Properties

Label 2178.4.a.y
Level $2178$
Weight $4$
Character orbit 2178.a
Self dual yes
Analytic conductor $128.506$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,4,Mod(1,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2178.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,0,8,-4,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.506159993\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 242)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{37}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + ( - 3 \beta - 2) q^{5} + (\beta + 21) q^{7} - 8 q^{8} + (6 \beta + 4) q^{10} + ( - 7 \beta - 2) q^{13} + ( - 2 \beta - 42) q^{14} + 16 q^{16} + ( - 4 \beta - 45) q^{17} + ( - 11 \beta + 61) q^{19}+ \cdots + ( - 84 \beta - 270) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 4 q^{5} + 42 q^{7} - 16 q^{8} + 8 q^{10} - 4 q^{13} - 84 q^{14} + 32 q^{16} - 90 q^{17} + 122 q^{19} - 16 q^{20} + 146 q^{23} + 424 q^{25} + 8 q^{26} + 168 q^{28} - 44 q^{29} - 266 q^{31}+ \cdots - 540 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.54138
−2.54138
−2.00000 0 4.00000 −20.2483 0 27.0828 −8.00000 0 40.4966
1.2 −2.00000 0 4.00000 16.2483 0 14.9172 −8.00000 0 −32.4966
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2178.4.a.y 2
3.b odd 2 1 242.4.a.m yes 2
11.b odd 2 1 2178.4.a.bh 2
12.b even 2 1 1936.4.a.p 2
33.d even 2 1 242.4.a.j 2
33.f even 10 4 242.4.c.s 8
33.h odd 10 4 242.4.c.o 8
132.d odd 2 1 1936.4.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
242.4.a.j 2 33.d even 2 1
242.4.a.m yes 2 3.b odd 2 1
242.4.c.o 8 33.h odd 10 4
242.4.c.s 8 33.f even 10 4
1936.4.a.p 2 12.b even 2 1
1936.4.a.q 2 132.d odd 2 1
2178.4.a.y 2 1.a even 1 1 trivial
2178.4.a.bh 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2178))\):

\( T_{5}^{2} + 4T_{5} - 329 \) Copy content Toggle raw display
\( T_{7}^{2} - 42T_{7} + 404 \) Copy content Toggle raw display
\( T_{17}^{2} + 90T_{17} + 1433 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T - 329 \) Copy content Toggle raw display
$7$ \( T^{2} - 42T + 404 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 1809 \) Copy content Toggle raw display
$17$ \( T^{2} + 90T + 1433 \) Copy content Toggle raw display
$19$ \( T^{2} - 122T - 756 \) Copy content Toggle raw display
$23$ \( T^{2} - 146T + 5292 \) Copy content Toggle raw display
$29$ \( T^{2} + 44T - 10209 \) Copy content Toggle raw display
$31$ \( T^{2} + 266T + 15876 \) Copy content Toggle raw display
$37$ \( T^{2} + 536T + 71787 \) Copy content Toggle raw display
$41$ \( T^{2} - 194T - 68883 \) Copy content Toggle raw display
$43$ \( T^{2} - 316T - 40304 \) Copy content Toggle raw display
$47$ \( T^{2} - 410T + 10908 \) Copy content Toggle raw display
$53$ \( T^{2} - 168T - 149269 \) Copy content Toggle raw display
$59$ \( T^{2} - 420T + 42768 \) Copy content Toggle raw display
$61$ \( T^{2} + 404T + 35476 \) Copy content Toggle raw display
$67$ \( T^{2} + 206T - 833028 \) Copy content Toggle raw display
$71$ \( T^{2} + 200T - 454128 \) Copy content Toggle raw display
$73$ \( T^{2} - 816T + 5292 \) Copy content Toggle raw display
$79$ \( T^{2} - 222T - 460132 \) Copy content Toggle raw display
$83$ \( T^{2} - 1430 T + 494908 \) Copy content Toggle raw display
$89$ \( T^{2} + 1346 T + 291757 \) Copy content Toggle raw display
$97$ \( T^{2} + 2242 T + 1064833 \) Copy content Toggle raw display
show more
show less