Defining parameters
Level: | \( N \) | \(=\) | \( 2176 = 2^{7} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2176.co (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 136 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(53\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2176, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 192 | 32 | 160 |
Cusp forms | 64 | 32 | 32 |
Eisenstein series | 128 | 0 | 128 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 32 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2176, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
2176.1.co.a | $8$ | $1.086$ | \(\Q(\zeta_{16})\) | $D_{16}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{16}^{2}-\zeta_{16}^{7})q^{3}+(-\zeta_{16}+\zeta_{16}^{4}+\cdots)q^{9}+\cdots\) |
2176.1.co.b | $8$ | $1.086$ | \(\Q(\zeta_{16})\) | $D_{16}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{16}^{2}+\zeta_{16}^{3})q^{5}+\zeta_{16}q^{9}+(\zeta_{16}^{5}+\cdots)q^{13}+\cdots\) |
2176.1.co.c | $8$ | $1.086$ | \(\Q(\zeta_{16})\) | $D_{16}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{16}^{2}-\zeta_{16}^{3})q^{5}+\zeta_{16}q^{9}+(-\zeta_{16}^{5}+\cdots)q^{13}+\cdots\) |
2176.1.co.d | $8$ | $1.086$ | \(\Q(\zeta_{16})\) | $D_{16}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{16}^{2}+\zeta_{16}^{7})q^{3}+(-\zeta_{16}+\zeta_{16}^{4}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2176, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2176, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1088, [\chi])\)\(^{\oplus 2}\)