
44.7 even 10 9680.2.a.co.1.2 4
44.15 odd 10 9680.2.a.cp.1.2 4
44.27 odd 10 880.2.bo.c.401.2 8
55.27 odd 20 1100.2.cb.b.49.2 16
55.38 odd 20 1100.2.cb.b.49.3 16
55.49 even 10 1100.2.n.b.401.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.m.b.141.1 8 1.1 even 1 trivial
220.2.m.b.181.1 yes 8 11.5 even 5 inner
880.2.bo.c.401.2 8 44.27 odd 10
880.2.bo.c.801.2 8 4.3 odd 2
1100.2.n.b.401.2 8 55.49 even 10
1100.2.n.b.801.2 8 5.4 even 2
1100.2.cb.b.49.2 16 55.27 odd 20
1100.2.cb.b.49.3 16 55.38 odd 20
1100.2.cb.b.449.2 16 5.3 odd 4
1100.2.cb.b.449.3 16 5.2 odd 4
1980.2.z.d.181.2 8 33.5 odd 10
1980.2.z.d.361.2 8 3.2 odd 2
2420.2.a.k.1.3 4 11.4 even 5
2420.2.a.l.1.3 4 11.7 odd 10
9680.2.a.co.1.2 4 44.7 even 10
9680.2.a.cp.1.2 4 44.15 odd 10