Properties

Label 2184.2.bj.g
Level $2184$
Weight $2$
Character orbit 2184.bj
Analytic conductor $17.439$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2184,2,Mod(841,2184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2184.841"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2184, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2184.bj (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,0,0,-3,0,-3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.4393278014\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.2958147.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 11x^{4} + 34x^{2} + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + 1) q^{3} + ( - \beta_{3} + 2 \beta_{2} - \beta_1 + 1) q^{5} - \beta_{3} q^{7} - \beta_{3} q^{9} + ( - 2 \beta_{5} - \beta_{3} - \beta_{2} + \cdots + 2) q^{11} + ( - \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{13}+ \cdots + (2 \beta_{5} + 2 \beta_{4} - \beta_{3} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 3 q^{7} - 3 q^{9} + 4 q^{11} - 8 q^{13} + 14 q^{17} + 3 q^{19} - 6 q^{21} - 3 q^{23} + 30 q^{25} - 6 q^{27} - 5 q^{29} + 2 q^{31} - 4 q^{33} - 8 q^{37} - 10 q^{39} - 30 q^{41} - 11 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 11x^{4} + 34x^{2} + 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} - 8\nu^{3} - 7\nu - 3 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 7\nu^{2} + \nu + 7 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 8\nu^{3} + 13\nu + 3 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 11\nu^{3} + 3\nu^{2} + 25\nu + 12 ) / 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} - 11\nu^{3} + 3\nu^{2} - 25\nu + 12 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{3} + \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{4} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{4} - 6\beta_{3} - 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -7\beta_{5} - 7\beta_{4} - \beta_{3} + 2\beta_{2} - \beta _1 + 21 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{5} - 8\beta_{4} + 41\beta_{3} + 19\beta _1 - 11 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2184\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(1457\) \(1639\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
841.1
1.87616i
1.10753i
2.50068i
1.87616i
1.10753i
2.50068i
0 0.500000 0.866025i 0 −4.24960 0 −0.500000 0.866025i 0 −0.500000 0.866025i 0
841.2 0 0.500000 0.866025i 0 0.918290 0 −0.500000 0.866025i 0 −0.500000 0.866025i 0
841.3 0 0.500000 0.866025i 0 3.33131 0 −0.500000 0.866025i 0 −0.500000 0.866025i 0
1849.1 0 0.500000 + 0.866025i 0 −4.24960 0 −0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0
1849.2 0 0.500000 + 0.866025i 0 0.918290 0 −0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0
1849.3 0 0.500000 + 0.866025i 0 3.33131 0 −0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 841.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2184.2.bj.g 6
13.c even 3 1 inner 2184.2.bj.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2184.2.bj.g 6 1.a even 1 1 trivial
2184.2.bj.g 6 13.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2184, [\chi])\):

\( T_{5}^{3} - 15T_{5} + 13 \) Copy content Toggle raw display
\( T_{11}^{6} - 4T_{11}^{5} + 37T_{11}^{4} - 66T_{11}^{3} + 741T_{11}^{2} - 1575T_{11} + 5625 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T^{3} - 15 T + 13)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{6} - 4 T^{5} + \cdots + 5625 \) Copy content Toggle raw display
$13$ \( T^{6} + 8 T^{5} + \cdots + 2197 \) Copy content Toggle raw display
$17$ \( T^{6} - 14 T^{5} + \cdots + 5329 \) Copy content Toggle raw display
$19$ \( T^{6} - 3 T^{5} + \cdots + 26569 \) Copy content Toggle raw display
$23$ \( T^{6} + 3 T^{5} + \cdots + 7921 \) Copy content Toggle raw display
$29$ \( T^{6} + 5 T^{5} + \cdots + 25 \) Copy content Toggle raw display
$31$ \( (T^{3} - T^{2} - 88 T - 245)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 8 T^{5} + \cdots + 77841 \) Copy content Toggle raw display
$41$ \( (T^{2} + 10 T + 100)^{3} \) Copy content Toggle raw display
$43$ \( T^{6} + 11 T^{5} + \cdots + 49 \) Copy content Toggle raw display
$47$ \( (T^{3} - 11 T^{2} + 14 T + 5)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} - 13 T^{2} + \cdots + 21)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 13 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$61$ \( T^{6} - 11 T^{5} + \cdots + 466489 \) Copy content Toggle raw display
$67$ \( T^{6} - 17 T^{5} + \cdots + 21609 \) Copy content Toggle raw display
$71$ \( T^{6} - 10 T^{5} + \cdots + 205209 \) Copy content Toggle raw display
$73$ \( (T^{3} + 28 T^{2} + \cdots + 669)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 17 T^{2} + \cdots - 593)^{2} \) Copy content Toggle raw display
$83$ \( (T^{3} - 14 T^{2} + \cdots - 21)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + 13 T^{5} + \cdots + 7225 \) Copy content Toggle raw display
$97$ \( T^{6} - 5 T^{5} + \cdots + 121801 \) Copy content Toggle raw display
show more
show less