Properties

Label 2178.2.i
Level $2178$
Weight $2$
Character orbit 2178.i
Rep. character $\chi_{2178}(725,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $216$
Sturm bound $792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2178.i (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 99 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2178, [\chi])\).

Total New Old
Modular forms 840 216 624
Cusp forms 744 216 528
Eisenstein series 96 0 96

Trace form

\( 216 q - 6 q^{3} - 108 q^{4} - 12 q^{5} + 22 q^{9} - 20 q^{15} - 108 q^{16} + 12 q^{20} + 36 q^{23} + 96 q^{25} + 12 q^{31} + 6 q^{34} - 14 q^{36} - 24 q^{37} + 30 q^{38} - 24 q^{42} - 20 q^{45} + 12 q^{47}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2178, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2178, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2178, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 2}\)