Properties

Label 220.2.l.c.23.13
Level $220$
Weight $2$
Character 220.23
Analytic conductor $1.757$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(23,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.23"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 23.13
Character \(\chi\) \(=\) 220.23
Dual form 220.2.l.c.67.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31753 - 0.513913i) q^{2} +(-0.912547 + 0.912547i) q^{3} +(1.47179 - 1.35419i) q^{4} +(1.46492 - 1.68939i) q^{5} +(-0.733342 + 1.67128i) q^{6} +(-0.0653068 - 0.0653068i) q^{7} +(1.24319 - 2.54057i) q^{8} +1.33451i q^{9} +(1.06188 - 2.97866i) q^{10} -1.00000i q^{11} +(-0.107310 + 2.57884i) q^{12} +(0.473161 + 0.473161i) q^{13} +(-0.119606 - 0.0524819i) q^{14} +(0.204839 + 2.87845i) q^{15} +(0.332318 - 3.98617i) q^{16} +(-1.01081 + 1.01081i) q^{17} +(0.685824 + 1.75827i) q^{18} +2.65097 q^{19} +(-0.131711 - 4.47020i) q^{20} +0.119191 q^{21} +(-0.513913 - 1.31753i) q^{22} +(-5.32132 + 5.32132i) q^{23} +(1.18392 + 3.45286i) q^{24} +(-0.708046 - 4.94961i) q^{25} +(0.866568 + 0.380242i) q^{26} +(-3.95545 - 3.95545i) q^{27} +(-0.184556 - 0.00767967i) q^{28} +5.94796i q^{29} +(1.74915 + 3.68718i) q^{30} +1.44287i q^{31} +(-1.61070 - 5.42270i) q^{32} +(0.912547 + 0.912547i) q^{33} +(-0.812306 + 1.85124i) q^{34} +(-0.205997 + 0.0146594i) q^{35} +(1.80719 + 1.96412i) q^{36} +(-5.27054 + 5.27054i) q^{37} +(3.49274 - 1.36237i) q^{38} -0.863563 q^{39} +(-2.47082 - 5.82194i) q^{40} -5.13952 q^{41} +(0.157038 - 0.0612538i) q^{42} +(-4.06096 + 4.06096i) q^{43} +(-1.35419 - 1.47179i) q^{44} +(2.25451 + 1.95495i) q^{45} +(-4.27633 + 9.74572i) q^{46} +(-7.89803 - 7.89803i) q^{47} +(3.33431 + 3.94083i) q^{48} -6.99147i q^{49} +(-3.47654 - 6.15741i) q^{50} -1.84482i q^{51} +(1.33714 + 0.0556408i) q^{52} +(2.60160 + 2.60160i) q^{53} +(-7.24419 - 3.17868i) q^{54} +(-1.68939 - 1.46492i) q^{55} +(-0.247105 + 0.0847274i) q^{56} +(-2.41913 + 2.41913i) q^{57} +(3.05673 + 7.83664i) q^{58} +7.70258 q^{59} +(4.19946 + 3.95907i) q^{60} +7.06915 q^{61} +(0.741508 + 1.90103i) q^{62} +(0.0871529 - 0.0871529i) q^{63} +(-4.90895 - 6.31682i) q^{64} +(1.49249 - 0.106210i) q^{65} +(1.67128 + 0.733342i) q^{66} +(5.47540 + 5.47540i) q^{67} +(-0.118865 + 2.85652i) q^{68} -9.71192i q^{69} +(-0.263875 + 0.125179i) q^{70} -1.80081i q^{71} +(3.39042 + 1.65906i) q^{72} +(5.16419 + 5.16419i) q^{73} +(-4.23552 + 9.65271i) q^{74} +(5.16288 + 3.87063i) q^{75} +(3.90166 - 3.58992i) q^{76} +(-0.0653068 + 0.0653068i) q^{77} +(-1.13777 + 0.443796i) q^{78} +14.2952 q^{79} +(-6.24736 - 6.40082i) q^{80} +3.21553 q^{81} +(-6.77149 + 2.64126i) q^{82} +(11.9160 - 11.9160i) q^{83} +(0.175424 - 0.161408i) q^{84} +(0.226896 + 3.18839i) q^{85} +(-3.26347 + 7.43743i) q^{86} +(-5.42780 - 5.42780i) q^{87} +(-2.54057 - 1.24319i) q^{88} -5.69673i q^{89} +(3.97507 + 1.41709i) q^{90} -0.0618012i q^{91} +(-0.625755 + 15.0380i) q^{92} +(-1.31668 - 1.31668i) q^{93} +(-14.4648 - 6.34702i) q^{94} +(3.88344 - 4.47850i) q^{95} +(6.41831 + 3.47862i) q^{96} +(-0.398370 + 0.398370i) q^{97} +(-3.59300 - 9.21149i) q^{98} +1.33451 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{2} - 4 q^{3} + 4 q^{4} + 2 q^{5} - 12 q^{6} - 2 q^{7} - 14 q^{8} + 6 q^{10} - 8 q^{12} + 6 q^{13} - 20 q^{14} + 8 q^{15} + 8 q^{16} - 14 q^{17} + 34 q^{18} + 4 q^{19} + 8 q^{20} - 16 q^{21}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.31753 0.513913i 0.931637 0.363391i
\(3\) −0.912547 + 0.912547i −0.526859 + 0.526859i −0.919635 0.392775i \(-0.871515\pi\)
0.392775 + 0.919635i \(0.371515\pi\)
\(4\) 1.47179 1.35419i 0.735894 0.677097i
\(5\) 1.46492 1.68939i 0.655130 0.755516i
\(6\) −0.733342 + 1.67128i −0.299386 + 0.682298i
\(7\) −0.0653068 0.0653068i −0.0246837 0.0246837i 0.694657 0.719341i \(-0.255556\pi\)
−0.719341 + 0.694657i \(0.755556\pi\)
\(8\) 1.24319 2.54057i 0.439535 0.898226i
\(9\) 1.33451i 0.444838i
\(10\) 1.06188 2.97866i 0.335795 0.941935i
\(11\) 1.00000i 0.301511i
\(12\) −0.107310 + 2.57884i −0.0309777 + 0.744448i
\(13\) 0.473161 + 0.473161i 0.131231 + 0.131231i 0.769671 0.638440i \(-0.220420\pi\)
−0.638440 + 0.769671i \(0.720420\pi\)
\(14\) −0.119606 0.0524819i −0.0319660 0.0140264i
\(15\) 0.204839 + 2.87845i 0.0528893 + 0.743212i
\(16\) 0.332318 3.98617i 0.0830795 0.996543i
\(17\) −1.01081 + 1.01081i −0.245157 + 0.245157i −0.818980 0.573823i \(-0.805460\pi\)
0.573823 + 0.818980i \(0.305460\pi\)
\(18\) 0.685824 + 1.75827i 0.161650 + 0.414428i
\(19\) 2.65097 0.608173 0.304087 0.952644i \(-0.401649\pi\)
0.304087 + 0.952644i \(0.401649\pi\)
\(20\) −0.131711 4.47020i −0.0294515 0.999566i
\(21\) 0.119191 0.0260096
\(22\) −0.513913 1.31753i −0.109567 0.280899i
\(23\) −5.32132 + 5.32132i −1.10957 + 1.10957i −0.116367 + 0.993206i \(0.537125\pi\)
−0.993206 + 0.116367i \(0.962875\pi\)
\(24\) 1.18392 + 3.45286i 0.241666 + 0.704812i
\(25\) −0.708046 4.94961i −0.141609 0.989923i
\(26\) 0.866568 + 0.380242i 0.169948 + 0.0745715i
\(27\) −3.95545 3.95545i −0.761227 0.761227i
\(28\) −0.184556 0.00767967i −0.0348778 0.00145132i
\(29\) 5.94796i 1.10451i 0.833676 + 0.552254i \(0.186232\pi\)
−0.833676 + 0.552254i \(0.813768\pi\)
\(30\) 1.74915 + 3.68718i 0.319350 + 0.673184i
\(31\) 1.44287i 0.259147i 0.991570 + 0.129573i \(0.0413608\pi\)
−0.991570 + 0.129573i \(0.958639\pi\)
\(32\) −1.61070 5.42270i −0.284735 0.958606i
\(33\) 0.912547 + 0.912547i 0.158854 + 0.158854i
\(34\) −0.812306 + 1.85124i −0.139309 + 0.317485i
\(35\) −0.205997 + 0.0146594i −0.0348199 + 0.00247789i
\(36\) 1.80719 + 1.96412i 0.301199 + 0.327354i
\(37\) −5.27054 + 5.27054i −0.866472 + 0.866472i −0.992080 0.125608i \(-0.959912\pi\)
0.125608 + 0.992080i \(0.459912\pi\)
\(38\) 3.49274 1.36237i 0.566597 0.221005i
\(39\) −0.863563 −0.138281
\(40\) −2.47082 5.82194i −0.390672 0.920530i
\(41\) −5.13952 −0.802658 −0.401329 0.915934i \(-0.631452\pi\)
−0.401329 + 0.915934i \(0.631452\pi\)
\(42\) 0.157038 0.0612538i 0.0242315 0.00945167i
\(43\) −4.06096 + 4.06096i −0.619291 + 0.619291i −0.945350 0.326058i \(-0.894279\pi\)
0.326058 + 0.945350i \(0.394279\pi\)
\(44\) −1.35419 1.47179i −0.204152 0.221880i
\(45\) 2.25451 + 1.95495i 0.336082 + 0.291427i
\(46\) −4.27633 + 9.74572i −0.630510 + 1.43693i
\(47\) −7.89803 7.89803i −1.15205 1.15205i −0.986142 0.165903i \(-0.946946\pi\)
−0.165903 0.986142i \(-0.553054\pi\)
\(48\) 3.33431 + 3.94083i 0.481267 + 0.568809i
\(49\) 6.99147i 0.998781i
\(50\) −3.47654 6.15741i −0.491657 0.870789i
\(51\) 1.84482i 0.258326i
\(52\) 1.33714 + 0.0556408i 0.185428 + 0.00771598i
\(53\) 2.60160 + 2.60160i 0.357357 + 0.357357i 0.862838 0.505481i \(-0.168685\pi\)
−0.505481 + 0.862838i \(0.668685\pi\)
\(54\) −7.24419 3.17868i −0.985810 0.432564i
\(55\) −1.68939 1.46492i −0.227797 0.197529i
\(56\) −0.247105 + 0.0847274i −0.0330208 + 0.0113222i
\(57\) −2.41913 + 2.41913i −0.320422 + 0.320422i
\(58\) 3.05673 + 7.83664i 0.401369 + 1.02900i
\(59\) 7.70258 1.00279 0.501395 0.865218i \(-0.332820\pi\)
0.501395 + 0.865218i \(0.332820\pi\)
\(60\) 4.19946 + 3.95907i 0.542148 + 0.511114i
\(61\) 7.06915 0.905112 0.452556 0.891736i \(-0.350512\pi\)
0.452556 + 0.891736i \(0.350512\pi\)
\(62\) 0.741508 + 1.90103i 0.0941716 + 0.241430i
\(63\) 0.0871529 0.0871529i 0.0109802 0.0109802i
\(64\) −4.90895 6.31682i −0.613619 0.789603i
\(65\) 1.49249 0.106210i 0.185121 0.0131738i
\(66\) 1.67128 + 0.733342i 0.205720 + 0.0902681i
\(67\) 5.47540 + 5.47540i 0.668927 + 0.668927i 0.957468 0.288541i \(-0.0931701\pi\)
−0.288541 + 0.957468i \(0.593170\pi\)
\(68\) −0.118865 + 2.85652i −0.0144145 + 0.346404i
\(69\) 9.71192i 1.16918i
\(70\) −0.263875 + 0.125179i −0.0315391 + 0.0149617i
\(71\) 1.80081i 0.213717i −0.994274 0.106859i \(-0.965921\pi\)
0.994274 0.106859i \(-0.0340793\pi\)
\(72\) 3.39042 + 1.65906i 0.399565 + 0.195522i
\(73\) 5.16419 + 5.16419i 0.604422 + 0.604422i 0.941483 0.337061i \(-0.109433\pi\)
−0.337061 + 0.941483i \(0.609433\pi\)
\(74\) −4.23552 + 9.65271i −0.492369 + 1.12211i
\(75\) 5.16288 + 3.87063i 0.596158 + 0.446942i
\(76\) 3.90166 3.58992i 0.447551 0.411792i
\(77\) −0.0653068 + 0.0653068i −0.00744240 + 0.00744240i
\(78\) −1.13777 + 0.443796i −0.128827 + 0.0502500i
\(79\) 14.2952 1.60833 0.804167 0.594404i \(-0.202612\pi\)
0.804167 + 0.594404i \(0.202612\pi\)
\(80\) −6.24736 6.40082i −0.698476 0.715633i
\(81\) 3.21553 0.357281
\(82\) −6.77149 + 2.64126i −0.747786 + 0.291679i
\(83\) 11.9160 11.9160i 1.30795 1.30795i 0.385065 0.922889i \(-0.374179\pi\)
0.922889 0.385065i \(-0.125821\pi\)
\(84\) 0.175424 0.161408i 0.0191403 0.0176110i
\(85\) 0.226896 + 3.18839i 0.0246103 + 0.345830i
\(86\) −3.26347 + 7.43743i −0.351909 + 0.801999i
\(87\) −5.42780 5.42780i −0.581921 0.581921i
\(88\) −2.54057 1.24319i −0.270825 0.132525i
\(89\) 5.69673i 0.603852i −0.953331 0.301926i \(-0.902370\pi\)
0.953331 0.301926i \(-0.0976296\pi\)
\(90\) 3.97507 + 1.41709i 0.419009 + 0.149375i
\(91\) 0.0618012i 0.00647853i
\(92\) −0.625755 + 15.0380i −0.0652394 + 1.56782i
\(93\) −1.31668 1.31668i −0.136534 0.136534i
\(94\) −14.4648 6.34702i −1.49193 0.654645i
\(95\) 3.88344 4.47850i 0.398433 0.459485i
\(96\) 6.41831 + 3.47862i 0.655066 + 0.355035i
\(97\) −0.398370 + 0.398370i −0.0404484 + 0.0404484i −0.727042 0.686593i \(-0.759105\pi\)
0.686593 + 0.727042i \(0.259105\pi\)
\(98\) −3.59300 9.21149i −0.362948 0.930501i
\(99\) 1.33451 0.134124
\(100\) −7.74483 6.32595i −0.774483 0.632595i
\(101\) −11.2570 −1.12012 −0.560058 0.828453i \(-0.689221\pi\)
−0.560058 + 0.828453i \(0.689221\pi\)
\(102\) −0.948076 2.43061i −0.0938735 0.240666i
\(103\) −4.87406 + 4.87406i −0.480255 + 0.480255i −0.905213 0.424958i \(-0.860289\pi\)
0.424958 + 0.905213i \(0.360289\pi\)
\(104\) 1.79033 0.613866i 0.175556 0.0601946i
\(105\) 0.174605 0.201360i 0.0170397 0.0196507i
\(106\) 4.76469 + 2.09070i 0.462787 + 0.203067i
\(107\) 2.18565 + 2.18565i 0.211295 + 0.211295i 0.804817 0.593523i \(-0.202263\pi\)
−0.593523 + 0.804817i \(0.702263\pi\)
\(108\) −11.1780 0.465136i −1.07561 0.0447578i
\(109\) 9.51113i 0.911001i −0.890235 0.455501i \(-0.849460\pi\)
0.890235 0.455501i \(-0.150540\pi\)
\(110\) −2.97866 1.06188i −0.284004 0.101246i
\(111\) 9.61924i 0.913018i
\(112\) −0.282027 + 0.238622i −0.0266490 + 0.0225476i
\(113\) −11.0768 11.0768i −1.04201 1.04201i −0.999078 0.0429352i \(-0.986329\pi\)
−0.0429352 0.999078i \(-0.513671\pi\)
\(114\) −1.94406 + 4.43051i −0.182078 + 0.414955i
\(115\) 1.19448 + 16.7851i 0.111386 + 1.56521i
\(116\) 8.05469 + 8.75414i 0.747859 + 0.812801i
\(117\) −0.631440 + 0.631440i −0.0583767 + 0.0583767i
\(118\) 10.1484 3.95845i 0.934237 0.364405i
\(119\) 0.132025 0.0121027
\(120\) 7.56754 + 3.05806i 0.690819 + 0.279161i
\(121\) −1.00000 −0.0909091
\(122\) 9.31384 3.63293i 0.843236 0.328910i
\(123\) 4.69005 4.69005i 0.422888 0.422888i
\(124\) 1.95392 + 2.12359i 0.175467 + 0.190704i
\(125\) −9.39903 6.05460i −0.840675 0.541540i
\(126\) 0.0700379 0.159616i 0.00623947 0.0142197i
\(127\) −2.77907 2.77907i −0.246603 0.246603i 0.572972 0.819575i \(-0.305790\pi\)
−0.819575 + 0.572972i \(0.805790\pi\)
\(128\) −9.71400 5.79985i −0.858604 0.512639i
\(129\) 7.41164i 0.652559i
\(130\) 1.91182 0.906946i 0.167678 0.0795444i
\(131\) 5.82054i 0.508543i −0.967133 0.254272i \(-0.918164\pi\)
0.967133 0.254272i \(-0.0818357\pi\)
\(132\) 2.57884 + 0.107310i 0.224459 + 0.00934013i
\(133\) −0.173126 0.173126i −0.0150119 0.0150119i
\(134\) 10.0279 + 4.40015i 0.866279 + 0.380115i
\(135\) −12.4767 + 0.887880i −1.07382 + 0.0764165i
\(136\) 1.31140 + 3.82465i 0.112451 + 0.327961i
\(137\) −4.96234 + 4.96234i −0.423961 + 0.423961i −0.886565 0.462604i \(-0.846915\pi\)
0.462604 + 0.886565i \(0.346915\pi\)
\(138\) −4.99108 12.7958i −0.424869 1.08925i
\(139\) 19.6363 1.66553 0.832765 0.553626i \(-0.186756\pi\)
0.832765 + 0.553626i \(0.186756\pi\)
\(140\) −0.283333 + 0.300536i −0.0239460 + 0.0253999i
\(141\) 14.4146 1.21393
\(142\) −0.925462 2.37263i −0.0776630 0.199107i
\(143\) 0.473161 0.473161i 0.0395677 0.0395677i
\(144\) 5.31960 + 0.443483i 0.443300 + 0.0369569i
\(145\) 10.0484 + 8.71326i 0.834474 + 0.723597i
\(146\) 9.45793 + 4.15005i 0.782743 + 0.343460i
\(147\) 6.38005 + 6.38005i 0.526217 + 0.526217i
\(148\) −0.619783 + 14.8945i −0.0509458 + 1.22432i
\(149\) 23.2803i 1.90719i 0.301087 + 0.953597i \(0.402651\pi\)
−0.301087 + 0.953597i \(0.597349\pi\)
\(150\) 8.79143 + 2.44642i 0.717818 + 0.199749i
\(151\) 7.70843i 0.627303i 0.949538 + 0.313651i \(0.101552\pi\)
−0.949538 + 0.313651i \(0.898448\pi\)
\(152\) 3.29566 6.73495i 0.267313 0.546277i
\(153\) −1.34894 1.34894i −0.109055 0.109055i
\(154\) −0.0524819 + 0.119606i −0.00422911 + 0.00963812i
\(155\) 2.43756 + 2.11368i 0.195789 + 0.169775i
\(156\) −1.27098 + 1.16943i −0.101760 + 0.0936295i
\(157\) 12.9770 12.9770i 1.03567 1.03567i 0.0363338 0.999340i \(-0.488432\pi\)
0.999340 0.0363338i \(-0.0115679\pi\)
\(158\) 18.8344 7.34647i 1.49838 0.584454i
\(159\) −4.74816 −0.376554
\(160\) −11.5206 5.22269i −0.910781 0.412890i
\(161\) 0.695038 0.0547766
\(162\) 4.23656 1.65250i 0.332856 0.129833i
\(163\) −6.37115 + 6.37115i −0.499027 + 0.499027i −0.911135 0.412108i \(-0.864793\pi\)
0.412108 + 0.911135i \(0.364793\pi\)
\(164\) −7.56428 + 6.95991i −0.590671 + 0.543477i
\(165\) 2.87845 0.204839i 0.224087 0.0159467i
\(166\) 9.57597 21.8236i 0.743239 1.69384i
\(167\) −12.0038 12.0038i −0.928881 0.928881i 0.0687523 0.997634i \(-0.478098\pi\)
−0.997634 + 0.0687523i \(0.978098\pi\)
\(168\) 0.148177 0.302813i 0.0114321 0.0233625i
\(169\) 12.5522i 0.965557i
\(170\) 1.93750 + 4.08421i 0.148599 + 0.313244i
\(171\) 3.53775i 0.270539i
\(172\) −0.477544 + 11.4762i −0.0364124 + 0.875053i
\(173\) −5.56357 5.56357i −0.422990 0.422990i 0.463242 0.886232i \(-0.346686\pi\)
−0.886232 + 0.463242i \(0.846686\pi\)
\(174\) −9.94071 4.36189i −0.753604 0.330674i
\(175\) −0.277003 + 0.369484i −0.0209395 + 0.0279303i
\(176\) −3.98617 0.332318i −0.300469 0.0250494i
\(177\) −7.02897 + 7.02897i −0.528330 + 0.528330i
\(178\) −2.92762 7.50563i −0.219435 0.562571i
\(179\) −4.15446 −0.310519 −0.155259 0.987874i \(-0.549621\pi\)
−0.155259 + 0.987874i \(0.549621\pi\)
\(180\) 5.96554 0.175770i 0.444645 0.0131011i
\(181\) −9.46693 −0.703671 −0.351836 0.936062i \(-0.614442\pi\)
−0.351836 + 0.936062i \(0.614442\pi\)
\(182\) −0.0317604 0.0814252i −0.00235424 0.00603564i
\(183\) −6.45093 + 6.45093i −0.476867 + 0.476867i
\(184\) 6.90375 + 20.1346i 0.508951 + 1.48434i
\(185\) 1.18308 + 16.6249i 0.0869817 + 1.22229i
\(186\) −2.41144 1.05811i −0.176815 0.0775848i
\(187\) 1.01081 + 1.01081i 0.0739176 + 0.0739176i
\(188\) −22.3197 0.928759i −1.62783 0.0677367i
\(189\) 0.516636i 0.0375797i
\(190\) 2.81500 7.89633i 0.204222 0.572860i
\(191\) 18.6435i 1.34899i −0.738277 0.674497i \(-0.764360\pi\)
0.738277 0.674497i \(-0.235640\pi\)
\(192\) 10.2440 + 1.28475i 0.739300 + 0.0927189i
\(193\) 19.4785 + 19.4785i 1.40209 + 1.40209i 0.793427 + 0.608666i \(0.208295\pi\)
0.608666 + 0.793427i \(0.291705\pi\)
\(194\) −0.320139 + 0.729594i −0.0229846 + 0.0523818i
\(195\) −1.26505 + 1.45889i −0.0905919 + 0.104473i
\(196\) −9.46781 10.2900i −0.676272 0.734997i
\(197\) 13.7373 13.7373i 0.978743 0.978743i −0.0210356 0.999779i \(-0.506696\pi\)
0.999779 + 0.0210356i \(0.00669635\pi\)
\(198\) 1.75827 0.685824i 0.124955 0.0487394i
\(199\) −9.36208 −0.663661 −0.331830 0.943339i \(-0.607666\pi\)
−0.331830 + 0.943339i \(0.607666\pi\)
\(200\) −13.4551 4.35448i −0.951416 0.307908i
\(201\) −9.99313 −0.704861
\(202\) −14.8315 + 5.78513i −1.04354 + 0.407041i
\(203\) 0.388442 0.388442i 0.0272633 0.0272633i
\(204\) −2.49824 2.71518i −0.174912 0.190101i
\(205\) −7.52896 + 8.68263i −0.525845 + 0.606421i
\(206\) −3.91689 + 8.92658i −0.272903 + 0.621944i
\(207\) −7.10139 7.10139i −0.493580 0.493580i
\(208\) 2.04334 1.72886i 0.141680 0.119875i
\(209\) 2.65097i 0.183371i
\(210\) 0.126566 0.355030i 0.00873392 0.0244994i
\(211\) 19.0983i 1.31478i 0.753550 + 0.657390i \(0.228340\pi\)
−0.753550 + 0.657390i \(0.771660\pi\)
\(212\) 7.35207 + 0.305932i 0.504942 + 0.0210115i
\(213\) 1.64333 + 1.64333i 0.112599 + 0.112599i
\(214\) 4.00290 + 1.75643i 0.273632 + 0.120067i
\(215\) 0.911564 + 12.8095i 0.0621682 + 0.873601i
\(216\) −14.9665 + 5.13170i −1.01834 + 0.349168i
\(217\) 0.0942291 0.0942291i 0.00639669 0.00639669i
\(218\) −4.88789 12.5312i −0.331050 0.848722i
\(219\) −9.42513 −0.636891
\(220\) −4.47020 + 0.131711i −0.301381 + 0.00887995i
\(221\) −0.956549 −0.0643445
\(222\) −4.94345 12.6737i −0.331783 0.850601i
\(223\) −1.52935 + 1.52935i −0.102413 + 0.102413i −0.756457 0.654044i \(-0.773071\pi\)
0.654044 + 0.756457i \(0.273071\pi\)
\(224\) −0.248949 + 0.459329i −0.0166336 + 0.0306902i
\(225\) 6.60533 0.944898i 0.440355 0.0629932i
\(226\) −20.2865 8.90151i −1.34944 0.592119i
\(227\) 7.50620 + 7.50620i 0.498204 + 0.498204i 0.910879 0.412675i \(-0.135405\pi\)
−0.412675 + 0.910879i \(0.635405\pi\)
\(228\) −0.284475 + 6.83642i −0.0188398 + 0.452753i
\(229\) 13.3544i 0.882485i 0.897388 + 0.441243i \(0.145462\pi\)
−0.897388 + 0.441243i \(0.854538\pi\)
\(230\) 10.1998 + 21.5010i 0.672556 + 1.41774i
\(231\) 0.119191i 0.00784220i
\(232\) 15.1112 + 7.39446i 0.992098 + 0.485470i
\(233\) 4.32195 + 4.32195i 0.283140 + 0.283140i 0.834360 0.551220i \(-0.185837\pi\)
−0.551220 + 0.834360i \(0.685837\pi\)
\(234\) −0.507438 + 1.15645i −0.0331723 + 0.0755994i
\(235\) −24.9127 + 1.77287i −1.62513 + 0.115649i
\(236\) 11.3366 10.4308i 0.737948 0.678987i
\(237\) −13.0450 + 13.0450i −0.847366 + 0.847366i
\(238\) 0.173948 0.0678494i 0.0112754 0.00439803i
\(239\) −25.2845 −1.63552 −0.817760 0.575559i \(-0.804784\pi\)
−0.817760 + 0.575559i \(0.804784\pi\)
\(240\) 11.5421 + 0.140034i 0.745037 + 0.00903919i
\(241\) −11.0013 −0.708655 −0.354328 0.935121i \(-0.615290\pi\)
−0.354328 + 0.935121i \(0.615290\pi\)
\(242\) −1.31753 + 0.513913i −0.0846942 + 0.0330356i
\(243\) 8.93203 8.93203i 0.572990 0.572990i
\(244\) 10.4043 9.57300i 0.666066 0.612849i
\(245\) −11.8113 10.2419i −0.754595 0.654332i
\(246\) 3.76902 8.58958i 0.240304 0.547652i
\(247\) 1.25433 + 1.25433i 0.0798113 + 0.0798113i
\(248\) 3.66570 + 1.79376i 0.232772 + 0.113904i
\(249\) 21.7479i 1.37822i
\(250\) −15.4951 3.14686i −0.979994 0.199025i
\(251\) 29.5654i 1.86615i −0.359683 0.933075i \(-0.617115\pi\)
0.359683 0.933075i \(-0.382885\pi\)
\(252\) 0.0102486 0.246293i 0.000645604 0.0155150i
\(253\) 5.32132 + 5.32132i 0.334549 + 0.334549i
\(254\) −5.08973 2.23332i −0.319358 0.140131i
\(255\) −3.11661 2.70250i −0.195170 0.169237i
\(256\) −15.7791 2.64935i −0.986196 0.165584i
\(257\) 12.1596 12.1596i 0.758496 0.758496i −0.217553 0.976049i \(-0.569807\pi\)
0.976049 + 0.217553i \(0.0698073\pi\)
\(258\) −3.80894 9.76509i −0.237134 0.607948i
\(259\) 0.688405 0.0427754
\(260\) 2.05280 2.17744i 0.127309 0.135039i
\(261\) −7.93764 −0.491328
\(262\) −2.99125 7.66876i −0.184800 0.473777i
\(263\) −13.5230 + 13.5230i −0.833864 + 0.833864i −0.988043 0.154179i \(-0.950727\pi\)
0.154179 + 0.988043i \(0.450727\pi\)
\(264\) 3.45286 1.18392i 0.212509 0.0728649i
\(265\) 8.20623 0.583981i 0.504104 0.0358737i
\(266\) −0.317071 0.139128i −0.0194409 0.00853047i
\(267\) 5.19854 + 5.19854i 0.318145 + 0.318145i
\(268\) 15.4734 + 0.643873i 0.945188 + 0.0393308i
\(269\) 1.45696i 0.0888322i −0.999013 0.0444161i \(-0.985857\pi\)
0.999013 0.0444161i \(-0.0141427\pi\)
\(270\) −15.9821 + 7.58173i −0.972642 + 0.461410i
\(271\) 8.56442i 0.520251i 0.965575 + 0.260126i \(0.0837640\pi\)
−0.965575 + 0.260126i \(0.916236\pi\)
\(272\) 3.69334 + 4.36516i 0.223942 + 0.264677i
\(273\) 0.0563966 + 0.0563966i 0.00341328 + 0.00341328i
\(274\) −3.98784 + 9.08825i −0.240914 + 0.549041i
\(275\) −4.94961 + 0.708046i −0.298473 + 0.0426968i
\(276\) −13.1518 14.2939i −0.791647 0.860391i
\(277\) 8.63149 8.63149i 0.518616 0.518616i −0.398537 0.917152i \(-0.630482\pi\)
0.917152 + 0.398537i \(0.130482\pi\)
\(278\) 25.8715 10.0913i 1.55167 0.605239i
\(279\) −1.92553 −0.115278
\(280\) −0.218851 + 0.541574i −0.0130788 + 0.0323652i
\(281\) 8.37468 0.499592 0.249796 0.968299i \(-0.419637\pi\)
0.249796 + 0.968299i \(0.419637\pi\)
\(282\) 18.9918 7.40787i 1.13094 0.441132i
\(283\) 7.90636 7.90636i 0.469985 0.469985i −0.431925 0.901910i \(-0.642165\pi\)
0.901910 + 0.431925i \(0.142165\pi\)
\(284\) −2.43865 2.65042i −0.144707 0.157273i
\(285\) 0.543023 + 7.63067i 0.0321659 + 0.452002i
\(286\) 0.380242 0.866568i 0.0224842 0.0512413i
\(287\) 0.335646 + 0.335646i 0.0198125 + 0.0198125i
\(288\) 7.23667 2.14951i 0.426425 0.126661i
\(289\) 14.9565i 0.879796i
\(290\) 17.7170 + 6.31601i 1.04038 + 0.370889i
\(291\) 0.727064i 0.0426212i
\(292\) 14.5939 + 0.607276i 0.854043 + 0.0355381i
\(293\) −7.94335 7.94335i −0.464056 0.464056i 0.435927 0.899982i \(-0.356421\pi\)
−0.899982 + 0.435927i \(0.856421\pi\)
\(294\) 11.6847 + 5.12714i 0.681466 + 0.299021i
\(295\) 11.2836 13.0126i 0.656958 0.757625i
\(296\) 6.83786 + 19.9425i 0.397443 + 1.15913i
\(297\) −3.95545 + 3.95545i −0.229518 + 0.229518i
\(298\) 11.9640 + 30.6725i 0.693057 + 1.77681i
\(299\) −5.03568 −0.291221
\(300\) 12.8403 1.29480i 0.741332 0.0747551i
\(301\) 0.530417 0.0305727
\(302\) 3.96146 + 10.1561i 0.227956 + 0.584418i
\(303\) 10.2726 10.2726i 0.590144 0.590144i
\(304\) 0.880963 10.5672i 0.0505267 0.606071i
\(305\) 10.3557 11.9425i 0.592966 0.683827i
\(306\) −2.47051 1.08403i −0.141229 0.0619701i
\(307\) 13.3805 + 13.3805i 0.763666 + 0.763666i 0.976983 0.213317i \(-0.0684266\pi\)
−0.213317 + 0.976983i \(0.568427\pi\)
\(308\) −0.00767967 + 0.184556i −0.000437590 + 0.0105160i
\(309\) 8.89562i 0.506054i
\(310\) 4.29781 + 1.53215i 0.244099 + 0.0870202i
\(311\) 32.5214i 1.84412i 0.387046 + 0.922060i \(0.373495\pi\)
−0.387046 + 0.922060i \(0.626505\pi\)
\(312\) −1.07357 + 2.19394i −0.0607792 + 0.124207i
\(313\) −14.8992 14.8992i −0.842150 0.842150i 0.146988 0.989138i \(-0.453042\pi\)
−0.989138 + 0.146988i \(0.953042\pi\)
\(314\) 10.4285 23.7666i 0.588517 1.34123i
\(315\) −0.0195632 0.274906i −0.00110226 0.0154892i
\(316\) 21.0395 19.3584i 1.18356 1.08900i
\(317\) 9.74907 9.74907i 0.547562 0.547562i −0.378173 0.925735i \(-0.623447\pi\)
0.925735 + 0.378173i \(0.123447\pi\)
\(318\) −6.25586 + 2.44014i −0.350811 + 0.136836i
\(319\) 5.94796 0.333022
\(320\) −17.8627 0.960503i −0.998557 0.0536938i
\(321\) −3.98902 −0.222645
\(322\) 0.915735 0.357189i 0.0510319 0.0199053i
\(323\) −2.67962 + 2.67962i −0.149098 + 0.149098i
\(324\) 4.73257 4.35445i 0.262921 0.241914i
\(325\) 2.00694 2.67698i 0.111325 0.148492i
\(326\) −5.11999 + 11.6684i −0.283570 + 0.646254i
\(327\) 8.67936 + 8.67936i 0.479970 + 0.479970i
\(328\) −6.38941 + 13.0573i −0.352796 + 0.720968i
\(329\) 1.03159i 0.0568734i
\(330\) 3.68718 1.74915i 0.202973 0.0962878i
\(331\) 10.2373i 0.562695i −0.959606 0.281348i \(-0.909219\pi\)
0.959606 0.281348i \(-0.0907814\pi\)
\(332\) 1.40125 33.6745i 0.0769036 1.84813i
\(333\) −7.03362 7.03362i −0.385440 0.385440i
\(334\) −21.9843 9.64650i −1.20293 0.527833i
\(335\) 17.2711 1.22906i 0.943619 0.0671509i
\(336\) 0.0396093 0.475116i 0.00216087 0.0259197i
\(337\) 15.6491 15.6491i 0.852460 0.852460i −0.137976 0.990436i \(-0.544060\pi\)
0.990436 + 0.137976i \(0.0440596\pi\)
\(338\) −6.45075 16.5380i −0.350875 0.899548i
\(339\) 20.2161 1.09799
\(340\) 4.65164 + 4.38537i 0.252271 + 0.237830i
\(341\) 1.44287 0.0781356
\(342\) 1.81810 + 4.66111i 0.0983114 + 0.252044i
\(343\) −0.913738 + 0.913738i −0.0493372 + 0.0493372i
\(344\) 5.26859 + 15.3657i 0.284063 + 0.828463i
\(345\) −16.4072 14.2271i −0.883333 0.765964i
\(346\) −10.1894 4.47100i −0.547784 0.240362i
\(347\) 15.8467 + 15.8467i 0.850698 + 0.850698i 0.990219 0.139521i \(-0.0445564\pi\)
−0.139521 + 0.990219i \(0.544556\pi\)
\(348\) −15.3389 0.638275i −0.822249 0.0342151i
\(349\) 22.8492i 1.22309i −0.791209 0.611545i \(-0.790548\pi\)
0.791209 0.611545i \(-0.209452\pi\)
\(350\) −0.175079 + 0.629162i −0.00935835 + 0.0336301i
\(351\) 3.74313i 0.199793i
\(352\) −5.42270 + 1.61070i −0.289031 + 0.0858508i
\(353\) 1.30502 + 1.30502i 0.0694591 + 0.0694591i 0.740983 0.671524i \(-0.234360\pi\)
−0.671524 + 0.740983i \(0.734360\pi\)
\(354\) −5.64863 + 12.8732i −0.300221 + 0.684202i
\(355\) −3.04227 2.63804i −0.161467 0.140013i
\(356\) −7.71448 8.38438i −0.408867 0.444371i
\(357\) −0.120479 + 0.120479i −0.00637644 + 0.00637644i
\(358\) −5.47364 + 2.13503i −0.289291 + 0.112840i
\(359\) −4.81259 −0.253999 −0.127000 0.991903i \(-0.540535\pi\)
−0.127000 + 0.991903i \(0.540535\pi\)
\(360\) 7.76947 3.29735i 0.409487 0.173786i
\(361\) −11.9724 −0.630125
\(362\) −12.4730 + 4.86517i −0.655566 + 0.255708i
\(363\) 0.912547 0.912547i 0.0478963 0.0478963i
\(364\) −0.0836909 0.0909583i −0.00438659 0.00476751i
\(365\) 16.2894 1.15920i 0.852626 0.0606755i
\(366\) −5.18410 + 11.8145i −0.270977 + 0.617556i
\(367\) 9.09859 + 9.09859i 0.474942 + 0.474942i 0.903510 0.428567i \(-0.140982\pi\)
−0.428567 + 0.903510i \(0.640982\pi\)
\(368\) 19.4433 + 22.9801i 1.01355 + 1.19792i
\(369\) 6.85876i 0.357053i
\(370\) 10.1025 + 21.2958i 0.525203 + 1.10712i
\(371\) 0.339804i 0.0176418i
\(372\) −3.72093 0.154834i −0.192921 0.00802776i
\(373\) −5.77605 5.77605i −0.299073 0.299073i 0.541578 0.840651i \(-0.317827\pi\)
−0.840651 + 0.541578i \(0.817827\pi\)
\(374\) 1.85124 + 0.812306i 0.0957253 + 0.0420033i
\(375\) 14.1022 3.05195i 0.728233 0.157602i
\(376\) −29.8842 + 10.2467i −1.54116 + 0.528433i
\(377\) −2.81434 + 2.81434i −0.144946 + 0.144946i
\(378\) 0.265506 + 0.680685i 0.0136561 + 0.0350106i
\(379\) −21.9568 −1.12784 −0.563922 0.825828i \(-0.690708\pi\)
−0.563922 + 0.825828i \(0.690708\pi\)
\(380\) −0.349161 11.8503i −0.0179116 0.607910i
\(381\) 5.07207 0.259850
\(382\) −9.58112 24.5634i −0.490213 1.25677i
\(383\) 5.58752 5.58752i 0.285509 0.285509i −0.549792 0.835301i \(-0.685293\pi\)
0.835301 + 0.549792i \(0.185293\pi\)
\(384\) 14.1571 3.57184i 0.722453 0.182275i
\(385\) 0.0146594 + 0.205997i 0.000747113 + 0.0104986i
\(386\) 35.6738 + 15.6533i 1.81575 + 0.796733i
\(387\) −5.41942 5.41942i −0.275484 0.275484i
\(388\) −0.0468459 + 1.12579i −0.00237824 + 0.0571532i
\(389\) 20.2159i 1.02498i 0.858692 + 0.512492i \(0.171278\pi\)
−0.858692 + 0.512492i \(0.828722\pi\)
\(390\) −0.916999 + 2.57226i −0.0464341 + 0.130252i
\(391\) 10.7577i 0.544039i
\(392\) −17.7623 8.69174i −0.897131 0.438999i
\(393\) 5.31152 + 5.31152i 0.267931 + 0.267931i
\(394\) 11.0396 25.1591i 0.556166 1.26750i
\(395\) 20.9412 24.1501i 1.05367 1.21512i
\(396\) 1.96412 1.80719i 0.0987009 0.0908148i
\(397\) −15.6155 + 15.6155i −0.783719 + 0.783719i −0.980456 0.196737i \(-0.936965\pi\)
0.196737 + 0.980456i \(0.436965\pi\)
\(398\) −12.3349 + 4.81129i −0.618291 + 0.241168i
\(399\) 0.315972 0.0158184
\(400\) −19.9653 + 1.17755i −0.998265 + 0.0588774i
\(401\) 1.85459 0.0926139 0.0463070 0.998927i \(-0.485255\pi\)
0.0463070 + 0.998927i \(0.485255\pi\)
\(402\) −13.1663 + 5.13559i −0.656674 + 0.256140i
\(403\) −0.682708 + 0.682708i −0.0340081 + 0.0340081i
\(404\) −16.5680 + 15.2442i −0.824287 + 0.758428i
\(405\) 4.71047 5.43226i 0.234065 0.269931i
\(406\) 0.312160 0.711411i 0.0154923 0.0353067i
\(407\) 5.27054 + 5.27054i 0.261251 + 0.261251i
\(408\) −4.68689 2.29346i −0.232035 0.113543i
\(409\) 0.431928i 0.0213575i 0.999943 + 0.0106787i \(0.00339921\pi\)
−0.999943 + 0.0106787i \(0.996601\pi\)
\(410\) −5.45754 + 15.3089i −0.269529 + 0.756052i
\(411\) 9.05673i 0.446736i
\(412\) −0.573159 + 13.7740i −0.0282375 + 0.678596i
\(413\) −0.503031 0.503031i −0.0247525 0.0247525i
\(414\) −13.0058 5.70682i −0.639200 0.280475i
\(415\) −2.67479 37.5868i −0.131300 1.84506i
\(416\) 1.80369 3.32793i 0.0884329 0.163165i
\(417\) −17.9191 + 17.9191i −0.877500 + 0.877500i
\(418\) −1.36237 3.49274i −0.0666355 0.170835i
\(419\) −35.1667 −1.71801 −0.859003 0.511971i \(-0.828916\pi\)
−0.859003 + 0.511971i \(0.828916\pi\)
\(420\) −0.0156988 0.532808i −0.000766022 0.0259984i
\(421\) 22.8147 1.11192 0.555959 0.831210i \(-0.312351\pi\)
0.555959 + 0.831210i \(0.312351\pi\)
\(422\) 9.81485 + 25.1626i 0.477779 + 1.22490i
\(423\) 10.5400 10.5400i 0.512474 0.512474i
\(424\) 9.84382 3.37525i 0.478058 0.163916i
\(425\) 5.71881 + 4.28741i 0.277403 + 0.207970i
\(426\) 3.00967 + 1.32061i 0.145819 + 0.0639839i
\(427\) −0.461664 0.461664i −0.0223415 0.0223415i
\(428\) 6.17660 + 0.257019i 0.298557 + 0.0124235i
\(429\) 0.863563i 0.0416932i
\(430\) 7.78398 + 16.4085i 0.375377 + 0.791287i
\(431\) 30.3483i 1.46183i 0.682470 + 0.730914i \(0.260906\pi\)
−0.682470 + 0.730914i \(0.739094\pi\)
\(432\) −17.0816 + 14.4526i −0.821837 + 0.695353i
\(433\) −11.3120 11.3120i −0.543619 0.543619i 0.380969 0.924588i \(-0.375591\pi\)
−0.924588 + 0.380969i \(0.875591\pi\)
\(434\) 0.0757244 0.172575i 0.00363489 0.00828389i
\(435\) −17.1209 + 1.21838i −0.820884 + 0.0584167i
\(436\) −12.8799 13.9984i −0.616836 0.670400i
\(437\) −14.1067 + 14.1067i −0.674813 + 0.674813i
\(438\) −12.4179 + 4.84369i −0.593351 + 0.231441i
\(439\) 38.9791 1.86037 0.930186 0.367089i \(-0.119646\pi\)
0.930186 + 0.367089i \(0.119646\pi\)
\(440\) −5.82194 + 2.47082i −0.277550 + 0.117792i
\(441\) 9.33022 0.444296
\(442\) −1.26029 + 0.491583i −0.0599457 + 0.0233822i
\(443\) 15.0112 15.0112i 0.713203 0.713203i −0.254001 0.967204i \(-0.581747\pi\)
0.967204 + 0.254001i \(0.0817467\pi\)
\(444\) −13.0263 14.1575i −0.618202 0.671884i
\(445\) −9.62398 8.34523i −0.456220 0.395602i
\(446\) −1.22902 + 2.80093i −0.0581958 + 0.132628i
\(447\) −21.2443 21.2443i −1.00482 1.00482i
\(448\) −0.0919437 + 0.733119i −0.00434393 + 0.0346366i
\(449\) 34.7687i 1.64084i 0.571763 + 0.820419i \(0.306260\pi\)
−0.571763 + 0.820419i \(0.693740\pi\)
\(450\) 8.21715 4.63950i 0.387360 0.218708i
\(451\) 5.13952i 0.242011i
\(452\) −31.3027 1.30256i −1.47235 0.0612671i
\(453\) −7.03430 7.03430i −0.330500 0.330500i
\(454\) 13.7472 + 6.03214i 0.645188 + 0.283102i
\(455\) −0.104406 0.0905336i −0.00489463 0.00424428i
\(456\) 3.13852 + 9.15341i 0.146975 + 0.428648i
\(457\) 6.92112 6.92112i 0.323756 0.323756i −0.526450 0.850206i \(-0.676477\pi\)
0.850206 + 0.526450i \(0.176477\pi\)
\(458\) 6.86301 + 17.5949i 0.320687 + 0.822156i
\(459\) 7.99640 0.373240
\(460\) 24.4882 + 23.0865i 1.14177 + 1.07641i
\(461\) 3.63769 0.169424 0.0847120 0.996405i \(-0.473003\pi\)
0.0847120 + 0.996405i \(0.473003\pi\)
\(462\) −0.0612538 0.157038i −0.00284979 0.00730608i
\(463\) 7.52465 7.52465i 0.349700 0.349700i −0.510298 0.859998i \(-0.670465\pi\)
0.859998 + 0.510298i \(0.170465\pi\)
\(464\) 23.7096 + 1.97661i 1.10069 + 0.0917620i
\(465\) −4.15322 + 0.295556i −0.192601 + 0.0137061i
\(466\) 7.91541 + 3.47320i 0.366674 + 0.160893i
\(467\) 2.70144 + 2.70144i 0.125008 + 0.125008i 0.766843 0.641835i \(-0.221827\pi\)
−0.641835 + 0.766843i \(0.721827\pi\)
\(468\) −0.0742534 + 1.78444i −0.00343237 + 0.0824857i
\(469\) 0.715162i 0.0330231i
\(470\) −31.9123 + 15.1388i −1.47200 + 0.698300i
\(471\) 23.6842i 1.09131i
\(472\) 9.57579 19.5689i 0.440761 0.900732i
\(473\) 4.06096 + 4.06096i 0.186723 + 0.186723i
\(474\) −10.4833 + 23.8913i −0.481512 + 1.09736i
\(475\) −1.87701 13.1213i −0.0861229 0.602045i
\(476\) 0.194313 0.178788i 0.00890633 0.00819473i
\(477\) −3.47187 + 3.47187i −0.158966 + 0.158966i
\(478\) −33.3132 + 12.9940i −1.52371 + 0.594334i
\(479\) −6.43233 −0.293901 −0.146950 0.989144i \(-0.546946\pi\)
−0.146950 + 0.989144i \(0.546946\pi\)
\(480\) 15.2790 5.74711i 0.697389 0.262319i
\(481\) −4.98763 −0.227416
\(482\) −14.4946 + 5.65370i −0.660209 + 0.257519i
\(483\) −0.634255 + 0.634255i −0.0288596 + 0.0288596i
\(484\) −1.47179 + 1.35419i −0.0668994 + 0.0615543i
\(485\) 0.0894222 + 1.25658i 0.00406045 + 0.0570584i
\(486\) 7.17796 16.3585i 0.325599 0.742038i
\(487\) −10.7615 10.7615i −0.487648 0.487648i 0.419915 0.907563i \(-0.362060\pi\)
−0.907563 + 0.419915i \(0.862060\pi\)
\(488\) 8.78831 17.9596i 0.397828 0.812995i
\(489\) 11.6280i 0.525834i
\(490\) −20.8252 7.42409i −0.940787 0.335386i
\(491\) 17.1022i 0.771810i −0.922538 0.385905i \(-0.873889\pi\)
0.922538 0.385905i \(-0.126111\pi\)
\(492\) 0.551521 13.2540i 0.0248645 0.597537i
\(493\) −6.01225 6.01225i −0.270778 0.270778i
\(494\) 2.29724 + 1.00801i 0.103358 + 0.0453524i
\(495\) 1.95495 2.25451i 0.0878685 0.101333i
\(496\) 5.75152 + 0.479490i 0.258251 + 0.0215298i
\(497\) −0.117605 + 0.117605i −0.00527533 + 0.00527533i
\(498\) 11.1765 + 28.6536i 0.500832 + 1.28400i
\(499\) −13.6674 −0.611839 −0.305919 0.952057i \(-0.598964\pi\)
−0.305919 + 0.952057i \(0.598964\pi\)
\(500\) −22.0325 + 3.81702i −0.985323 + 0.170702i
\(501\) 21.9081 0.978780
\(502\) −15.1940 38.9533i −0.678142 1.73857i
\(503\) −26.9531 + 26.9531i −1.20178 + 1.20178i −0.228153 + 0.973625i \(0.573269\pi\)
−0.973625 + 0.228153i \(0.926731\pi\)
\(504\) −0.113070 0.329765i −0.00503653 0.0146889i
\(505\) −16.4906 + 19.0175i −0.733822 + 0.846266i
\(506\) 9.74572 + 4.27633i 0.433250 + 0.190106i
\(507\) 11.4545 + 11.4545i 0.508713 + 0.508713i
\(508\) −7.85361 0.326802i −0.348448 0.0144995i
\(509\) 27.2015i 1.20568i 0.797860 + 0.602842i \(0.205965\pi\)
−0.797860 + 0.602842i \(0.794035\pi\)
\(510\) −5.49509 1.95897i −0.243327 0.0867448i
\(511\) 0.674513i 0.0298387i
\(512\) −22.1511 + 4.61848i −0.978948 + 0.204110i
\(513\) −10.4858 10.4858i −0.462958 0.462958i
\(514\) 9.77172 22.2697i 0.431012 0.982274i
\(515\) 1.09408 + 15.3742i 0.0482109 + 0.677470i
\(516\) −10.0368 10.9084i −0.441846 0.480214i
\(517\) −7.89803 + 7.89803i −0.347355 + 0.347355i
\(518\) 0.906996 0.353780i 0.0398511 0.0155442i
\(519\) 10.1540 0.445713
\(520\) 1.58562 3.92381i 0.0695340 0.172071i
\(521\) 44.8315 1.96411 0.982053 0.188607i \(-0.0603971\pi\)
0.982053 + 0.188607i \(0.0603971\pi\)
\(522\) −10.4581 + 4.07925i −0.457739 + 0.178544i
\(523\) 12.3555 12.3555i 0.540267 0.540267i −0.383340 0.923607i \(-0.625226\pi\)
0.923607 + 0.383340i \(0.125226\pi\)
\(524\) −7.88214 8.56660i −0.344333 0.374234i
\(525\) −0.0843928 0.589950i −0.00368320 0.0257475i
\(526\) −10.8674 + 24.7666i −0.473840 + 1.07988i
\(527\) −1.45846 1.45846i −0.0635316 0.0635316i
\(528\) 3.94083 3.33431i 0.171502 0.145107i
\(529\) 33.6330i 1.46230i
\(530\) 10.5119 4.98670i 0.456606 0.216608i
\(531\) 10.2792i 0.446080i
\(532\) −0.489251 0.0203586i −0.0212117 0.000882655i
\(533\) −2.43182 2.43182i −0.105334 0.105334i
\(534\) 9.52084 + 4.17765i 0.412007 + 0.180785i
\(535\) 6.89420 0.490613i 0.298062 0.0212110i
\(536\) 20.7176 7.10364i 0.894864 0.306831i
\(537\) 3.79114 3.79114i 0.163600 0.163600i
\(538\) −0.748748 1.91959i −0.0322808 0.0827593i
\(539\) −6.99147 −0.301144
\(540\) −17.1607 + 18.2026i −0.738477 + 0.783316i
\(541\) −18.6640 −0.802428 −0.401214 0.915984i \(-0.631412\pi\)
−0.401214 + 0.915984i \(0.631412\pi\)
\(542\) 4.40136 + 11.2839i 0.189055 + 0.484685i
\(543\) 8.63902 8.63902i 0.370736 0.370736i
\(544\) 7.10942 + 3.85319i 0.304814 + 0.165204i
\(545\) −16.0680 13.9330i −0.688276 0.596824i
\(546\) 0.103287 + 0.0453214i 0.00442029 + 0.00193958i
\(547\) 1.26900 + 1.26900i 0.0542585 + 0.0542585i 0.733715 0.679457i \(-0.237785\pi\)
−0.679457 + 0.733715i \(0.737785\pi\)
\(548\) −0.583540 + 14.0235i −0.0249276 + 0.599053i
\(549\) 9.43389i 0.402628i
\(550\) −6.15741 + 3.47654i −0.262553 + 0.148240i
\(551\) 15.7678i 0.671733i
\(552\) −24.6738 12.0738i −1.05019 0.513894i
\(553\) −0.933573 0.933573i −0.0396995 0.0396995i
\(554\) 6.93644 15.8081i 0.294701 0.671622i
\(555\) −16.2506 14.0914i −0.689800 0.598145i
\(556\) 28.9005 26.5914i 1.22565 1.12773i
\(557\) 19.0631 19.0631i 0.807728 0.807728i −0.176562 0.984290i \(-0.556497\pi\)
0.984290 + 0.176562i \(0.0564975\pi\)
\(558\) −2.53695 + 0.989553i −0.107398 + 0.0418911i
\(559\) −3.84298 −0.162541
\(560\) −0.0100216 + 0.826012i −0.000423491 + 0.0349054i
\(561\) −1.84482 −0.0778884
\(562\) 11.0339 4.30385i 0.465438 0.181547i
\(563\) −16.5536 + 16.5536i −0.697652 + 0.697652i −0.963904 0.266251i \(-0.914215\pi\)
0.266251 + 0.963904i \(0.414215\pi\)
\(564\) 21.2153 19.5202i 0.893325 0.821950i
\(565\) −34.9394 + 2.48640i −1.46991 + 0.104604i
\(566\) 6.35372 14.4801i 0.267067 0.608643i
\(567\) −0.209996 0.209996i −0.00881899 0.00881899i
\(568\) −4.57509 2.23876i −0.191966 0.0939362i
\(569\) 35.6168i 1.49313i −0.665310 0.746567i \(-0.731701\pi\)
0.665310 0.746567i \(-0.268299\pi\)
\(570\) 4.63695 + 9.77460i 0.194220 + 0.409413i
\(571\) 6.36739i 0.266467i 0.991085 + 0.133233i \(0.0425360\pi\)
−0.991085 + 0.133233i \(0.957464\pi\)
\(572\) 0.0556408 1.33714i 0.00232646 0.0559088i
\(573\) 17.0131 + 17.0131i 0.710730 + 0.710730i
\(574\) 0.614717 + 0.269732i 0.0256578 + 0.0112584i
\(575\) 30.1062 + 22.5708i 1.25552 + 0.941266i
\(576\) 8.42989 6.55106i 0.351245 0.272961i
\(577\) 7.84577 7.84577i 0.326624 0.326624i −0.524677 0.851301i \(-0.675814\pi\)
0.851301 + 0.524677i \(0.175814\pi\)
\(578\) 7.68635 + 19.7057i 0.319710 + 0.819650i
\(579\) −35.5501 −1.47741
\(580\) 26.5886 0.783412i 1.10403 0.0325294i
\(581\) −1.55640 −0.0645702
\(582\) −0.373647 0.957931i −0.0154882 0.0397075i
\(583\) 2.60160 2.60160i 0.107747 0.107747i
\(584\) 19.5400 6.69988i 0.808572 0.277243i
\(585\) 0.141739 + 1.99175i 0.00586020 + 0.0823488i
\(586\) −14.5478 6.38344i −0.600965 0.263698i
\(587\) 5.28478 + 5.28478i 0.218126 + 0.218126i 0.807708 0.589582i \(-0.200708\pi\)
−0.589582 + 0.807708i \(0.700708\pi\)
\(588\) 18.0299 + 0.750254i 0.743540 + 0.0309399i
\(589\) 3.82499i 0.157606i
\(590\) 8.17920 22.9434i 0.336733 0.944564i
\(591\) 25.0719i 1.03132i
\(592\) 19.2578 + 22.7608i 0.791490 + 0.935462i
\(593\) 18.6597 + 18.6597i 0.766261 + 0.766261i 0.977446 0.211185i \(-0.0677323\pi\)
−0.211185 + 0.977446i \(0.567732\pi\)
\(594\) −3.17868 + 7.24419i −0.130423 + 0.297233i
\(595\) 0.193406 0.223042i 0.00792887 0.00914381i
\(596\) 31.5260 + 34.2636i 1.29135 + 1.40349i
\(597\) 8.54335 8.54335i 0.349656 0.349656i
\(598\) −6.63468 + 2.58790i −0.271312 + 0.105827i
\(599\) −3.72864 −0.152348 −0.0761740 0.997095i \(-0.524270\pi\)
−0.0761740 + 0.997095i \(0.524270\pi\)
\(600\) 16.2520 8.30470i 0.663487 0.339038i
\(601\) 13.4770 0.549738 0.274869 0.961482i \(-0.411366\pi\)
0.274869 + 0.961482i \(0.411366\pi\)
\(602\) 0.698842 0.272588i 0.0284827 0.0111099i
\(603\) −7.30701 + 7.30701i −0.297564 + 0.297564i
\(604\) 10.4387 + 11.3452i 0.424745 + 0.461628i
\(605\) −1.46492 + 1.68939i −0.0595573 + 0.0686833i
\(606\) 8.25526 18.8137i 0.335347 0.764253i
\(607\) −6.89298 6.89298i −0.279778 0.279778i 0.553243 0.833020i \(-0.313390\pi\)
−0.833020 + 0.553243i \(0.813390\pi\)
\(608\) −4.26992 14.3754i −0.173168 0.582999i
\(609\) 0.708944i 0.0287279i
\(610\) 7.50658 21.0566i 0.303932 0.852557i
\(611\) 7.47407i 0.302369i
\(612\) −3.81207 0.158627i −0.154094 0.00641210i
\(613\) 27.1964 + 27.1964i 1.09845 + 1.09845i 0.994592 + 0.103862i \(0.0331201\pi\)
0.103862 + 0.994592i \(0.466880\pi\)
\(614\) 24.5057 + 10.7529i 0.988969 + 0.433950i
\(615\) −1.05278 14.7938i −0.0424520 0.596545i
\(616\) 0.0847274 + 0.247105i 0.00341376 + 0.00995615i
\(617\) −21.2184 + 21.2184i −0.854219 + 0.854219i −0.990650 0.136431i \(-0.956437\pi\)
0.136431 + 0.990650i \(0.456437\pi\)
\(618\) −4.57157 11.7203i −0.183896 0.471459i
\(619\) 17.1338 0.688664 0.344332 0.938848i \(-0.388105\pi\)
0.344332 + 0.938848i \(0.388105\pi\)
\(620\) 6.44990 0.190041i 0.259034 0.00763225i
\(621\) 42.0965 1.68927
\(622\) 16.7132 + 42.8481i 0.670137 + 1.71805i
\(623\) −0.372035 + 0.372035i −0.0149053 + 0.0149053i
\(624\) −0.286977 + 3.44231i −0.0114883 + 0.137803i
\(625\) −23.9973 + 7.00911i −0.959894 + 0.280364i
\(626\) −27.2870 11.9733i −1.09061 0.478548i
\(627\) 2.41913 + 2.41913i 0.0966108 + 0.0966108i
\(628\) 1.52601 36.6726i 0.0608944 1.46340i
\(629\) 10.6550i 0.424843i
\(630\) −0.167053 0.352145i −0.00665555 0.0140298i
\(631\) 8.57760i 0.341469i 0.985317 + 0.170734i \(0.0546140\pi\)
−0.985317 + 0.170734i \(0.945386\pi\)
\(632\) 17.7716 36.3178i 0.706918 1.44465i
\(633\) −17.4281 17.4281i −0.692704 0.692704i
\(634\) 7.83455 17.8549i 0.311150 0.709108i
\(635\) −8.76604 + 0.623819i −0.347870 + 0.0247555i
\(636\) −6.98829 + 6.42994i −0.277104 + 0.254964i
\(637\) 3.30809 3.30809i 0.131071 0.131071i
\(638\) 7.83664 3.05673i 0.310255 0.121017i
\(639\) 2.40321 0.0950697
\(640\) −24.0284 + 7.91439i −0.949805 + 0.312844i
\(641\) −16.8822 −0.666806 −0.333403 0.942784i \(-0.608197\pi\)
−0.333403 + 0.942784i \(0.608197\pi\)
\(642\) −5.25566 + 2.05001i −0.207424 + 0.0809073i
\(643\) −13.6321 + 13.6321i −0.537596 + 0.537596i −0.922822 0.385226i \(-0.874123\pi\)
0.385226 + 0.922822i \(0.374123\pi\)
\(644\) 1.02295 0.941216i 0.0403098 0.0370891i
\(645\) −12.5211 10.8574i −0.493019 0.427511i
\(646\) −2.15340 + 4.90757i −0.0847242 + 0.193086i
\(647\) 7.57737 + 7.57737i 0.297897 + 0.297897i 0.840190 0.542293i \(-0.182444\pi\)
−0.542293 + 0.840190i \(0.682444\pi\)
\(648\) 3.99752 8.16926i 0.157037 0.320919i
\(649\) 7.70258i 0.302353i
\(650\) 1.26848 4.55841i 0.0497539 0.178795i
\(651\) 0.171977i 0.00674031i
\(652\) −0.749207 + 18.0048i −0.0293412 + 0.705120i
\(653\) 17.3117 + 17.3117i 0.677460 + 0.677460i 0.959425 0.281964i \(-0.0909860\pi\)
−0.281964 + 0.959425i \(0.590986\pi\)
\(654\) 15.8958 + 6.97491i 0.621574 + 0.272741i
\(655\) −9.83314 8.52660i −0.384212 0.333162i
\(656\) −1.70795 + 20.4870i −0.0666844 + 0.799883i
\(657\) −6.89168 + 6.89168i −0.268870 + 0.268870i
\(658\) 0.530147 + 1.35915i 0.0206673 + 0.0529853i
\(659\) −13.6092 −0.530139 −0.265070 0.964229i \(-0.585395\pi\)
−0.265070 + 0.964229i \(0.585395\pi\)
\(660\) 3.95907 4.19946i 0.154107 0.163464i
\(661\) −18.6616 −0.725854 −0.362927 0.931818i \(-0.618223\pi\)
−0.362927 + 0.931818i \(0.618223\pi\)
\(662\) −5.26110 13.4880i −0.204479 0.524228i
\(663\) 0.872896 0.872896i 0.0339005 0.0339005i
\(664\) −15.4595 45.0874i −0.599947 1.74973i
\(665\) −0.546092 + 0.0388616i −0.0211765 + 0.00150699i
\(666\) −12.8817 5.65236i −0.499155 0.219024i
\(667\) −31.6510 31.6510i −1.22553 1.22553i
\(668\) −33.9225 1.41157i −1.31250 0.0546153i
\(669\) 2.79122i 0.107915i
\(670\) 22.1236 10.4952i 0.854708 0.405463i
\(671\) 7.06915i 0.272902i
\(672\) −0.191982 0.646337i −0.00740585 0.0249330i
\(673\) 5.01293 + 5.01293i 0.193234 + 0.193234i 0.797092 0.603858i \(-0.206370\pi\)
−0.603858 + 0.797092i \(0.706370\pi\)
\(674\) 12.5759 28.6605i 0.484407 1.10396i
\(675\) −16.7773 + 22.3786i −0.645759 + 0.861352i
\(676\) −16.9982 18.4742i −0.653776 0.710547i
\(677\) −17.2931 + 17.2931i −0.664628 + 0.664628i −0.956467 0.291839i \(-0.905733\pi\)
0.291839 + 0.956467i \(0.405733\pi\)
\(678\) 26.6354 10.3893i 1.02293 0.398999i
\(679\) 0.0520326 0.00199683
\(680\) 8.38239 + 3.38734i 0.321450 + 0.129898i
\(681\) −13.6995 −0.524967
\(682\) 1.90103 0.741508i 0.0727940 0.0283938i
\(683\) 14.5193 14.5193i 0.555566 0.555566i −0.372476 0.928042i \(-0.621491\pi\)
0.928042 + 0.372476i \(0.121491\pi\)
\(684\) 4.79080 + 5.20682i 0.183181 + 0.199088i
\(685\) 1.11390 + 15.6527i 0.0425597 + 0.598059i
\(686\) −0.734299 + 1.67346i −0.0280357 + 0.0638931i
\(687\) −12.1865 12.1865i −0.464946 0.464946i
\(688\) 14.8382 + 17.5372i 0.565700 + 0.668601i
\(689\) 2.46195i 0.0937928i
\(690\) −28.9285 10.3129i −1.10129 0.392605i
\(691\) 39.3921i 1.49855i 0.662261 + 0.749273i \(0.269597\pi\)
−0.662261 + 0.749273i \(0.730403\pi\)
\(692\) −15.7225 0.654241i −0.597682 0.0248705i
\(693\) −0.0871529 0.0871529i −0.00331067 0.00331067i
\(694\) 29.0225 + 12.7348i 1.10168 + 0.483405i
\(695\) 28.7655 33.1733i 1.09114 1.25833i
\(696\) −20.5375 + 7.04188i −0.778471 + 0.266922i
\(697\) 5.19507 5.19507i 0.196777 0.196777i
\(698\) −11.7425 30.1046i −0.444460 1.13948i
\(699\) −7.88796 −0.298350
\(700\) 0.0926626 + 0.918918i 0.00350232 + 0.0347318i
\(701\) −20.8661 −0.788101 −0.394050 0.919089i \(-0.628926\pi\)
−0.394050 + 0.919089i \(0.628926\pi\)
\(702\) −1.92364 4.93169i −0.0726031 0.186135i
\(703\) −13.9720 + 13.9720i −0.526965 + 0.526965i
\(704\) −6.31682 + 4.90895i −0.238074 + 0.185013i
\(705\) 21.1162 24.3519i 0.795283 0.917145i
\(706\) 2.39007 + 1.04874i 0.0899515 + 0.0394698i
\(707\) 0.735161 + 0.735161i 0.0276486 + 0.0276486i
\(708\) −0.826563 + 19.8637i −0.0310641 + 0.746525i
\(709\) 8.62821i 0.324039i 0.986788 + 0.162020i \(0.0518008\pi\)
−0.986788 + 0.162020i \(0.948199\pi\)
\(710\) −5.36402 1.91225i −0.201308 0.0717653i
\(711\) 19.0771i 0.715448i
\(712\) −14.4729 7.08213i −0.542396 0.265414i
\(713\) −7.67797 7.67797i −0.287542 0.287542i
\(714\) −0.0968196 + 0.220651i −0.00362338 + 0.00825767i
\(715\) −0.106210 1.49249i −0.00397204 0.0558160i
\(716\) −6.11448 + 5.62594i −0.228509 + 0.210251i
\(717\) 23.0733 23.0733i 0.861689 0.861689i
\(718\) −6.34075 + 2.47325i −0.236635 + 0.0923010i
\(719\) 11.5151 0.429441 0.214721 0.976676i \(-0.431116\pi\)
0.214721 + 0.976676i \(0.431116\pi\)
\(720\) 8.54198 8.33720i 0.318341 0.310709i
\(721\) 0.636619 0.0237089
\(722\) −15.7740 + 6.15276i −0.587048 + 0.228982i
\(723\) 10.0392 10.0392i 0.373362 0.373362i
\(724\) −13.9333 + 12.8201i −0.517827 + 0.476454i
\(725\) 29.4401 4.21143i 1.09338 0.156409i
\(726\) 0.733342 1.67128i 0.0272169 0.0620271i
\(727\) 5.97431 + 5.97431i 0.221575 + 0.221575i 0.809161 0.587586i \(-0.199922\pi\)
−0.587586 + 0.809161i \(0.699922\pi\)
\(728\) −0.157010 0.0768308i −0.00581918 0.00284754i
\(729\) 25.9484i 0.961051i
\(730\) 20.8661 9.89861i 0.772289 0.366364i
\(731\) 8.20971i 0.303647i
\(732\) −0.758590 + 18.2302i −0.0280383 + 0.673808i
\(733\) −16.0677 16.0677i −0.593475 0.593475i 0.345093 0.938568i \(-0.387847\pi\)
−0.938568 + 0.345093i \(0.887847\pi\)
\(734\) 16.6636 + 7.31181i 0.615064 + 0.269884i
\(735\) 20.1246 1.43213i 0.742307 0.0528249i
\(736\) 37.4270 + 20.2848i 1.37958 + 0.747709i
\(737\) 5.47540 5.47540i 0.201689 0.201689i
\(738\) −3.52481 9.03665i −0.129750 0.332644i
\(739\) −33.7237 −1.24055 −0.620273 0.784386i \(-0.712978\pi\)
−0.620273 + 0.784386i \(0.712978\pi\)
\(740\) 24.2545 + 22.8662i 0.891615 + 0.840577i
\(741\) −2.28928 −0.0840987
\(742\) −0.174630 0.447703i −0.00641086 0.0164357i
\(743\) −30.4755 + 30.4755i −1.11804 + 1.11804i −0.126010 + 0.992029i \(0.540217\pi\)
−0.992029 + 0.126010i \(0.959783\pi\)
\(744\) −4.98202 + 1.70823i −0.182650 + 0.0626268i
\(745\) 39.3293 + 34.1036i 1.44092 + 1.24946i
\(746\) −10.5785 4.64176i −0.387307 0.169947i
\(747\) 15.9021 + 15.9021i 0.581828 + 0.581828i
\(748\) 2.85652 + 0.118865i 0.104445 + 0.00434612i
\(749\) 0.285476i 0.0104311i
\(750\) 17.0116 11.2683i 0.621177 0.411461i
\(751\) 44.0172i 1.60621i −0.595837 0.803106i \(-0.703179\pi\)
0.595837 0.803106i \(-0.296821\pi\)
\(752\) −34.1075 + 28.8582i −1.24377 + 1.05235i
\(753\) 26.9798 + 26.9798i 0.983198 + 0.983198i
\(754\) −2.26166 + 5.15432i −0.0823649 + 0.187709i
\(755\) 13.0225 + 11.2922i 0.473937 + 0.410965i
\(756\) 0.699625 + 0.760378i 0.0254451 + 0.0276547i
\(757\) 17.1427 17.1427i 0.623063 0.623063i −0.323251 0.946313i \(-0.604776\pi\)
0.946313 + 0.323251i \(0.104776\pi\)
\(758\) −28.9288 + 11.2839i −1.05074 + 0.409849i
\(759\) −9.71192 −0.352520
\(760\) −6.55007 15.4338i −0.237596 0.559842i
\(761\) −13.6856 −0.496104 −0.248052 0.968747i \(-0.579790\pi\)
−0.248052 + 0.968747i \(0.579790\pi\)
\(762\) 6.68263 2.60660i 0.242086 0.0944273i
\(763\) −0.621142 + 0.621142i −0.0224868 + 0.0224868i
\(764\) −25.2469 27.4392i −0.913400 0.992717i
\(765\) −4.25496 + 0.302796i −0.153838 + 0.0109476i
\(766\) 4.49025 10.2332i 0.162239 0.369742i
\(767\) 3.64456 + 3.64456i 0.131597 + 0.131597i
\(768\) 16.8169 11.9815i 0.606826 0.432347i
\(769\) 16.3426i 0.589329i 0.955601 + 0.294664i \(0.0952079\pi\)
−0.955601 + 0.294664i \(0.904792\pi\)
\(770\) 0.125179 + 0.263875i 0.00451113 + 0.00950938i
\(771\) 22.1925i 0.799242i
\(772\) 55.0459 + 2.29055i 1.98114 + 0.0824387i
\(773\) 13.7493 + 13.7493i 0.494529 + 0.494529i 0.909730 0.415201i \(-0.136289\pi\)
−0.415201 + 0.909730i \(0.636289\pi\)
\(774\) −9.92537 4.35515i −0.356760 0.156543i
\(775\) 7.14163 1.02162i 0.256535 0.0366975i
\(776\) 0.516835 + 1.50734i 0.0185533 + 0.0541103i
\(777\) −0.628202 + 0.628202i −0.0225366 + 0.0225366i
\(778\) 10.3892 + 26.6351i 0.372470 + 0.954913i
\(779\) −13.6247 −0.488155
\(780\) 0.113741 + 3.86030i 0.00407257 + 0.138221i
\(781\) −1.80081 −0.0644382
\(782\) −5.52850 14.1736i −0.197699 0.506847i
\(783\) 23.5269 23.5269i 0.840781 0.840781i
\(784\) −27.8692 2.32339i −0.995329 0.0829782i
\(785\) −2.91294 40.9332i −0.103967 1.46097i
\(786\) 9.72776 + 4.26845i 0.346978 + 0.152250i
\(787\) 4.58243 + 4.58243i 0.163346 + 0.163346i 0.784047 0.620701i \(-0.213152\pi\)
−0.620701 + 0.784047i \(0.713152\pi\)
\(788\) 1.61542 38.8214i 0.0575470 1.38295i
\(789\) 24.6808i 0.878658i
\(790\) 15.1797 42.5805i 0.540071 1.51495i
\(791\) 1.44677i 0.0514414i
\(792\) 1.65906 3.39042i 0.0589521 0.120473i
\(793\) 3.34485 + 3.34485i 0.118779 + 0.118779i
\(794\) −12.5489 + 28.5989i −0.445345 + 1.01494i
\(795\) −6.95566 + 8.02148i −0.246692 + 0.284493i
\(796\) −13.7790 + 12.6781i −0.488384 + 0.449363i
\(797\) −21.2355 + 21.2355i −0.752199 + 0.752199i −0.974889 0.222690i \(-0.928516\pi\)
0.222690 + 0.974889i \(0.428516\pi\)
\(798\) 0.416303 0.162382i 0.0147370 0.00574825i
\(799\) 15.9668 0.564864
\(800\) −25.6998 + 11.8119i −0.908625 + 0.417613i
\(801\) 7.60237 0.268617
\(802\) 2.44349 0.953098i 0.0862825 0.0336551i
\(803\) 5.16419 5.16419i 0.182240 0.182240i
\(804\) −14.7078 + 13.5326i −0.518703 + 0.477259i
\(805\) 1.01817 1.17419i 0.0358858 0.0413846i
\(806\) −0.548638 + 1.25034i −0.0193250 + 0.0440415i
\(807\) 1.32954 + 1.32954i 0.0468021 + 0.0468021i
\(808\) −13.9947 + 28.5992i −0.492330 + 1.00612i
\(809\) 43.2798i 1.52164i −0.648964 0.760819i \(-0.724798\pi\)
0.648964 0.760819i \(-0.275202\pi\)
\(810\) 3.41450 9.57796i 0.119973 0.336535i
\(811\) 36.0310i 1.26522i −0.774470 0.632611i \(-0.781983\pi\)
0.774470 0.632611i \(-0.218017\pi\)
\(812\) 0.0456784 1.09773i 0.00160300 0.0385228i
\(813\) −7.81544 7.81544i −0.274099 0.274099i
\(814\) 9.65271 + 4.23552i 0.338327 + 0.148455i
\(815\) 1.43013 + 20.0965i 0.0500953 + 0.703950i
\(816\) −7.35377 0.613066i −0.257433 0.0214616i
\(817\) −10.7655 + 10.7655i −0.376636 + 0.376636i
\(818\) 0.221973 + 0.569080i 0.00776111 + 0.0198974i
\(819\) 0.0824747 0.00288190
\(820\) 0.676931 + 22.9747i 0.0236395 + 0.802310i
\(821\) 3.91178 0.136522 0.0682610 0.997667i \(-0.478255\pi\)
0.0682610 + 0.997667i \(0.478255\pi\)
\(822\) −4.65437 11.9325i −0.162340 0.416195i
\(823\) −17.9254 + 17.9254i −0.624840 + 0.624840i −0.946765 0.321925i \(-0.895670\pi\)
0.321925 + 0.946765i \(0.395670\pi\)
\(824\) 6.32348 + 18.4423i 0.220289 + 0.642466i
\(825\) 3.87063 5.16288i 0.134758 0.179748i
\(826\) −0.921274 0.404246i −0.0320552 0.0140655i
\(827\) −1.97704 1.97704i −0.0687485 0.0687485i 0.671897 0.740645i \(-0.265480\pi\)
−0.740645 + 0.671897i \(0.765480\pi\)
\(828\) −20.0684 0.835079i −0.697425 0.0290210i
\(829\) 45.4079i 1.57708i 0.614983 + 0.788540i \(0.289163\pi\)
−0.614983 + 0.788540i \(0.710837\pi\)
\(830\) −22.8404 48.1472i −0.792803 1.67121i
\(831\) 15.7533i 0.546475i
\(832\) 0.666150 5.31159i 0.0230946 0.184146i
\(833\) 7.06703 + 7.06703i 0.244858 + 0.244858i
\(834\) −14.4001 + 32.8178i −0.498636 + 1.13639i
\(835\) −37.8636 + 2.69449i −1.31032 + 0.0932467i
\(836\) −3.58992 3.90166i −0.124160 0.134942i
\(837\) 5.70719 5.70719i 0.197269 0.197269i
\(838\) −46.3333 + 18.0726i −1.60056 + 0.624308i
\(839\) 34.1689 1.17964 0.589822 0.807534i \(-0.299198\pi\)
0.589822 + 0.807534i \(0.299198\pi\)
\(840\) −0.294500 0.693924i −0.0101612 0.0239427i
\(841\) −6.37824 −0.219939
\(842\) 30.0591 11.7247i 1.03590 0.404061i
\(843\) −7.64229 + 7.64229i −0.263215 + 0.263215i
\(844\) 25.8628 + 28.1086i 0.890234 + 0.967539i
\(845\) −21.2056 18.3880i −0.729494 0.632565i
\(846\) 8.47019 19.3035i 0.291211 0.663668i
\(847\) 0.0653068 + 0.0653068i 0.00224397 + 0.00224397i
\(848\) 11.2350 9.50586i 0.385811 0.326433i
\(849\) 14.4299i 0.495232i
\(850\) 9.73807 + 2.70984i 0.334013 + 0.0929467i
\(851\) 56.0925i 1.92283i
\(852\) 4.64402 + 0.193245i 0.159101 + 0.00662047i
\(853\) 10.3398 + 10.3398i 0.354027 + 0.354027i 0.861606 0.507578i \(-0.169459\pi\)
−0.507578 + 0.861606i \(0.669459\pi\)
\(854\) −0.845512 0.371002i −0.0289328 0.0126954i
\(855\) 5.97663 + 5.18251i 0.204396 + 0.177238i
\(856\) 8.26997 2.83560i 0.282662 0.0969190i
\(857\) 23.1527 23.1527i 0.790880 0.790880i −0.190758 0.981637i \(-0.561094\pi\)
0.981637 + 0.190758i \(0.0610944\pi\)
\(858\) 0.443796 + 1.13777i 0.0151509 + 0.0388429i
\(859\) −19.8852 −0.678473 −0.339237 0.940701i \(-0.610169\pi\)
−0.339237 + 0.940701i \(0.610169\pi\)
\(860\) 18.6882 + 17.6184i 0.637262 + 0.600783i
\(861\) −0.612585 −0.0208768
\(862\) 15.5964 + 39.9849i 0.531215 + 1.36189i
\(863\) 17.7638 17.7638i 0.604686 0.604686i −0.336866 0.941553i \(-0.609367\pi\)
0.941553 + 0.336866i \(0.109367\pi\)
\(864\) −15.0781 + 27.8203i −0.512969 + 0.946465i
\(865\) −17.5492 + 1.24885i −0.596690 + 0.0424623i
\(866\) −20.7173 9.09054i −0.704002 0.308909i
\(867\) −13.6485 13.6485i −0.463529 0.463529i
\(868\) 0.0110808 0.266290i 0.000376105 0.00903846i
\(869\) 14.2952i 0.484931i
\(870\) −21.9312 + 10.4039i −0.743538 + 0.352725i
\(871\) 5.18149i 0.175568i
\(872\) −24.1637 11.8242i −0.818285 0.400417i
\(873\) −0.531631 0.531631i −0.0179930 0.0179930i
\(874\) −11.3364 + 25.8356i −0.383459 + 0.873901i
\(875\) 0.218414 + 1.00923i 0.00738374 + 0.0341181i
\(876\) −13.8718 + 12.7634i −0.468684 + 0.431237i
\(877\) −26.9817 + 26.9817i −0.911106 + 0.911106i −0.996359 0.0852533i \(-0.972830\pi\)
0.0852533 + 0.996359i \(0.472830\pi\)
\(878\) 51.3563 20.0319i 1.73319 0.676042i
\(879\) 14.4974 0.488984
\(880\) −6.40082 + 6.24736i −0.215772 + 0.210599i
\(881\) −29.0197 −0.977698 −0.488849 0.872368i \(-0.662583\pi\)
−0.488849 + 0.872368i \(0.662583\pi\)
\(882\) 12.2929 4.79492i 0.413923 0.161453i
\(883\) 12.7981 12.7981i 0.430690 0.430690i −0.458173 0.888863i \(-0.651496\pi\)
0.888863 + 0.458173i \(0.151496\pi\)
\(884\) −1.40784 + 1.29535i −0.0473507 + 0.0435674i
\(885\) 1.57779 + 22.1715i 0.0530369 + 0.745286i
\(886\) 12.0633 27.4922i 0.405274 0.923618i
\(887\) 5.86669 + 5.86669i 0.196984 + 0.196984i 0.798706 0.601722i \(-0.205518\pi\)
−0.601722 + 0.798706i \(0.705518\pi\)
\(888\) −24.4383 11.9586i −0.820096 0.401303i
\(889\) 0.362985i 0.0121741i
\(890\) −16.9686 6.04924i −0.568790 0.202771i
\(891\) 3.21553i 0.107724i
\(892\) −0.179843 + 4.32193i −0.00602157 + 0.144709i
\(893\) −20.9374 20.9374i −0.700643 0.700643i
\(894\) −38.9079 17.0724i −1.30127 0.570986i
\(895\) −6.08593 + 7.01848i −0.203430 + 0.234602i
\(896\) 0.255620 + 1.01316i 0.00853968 + 0.0338473i
\(897\) 4.59530 4.59530i 0.153433 0.153433i
\(898\) 17.8681 + 45.8089i 0.596266 + 1.52866i
\(899\) −8.58212 −0.286230
\(900\) 8.44207 10.3356i 0.281402 0.344520i
\(901\) −5.25943 −0.175217
\(902\) 2.64126 + 6.77149i 0.0879445 + 0.225466i
\(903\) −0.484031 + 0.484031i −0.0161075 + 0.0161075i
\(904\) −41.9117 + 14.3707i −1.39396 + 0.477962i
\(905\) −13.8682 + 15.9933i −0.460996 + 0.531635i
\(906\) −12.8829 5.65291i −0.428007 0.187805i
\(907\) 19.7696 + 19.7696i 0.656438 + 0.656438i 0.954535 0.298097i \(-0.0963520\pi\)
−0.298097 + 0.954535i \(0.596352\pi\)
\(908\) 21.2124 + 0.882682i 0.703958 + 0.0292928i
\(909\) 15.0227i 0.498271i
\(910\) −0.184085 0.0656254i −0.00610235 0.00217546i
\(911\) 22.0501i 0.730554i −0.930899 0.365277i \(-0.880974\pi\)
0.930899 0.365277i \(-0.119026\pi\)
\(912\) 8.83916 + 10.4470i 0.292694 + 0.345935i
\(913\) −11.9160 11.9160i −0.394363 0.394363i
\(914\) 5.56196 12.6757i 0.183973 0.419273i
\(915\) 1.44804 + 20.3482i 0.0478708 + 0.672690i
\(916\) 18.0845 + 19.6549i 0.597528 + 0.649415i
\(917\) −0.380121 + 0.380121i −0.0125527 + 0.0125527i
\(918\) 10.5355 4.10945i 0.347724 0.135632i
\(919\) 8.22053 0.271170 0.135585 0.990766i \(-0.456709\pi\)
0.135585 + 0.990766i \(0.456709\pi\)
\(920\) 44.1285 + 17.8324i 1.45487 + 0.587917i
\(921\) −24.4207 −0.804690
\(922\) 4.79277 1.86945i 0.157842 0.0615672i
\(923\) 0.852075 0.852075i 0.0280464 0.0280464i
\(924\) −0.161408 0.175424i −0.00530993 0.00577103i
\(925\) 29.8189 + 22.3554i 0.980440 + 0.735040i
\(926\) 6.04696 13.7810i 0.198716 0.452871i
\(927\) −6.50450 6.50450i −0.213636 0.213636i
\(928\) 32.2540 9.58041i 1.05879 0.314492i
\(929\) 51.6745i 1.69539i 0.530487 + 0.847693i \(0.322009\pi\)
−0.530487 + 0.847693i \(0.677991\pi\)
\(930\) −5.32011 + 2.52380i −0.174453 + 0.0827586i
\(931\) 18.5342i 0.607432i
\(932\) 12.2137 + 0.508234i 0.400074 + 0.0166478i
\(933\) −29.6773 29.6773i −0.971592 0.971592i
\(934\) 4.94755 + 2.17094i 0.161889 + 0.0710352i
\(935\) 3.18839 0.226896i 0.104272 0.00742029i
\(936\) 0.819214 + 2.38922i 0.0267768 + 0.0780940i
\(937\) −29.9561 + 29.9561i −0.978623 + 0.978623i −0.999776 0.0211534i \(-0.993266\pi\)
0.0211534 + 0.999776i \(0.493266\pi\)
\(938\) −0.367531 0.942250i −0.0120003 0.0307656i
\(939\) 27.1924 0.887389
\(940\) −34.2655 + 36.3460i −1.11762 + 1.18548i
\(941\) −54.7464 −1.78468 −0.892340 0.451363i \(-0.850938\pi\)
−0.892340 + 0.451363i \(0.850938\pi\)
\(942\) 12.1716 + 31.2047i 0.396572 + 1.01670i
\(943\) 27.3491 27.3491i 0.890608 0.890608i
\(944\) 2.55971 30.7038i 0.0833113 0.999324i
\(945\) 0.872797 + 0.756828i 0.0283921 + 0.0246196i
\(946\) 7.43743 + 3.26347i 0.241812 + 0.106105i
\(947\) −0.414386 0.414386i −0.0134657 0.0134657i 0.700342 0.713808i \(-0.253031\pi\)
−0.713808 + 0.700342i \(0.753031\pi\)
\(948\) −1.53401 + 36.8650i −0.0498225 + 1.19732i
\(949\) 4.88698i 0.158638i
\(950\) −9.21620 16.3231i −0.299013 0.529591i
\(951\) 17.7930i 0.576977i
\(952\) 0.164133 0.335419i 0.00531957 0.0108710i
\(953\) −7.83757 7.83757i −0.253884 0.253884i 0.568677 0.822561i \(-0.307455\pi\)
−0.822561 + 0.568677i \(0.807455\pi\)
\(954\) −2.79007 + 6.35855i −0.0903318 + 0.205866i
\(955\) −31.4960 27.3111i −1.01919 0.883767i
\(956\) −37.2135 + 34.2402i −1.20357 + 1.10741i
\(957\) −5.42780 + 5.42780i −0.175456 + 0.175456i
\(958\) −8.47481 + 3.30566i −0.273809 + 0.106801i
\(959\) 0.648149 0.0209298
\(960\) 17.1771 15.4241i 0.554388 0.497810i
\(961\) 28.9181 0.932843
\(962\) −6.57137 + 2.56320i −0.211869 + 0.0826410i
\(963\) −2.91678 + 2.91678i −0.0939920 + 0.0939920i
\(964\) −16.1916 + 14.8979i −0.521495 + 0.479828i
\(965\) 61.4410 4.37234i 1.97786 0.140750i
\(966\) −0.509700 + 1.16160i −0.0163993 + 0.0373740i
\(967\) −21.2528 21.2528i −0.683442 0.683442i 0.277332 0.960774i \(-0.410550\pi\)
−0.960774 + 0.277332i \(0.910550\pi\)
\(968\) −1.24319 + 2.54057i −0.0399577 + 0.0816569i
\(969\) 4.89056i 0.157107i
\(970\) 0.763589 + 1.60963i 0.0245174 + 0.0516821i
\(971\) 40.2688i 1.29229i −0.763215 0.646144i \(-0.776381\pi\)
0.763215 0.646144i \(-0.223619\pi\)
\(972\) 1.05035 25.2418i 0.0336900 0.809630i
\(973\) −1.28238 1.28238i −0.0411114 0.0411114i
\(974\) −19.7090 8.64813i −0.631518 0.277104i
\(975\) 0.611442 + 4.27430i 0.0195818 + 0.136887i
\(976\) 2.34920 28.1788i 0.0751962 0.901983i
\(977\) 23.6559 23.6559i 0.756819 0.756819i −0.218923 0.975742i \(-0.570255\pi\)
0.975742 + 0.218923i \(0.0702545\pi\)
\(978\) −5.97575 15.3202i −0.191083 0.489886i
\(979\) −5.69673 −0.182068
\(980\) −31.2532 + 0.920853i −0.998348 + 0.0294156i
\(981\) 12.6927 0.405248
\(982\) −8.78902 22.5327i −0.280469 0.719047i
\(983\) 2.53162 2.53162i 0.0807461 0.0807461i −0.665580 0.746326i \(-0.731816\pi\)
0.746326 + 0.665580i \(0.231816\pi\)
\(984\) −6.08475 17.7460i −0.193975 0.565723i
\(985\) −3.08361 43.3316i −0.0982521 1.38066i
\(986\) −11.0111 4.83156i −0.350665 0.153868i
\(987\) −0.941375 0.941375i −0.0299643 0.0299643i
\(988\) 3.54472 + 0.147502i 0.112773 + 0.00469266i
\(989\) 43.2194i 1.37430i
\(990\) 1.41709 3.97507i 0.0450381 0.126336i
\(991\) 14.9715i 0.475586i 0.971316 + 0.237793i \(0.0764240\pi\)
−0.971316 + 0.237793i \(0.923576\pi\)
\(992\) 7.82423 2.32403i 0.248420 0.0737881i
\(993\) 9.34206 + 9.34206i 0.296461 + 0.296461i
\(994\) −0.0945102 + 0.215388i −0.00299768 + 0.00683170i
\(995\) −13.7147 + 15.8162i −0.434784 + 0.501406i
\(996\) 29.4509 + 32.0083i 0.933186 + 1.01422i
\(997\) 23.1266 23.1266i 0.732426 0.732426i −0.238674 0.971100i \(-0.576713\pi\)
0.971100 + 0.238674i \(0.0767127\pi\)
\(998\) −18.0073 + 7.02387i −0.570011 + 0.222337i
\(999\) 41.6947 1.31916
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.l.c.23.13 28
4.3 odd 2 220.2.l.d.23.9 yes 28
5.2 odd 4 220.2.l.d.67.9 yes 28
20.7 even 4 inner 220.2.l.c.67.13 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.l.c.23.13 28 1.1 even 1 trivial
220.2.l.c.67.13 yes 28 20.7 even 4 inner
220.2.l.d.23.9 yes 28 4.3 odd 2
220.2.l.d.67.9 yes 28 5.2 odd 4