gp: [N,k,chi] = [2160,4,Mod(1,2160)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2160.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,0,0,5,0,22,0,0,0,-12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 2160 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(2160)) S 4 n e w ( Γ 0 ( 2 1 6 0 ) ) :
T 7 − 22 T_{7} - 22 T 7 − 2 2
T7 - 22
T 11 + 12 T_{11} + 12 T 1 1 + 1 2
T11 + 12
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T T T
T
5 5 5
T − 5 T - 5 T − 5
T - 5
7 7 7
T − 22 T - 22 T − 2 2
T - 22
11 11 1 1
T + 12 T + 12 T + 1 2
T + 12
13 13 1 3
T − 38 T - 38 T − 3 8
T - 38
17 17 1 7
T − 105 T - 105 T − 1 0 5
T - 105
19 19 1 9
T − 157 T - 157 T − 1 5 7
T - 157
23 23 2 3
T + 117 T + 117 T + 1 1 7
T + 117
29 29 2 9
T + 66 T + 66 T + 6 6
T + 66
31 31 3 1
T − 25 T - 25 T − 2 5
T - 25
37 37 3 7
T − 314 T - 314 T − 3 1 4
T - 314
41 41 4 1
T − 504 T - 504 T − 5 0 4
T - 504
43 43 4 3
T + 380 T + 380 T + 3 8 0
T + 380
47 47 4 7
T + 252 T + 252 T + 2 5 2
T + 252
53 53 5 3
T + 3 T + 3 T + 3
T + 3
59 59 5 9
T + 318 T + 318 T + 3 1 8
T + 318
61 61 6 1
T − 293 T - 293 T − 2 9 3
T - 293
67 67 6 7
T − 322 T - 322 T − 3 2 2
T - 322
71 71 7 1
T + 120 T + 120 T + 1 2 0
T + 120
73 73 7 3
T − 44 T - 44 T − 4 4
T - 44
79 79 7 9
T + 917 T + 917 T + 9 1 7
T + 917
83 83 8 3
T − 309 T - 309 T − 3 0 9
T - 309
89 89 8 9
T + 1272 T + 1272 T + 1 2 7 2
T + 1272
97 97 9 7
T − 1328 T - 1328 T − 1 3 2 8
T - 1328
show more
show less