Properties

Label 2178.2.w
Level $2178$
Weight $2$
Character orbit 2178.w
Rep. character $\chi_{2178}(65,\cdot)$
Character field $\Q(\zeta_{66})$
Dimension $2640$
Sturm bound $792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2178.w (of order \(66\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1089 \)
Character field: \(\Q(\zeta_{66})\)
Sturm bound: \(792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2178, [\chi])\).

Total New Old
Modular forms 8000 2640 5360
Cusp forms 7840 2640 5200
Eisenstein series 160 0 160

Trace form

\( 2640 q - 2 q^{3} + 132 q^{4} + 18 q^{9} - 15 q^{11} - 18 q^{12} + 36 q^{15} + 132 q^{16} + 3 q^{22} + 36 q^{23} - 132 q^{25} - 8 q^{27} + 23 q^{33} + 6 q^{34} - 6 q^{36} - 168 q^{38} - 24 q^{42} - 20 q^{45}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2178, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2178, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2178, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 2}\)