Properties

Label 2160.4.a.r
Level 21602160
Weight 44
Character orbit 2160.a
Self dual yes
Analytic conductor 127.444127.444
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,4,Mod(1,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 2160=24335 2160 = 2^{4} \cdot 3^{3} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,0,5,0,22,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 127.444125612127.444125612
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 270)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+5q5+22q712q11+38q13+105q17+157q19117q23+25q2566q29+25q31+110q35+314q37+504q41380q43252q47+141q493q53++1328q97+O(q100) q + 5 q^{5} + 22 q^{7} - 12 q^{11} + 38 q^{13} + 105 q^{17} + 157 q^{19} - 117 q^{23} + 25 q^{25} - 66 q^{29} + 25 q^{31} + 110 q^{35} + 314 q^{37} + 504 q^{41} - 380 q^{43} - 252 q^{47} + 141 q^{49} - 3 q^{53}+ \cdots + 1328 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 5.00000 0 22.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.a.r 1
3.b odd 2 1 2160.4.a.i 1
4.b odd 2 1 270.4.a.c 1
12.b even 2 1 270.4.a.g yes 1
20.d odd 2 1 1350.4.a.z 1
20.e even 4 2 1350.4.c.l 2
36.f odd 6 2 810.4.e.s 2
36.h even 6 2 810.4.e.k 2
60.h even 2 1 1350.4.a.l 1
60.l odd 4 2 1350.4.c.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.4.a.c 1 4.b odd 2 1
270.4.a.g yes 1 12.b even 2 1
810.4.e.k 2 36.h even 6 2
810.4.e.s 2 36.f odd 6 2
1350.4.a.l 1 60.h even 2 1
1350.4.a.z 1 20.d odd 2 1
1350.4.c.i 2 60.l odd 4 2
1350.4.c.l 2 20.e even 4 2
2160.4.a.i 1 3.b odd 2 1
2160.4.a.r 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2160))S_{4}^{\mathrm{new}}(\Gamma_0(2160)):

T722 T_{7} - 22 Copy content Toggle raw display
T11+12 T_{11} + 12 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T5 T - 5 Copy content Toggle raw display
77 T22 T - 22 Copy content Toggle raw display
1111 T+12 T + 12 Copy content Toggle raw display
1313 T38 T - 38 Copy content Toggle raw display
1717 T105 T - 105 Copy content Toggle raw display
1919 T157 T - 157 Copy content Toggle raw display
2323 T+117 T + 117 Copy content Toggle raw display
2929 T+66 T + 66 Copy content Toggle raw display
3131 T25 T - 25 Copy content Toggle raw display
3737 T314 T - 314 Copy content Toggle raw display
4141 T504 T - 504 Copy content Toggle raw display
4343 T+380 T + 380 Copy content Toggle raw display
4747 T+252 T + 252 Copy content Toggle raw display
5353 T+3 T + 3 Copy content Toggle raw display
5959 T+318 T + 318 Copy content Toggle raw display
6161 T293 T - 293 Copy content Toggle raw display
6767 T322 T - 322 Copy content Toggle raw display
7171 T+120 T + 120 Copy content Toggle raw display
7373 T44 T - 44 Copy content Toggle raw display
7979 T+917 T + 917 Copy content Toggle raw display
8383 T309 T - 309 Copy content Toggle raw display
8989 T+1272 T + 1272 Copy content Toggle raw display
9797 T1328 T - 1328 Copy content Toggle raw display
show more
show less