Properties

Label 2176.1.co
Level $2176$
Weight $1$
Character orbit 2176.co
Rep. character $\chi_{2176}(65,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $32$
Newform subspaces $4$
Sturm bound $288$
Trace bound $53$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2176 = 2^{7} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2176.co (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 4 \)
Sturm bound: \(288\)
Trace bound: \(53\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2176, [\chi])\).

Total New Old
Modular forms 192 32 160
Cusp forms 64 32 32
Eisenstein series 128 0 128

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 32 0 0 0

Trace form

\( 32 q + O(q^{10}) \) \( 32 q - 16 q^{57} - 16 q^{65} + 16 q^{73} - 16 q^{81} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2176, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2176.1.co.a 2176.co 136.q $8$ $1.086$ \(\Q(\zeta_{16})\) $D_{16}$ \(\Q(\sqrt{-2}) \) None 2176.1.co.a \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{16}^{2}-\zeta_{16}^{7})q^{3}+(-\zeta_{16}+\zeta_{16}^{4}+\cdots)q^{9}+\cdots\)
2176.1.co.b 2176.co 136.q $8$ $1.086$ \(\Q(\zeta_{16})\) $D_{16}$ \(\Q(\sqrt{-1}) \) None 2176.1.co.b \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{16}^{2}+\zeta_{16}^{3})q^{5}+\zeta_{16}q^{9}+(\zeta_{16}^{5}+\cdots)q^{13}+\cdots\)
2176.1.co.c 2176.co 136.q $8$ $1.086$ \(\Q(\zeta_{16})\) $D_{16}$ \(\Q(\sqrt{-1}) \) None 2176.1.co.b \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{16}^{2}-\zeta_{16}^{3})q^{5}+\zeta_{16}q^{9}+(-\zeta_{16}^{5}+\cdots)q^{13}+\cdots\)
2176.1.co.d 2176.co 136.q $8$ $1.086$ \(\Q(\zeta_{16})\) $D_{16}$ \(\Q(\sqrt{-2}) \) None 2176.1.co.a \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{16}^{2}+\zeta_{16}^{7})q^{3}+(-\zeta_{16}+\zeta_{16}^{4}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2176, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2176, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1088, [\chi])\)\(^{\oplus 2}\)