Properties

Label 2160.3.c.q.1889.8
Level $2160$
Weight $3$
Character 2160.1889
Analytic conductor $58.856$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,3,Mod(1889,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.1889"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1889.8
Character \(\chi\) \(=\) 2160.1889
Dual form 2160.3.c.q.1889.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.12464 + 4.52614i) q^{5} -4.02248i q^{7} +11.5580i q^{11} -13.5502i q^{13} +4.76977 q^{17} -8.28351 q^{19} +33.4085 q^{23} +(-15.9718 - 19.2328i) q^{25} -21.3299i q^{29} -51.2723 q^{31} +(18.2063 + 8.54633i) q^{35} +1.30139i q^{37} +0.277551i q^{41} +5.16141i q^{43} -49.9448 q^{47} +32.8197 q^{49} +14.5859 q^{53} +(-52.3133 - 24.5567i) q^{55} -56.4461i q^{59} +108.803 q^{61} +(61.3301 + 28.7893i) q^{65} +61.7275i q^{67} -63.6541i q^{71} +3.03261i q^{73} +46.4920 q^{77} -24.1416 q^{79} +54.1367 q^{83} +(-10.1341 + 21.5886i) q^{85} +19.2145i q^{89} -54.5054 q^{91} +(17.5995 - 37.4923i) q^{95} -179.628i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 72 q^{25} + 72 q^{31} - 408 q^{49} + 168 q^{55} - 240 q^{61} + 312 q^{79} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.12464 + 4.52614i −0.424928 + 0.905227i
\(6\) 0 0
\(7\) 4.02248i 0.574640i −0.957835 0.287320i \(-0.907236\pi\)
0.957835 0.287320i \(-0.0927643\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 11.5580i 1.05073i 0.850877 + 0.525366i \(0.176071\pi\)
−0.850877 + 0.525366i \(0.823929\pi\)
\(12\) 0 0
\(13\) 13.5502i 1.04232i −0.853458 0.521162i \(-0.825499\pi\)
0.853458 0.521162i \(-0.174501\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.76977 0.280575 0.140287 0.990111i \(-0.455197\pi\)
0.140287 + 0.990111i \(0.455197\pi\)
\(18\) 0 0
\(19\) −8.28351 −0.435974 −0.217987 0.975952i \(-0.569949\pi\)
−0.217987 + 0.975952i \(0.569949\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 33.4085 1.45254 0.726271 0.687409i \(-0.241252\pi\)
0.726271 + 0.687409i \(0.241252\pi\)
\(24\) 0 0
\(25\) −15.9718 19.2328i −0.638872 0.769313i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 21.3299i 0.735515i −0.929922 0.367757i \(-0.880126\pi\)
0.929922 0.367757i \(-0.119874\pi\)
\(30\) 0 0
\(31\) −51.2723 −1.65395 −0.826973 0.562242i \(-0.809939\pi\)
−0.826973 + 0.562242i \(0.809939\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 18.2063 + 8.54633i 0.520180 + 0.244181i
\(36\) 0 0
\(37\) 1.30139i 0.0351728i 0.999845 + 0.0175864i \(0.00559822\pi\)
−0.999845 + 0.0175864i \(0.994402\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.277551i 0.00676953i 0.999994 + 0.00338477i \(0.00107741\pi\)
−0.999994 + 0.00338477i \(0.998923\pi\)
\(42\) 0 0
\(43\) 5.16141i 0.120033i 0.998197 + 0.0600164i \(0.0191153\pi\)
−0.998197 + 0.0600164i \(0.980885\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −49.9448 −1.06266 −0.531328 0.847166i \(-0.678307\pi\)
−0.531328 + 0.847166i \(0.678307\pi\)
\(48\) 0 0
\(49\) 32.8197 0.669789
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 14.5859 0.275206 0.137603 0.990487i \(-0.456060\pi\)
0.137603 + 0.990487i \(0.456060\pi\)
\(54\) 0 0
\(55\) −52.3133 24.5567i −0.951151 0.446485i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 56.4461i 0.956714i −0.878166 0.478357i \(-0.841233\pi\)
0.878166 0.478357i \(-0.158767\pi\)
\(60\) 0 0
\(61\) 108.803 1.78366 0.891830 0.452370i \(-0.149421\pi\)
0.891830 + 0.452370i \(0.149421\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 61.3301 + 28.7893i 0.943540 + 0.442913i
\(66\) 0 0
\(67\) 61.7275i 0.921306i 0.887580 + 0.460653i \(0.152385\pi\)
−0.887580 + 0.460653i \(0.847615\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 63.6541i 0.896537i −0.893899 0.448268i \(-0.852041\pi\)
0.893899 0.448268i \(-0.147959\pi\)
\(72\) 0 0
\(73\) 3.03261i 0.0415427i 0.999784 + 0.0207713i \(0.00661220\pi\)
−0.999784 + 0.0207713i \(0.993388\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 46.4920 0.603792
\(78\) 0 0
\(79\) −24.1416 −0.305590 −0.152795 0.988258i \(-0.548827\pi\)
−0.152795 + 0.988258i \(0.548827\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 54.1367 0.652249 0.326124 0.945327i \(-0.394257\pi\)
0.326124 + 0.945327i \(0.394257\pi\)
\(84\) 0 0
\(85\) −10.1341 + 21.5886i −0.119224 + 0.253984i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 19.2145i 0.215893i 0.994157 + 0.107946i \(0.0344275\pi\)
−0.994157 + 0.107946i \(0.965572\pi\)
\(90\) 0 0
\(91\) −54.5054 −0.598961
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 17.5995 37.4923i 0.185258 0.394655i
\(96\) 0 0
\(97\) 179.628i 1.85183i −0.377727 0.925917i \(-0.623294\pi\)
0.377727 0.925917i \(-0.376706\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 163.871i 1.62248i −0.584711 0.811242i \(-0.698792\pi\)
0.584711 0.811242i \(-0.301208\pi\)
\(102\) 0 0
\(103\) 124.295i 1.20675i 0.797458 + 0.603374i \(0.206177\pi\)
−0.797458 + 0.603374i \(0.793823\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 96.6934 0.903677 0.451838 0.892100i \(-0.350768\pi\)
0.451838 + 0.892100i \(0.350768\pi\)
\(108\) 0 0
\(109\) 187.754 1.72251 0.861256 0.508172i \(-0.169678\pi\)
0.861256 + 0.508172i \(0.169678\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 71.3349 0.631283 0.315641 0.948879i \(-0.397780\pi\)
0.315641 + 0.948879i \(0.397780\pi\)
\(114\) 0 0
\(115\) −70.9810 + 151.211i −0.617226 + 1.31488i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 19.1863i 0.161230i
\(120\) 0 0
\(121\) −12.5884 −0.104037
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 120.985 31.4277i 0.967878 0.251421i
\(126\) 0 0
\(127\) 141.372i 1.11317i −0.830792 0.556584i \(-0.812112\pi\)
0.830792 0.556584i \(-0.187888\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 216.320i 1.65130i 0.564186 + 0.825648i \(0.309190\pi\)
−0.564186 + 0.825648i \(0.690810\pi\)
\(132\) 0 0
\(133\) 33.3202i 0.250528i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −118.321 −0.863657 −0.431828 0.901956i \(-0.642131\pi\)
−0.431828 + 0.901956i \(0.642131\pi\)
\(138\) 0 0
\(139\) −108.779 −0.782579 −0.391290 0.920268i \(-0.627971\pi\)
−0.391290 + 0.920268i \(0.627971\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 156.614 1.09520
\(144\) 0 0
\(145\) 96.5421 + 45.3184i 0.665808 + 0.312541i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 42.3938i 0.284522i 0.989829 + 0.142261i \(0.0454372\pi\)
−0.989829 + 0.142261i \(0.954563\pi\)
\(150\) 0 0
\(151\) 137.390 0.909869 0.454934 0.890525i \(-0.349663\pi\)
0.454934 + 0.890525i \(0.349663\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 108.935 232.065i 0.702808 1.49720i
\(156\) 0 0
\(157\) 80.8173i 0.514760i 0.966310 + 0.257380i \(0.0828592\pi\)
−0.966310 + 0.257380i \(0.917141\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 134.385i 0.834688i
\(162\) 0 0
\(163\) 99.4938i 0.610391i −0.952290 0.305196i \(-0.901278\pi\)
0.952290 0.305196i \(-0.0987219\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 197.912 1.18510 0.592551 0.805533i \(-0.298121\pi\)
0.592551 + 0.805533i \(0.298121\pi\)
\(168\) 0 0
\(169\) −14.6082 −0.0864389
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 175.218 1.01282 0.506411 0.862292i \(-0.330972\pi\)
0.506411 + 0.862292i \(0.330972\pi\)
\(174\) 0 0
\(175\) −77.3636 + 64.2462i −0.442078 + 0.367121i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.03418i 0.0113641i −0.999984 0.00568207i \(-0.998191\pi\)
0.999984 0.00568207i \(-0.00180867\pi\)
\(180\) 0 0
\(181\) 224.356 1.23953 0.619767 0.784786i \(-0.287227\pi\)
0.619767 + 0.784786i \(0.287227\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.89029 2.76500i −0.0318394 0.0149459i
\(186\) 0 0
\(187\) 55.1293i 0.294809i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 145.691i 0.762780i −0.924414 0.381390i \(-0.875446\pi\)
0.924414 0.381390i \(-0.124554\pi\)
\(192\) 0 0
\(193\) 209.535i 1.08567i −0.839838 0.542837i \(-0.817350\pi\)
0.839838 0.542837i \(-0.182650\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 297.757 1.51146 0.755729 0.654885i \(-0.227283\pi\)
0.755729 + 0.654885i \(0.227283\pi\)
\(198\) 0 0
\(199\) −25.0214 −0.125736 −0.0628678 0.998022i \(-0.520025\pi\)
−0.0628678 + 0.998022i \(0.520025\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −85.7992 −0.422656
\(204\) 0 0
\(205\) −1.25623 0.589696i −0.00612796 0.00287657i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 95.7411i 0.458092i
\(210\) 0 0
\(211\) 196.797 0.932688 0.466344 0.884603i \(-0.345571\pi\)
0.466344 + 0.884603i \(0.345571\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −23.3612 10.9661i −0.108657 0.0510053i
\(216\) 0 0
\(217\) 206.242i 0.950423i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 64.6314i 0.292450i
\(222\) 0 0
\(223\) 163.393i 0.732702i 0.930477 + 0.366351i \(0.119393\pi\)
−0.930477 + 0.366351i \(0.880607\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 89.7140 0.395216 0.197608 0.980281i \(-0.436683\pi\)
0.197608 + 0.980281i \(0.436683\pi\)
\(228\) 0 0
\(229\) −273.661 −1.19503 −0.597514 0.801859i \(-0.703845\pi\)
−0.597514 + 0.801859i \(0.703845\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 57.6614 0.247474 0.123737 0.992315i \(-0.460512\pi\)
0.123737 + 0.992315i \(0.460512\pi\)
\(234\) 0 0
\(235\) 106.115 226.057i 0.451553 0.961945i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 131.371i 0.549670i −0.961491 0.274835i \(-0.911377\pi\)
0.961491 0.274835i \(-0.0886233\pi\)
\(240\) 0 0
\(241\) −326.355 −1.35417 −0.677086 0.735904i \(-0.736757\pi\)
−0.677086 + 0.735904i \(0.736757\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −69.7300 + 148.546i −0.284612 + 0.606311i
\(246\) 0 0
\(247\) 112.243i 0.454426i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 239.945i 0.955958i 0.878371 + 0.477979i \(0.158630\pi\)
−0.878371 + 0.477979i \(0.841370\pi\)
\(252\) 0 0
\(253\) 386.137i 1.52623i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 218.132 0.848763 0.424381 0.905484i \(-0.360492\pi\)
0.424381 + 0.905484i \(0.360492\pi\)
\(258\) 0 0
\(259\) 5.23483 0.0202117
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 179.288 0.681704 0.340852 0.940117i \(-0.389284\pi\)
0.340852 + 0.940117i \(0.389284\pi\)
\(264\) 0 0
\(265\) −30.9898 + 66.0178i −0.116943 + 0.249124i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 168.744i 0.627300i 0.949539 + 0.313650i \(0.101552\pi\)
−0.949539 + 0.313650i \(0.898448\pi\)
\(270\) 0 0
\(271\) −156.629 −0.577966 −0.288983 0.957334i \(-0.593317\pi\)
−0.288983 + 0.957334i \(0.593317\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 222.294 184.603i 0.808341 0.671283i
\(276\) 0 0
\(277\) 475.405i 1.71626i −0.513429 0.858132i \(-0.671625\pi\)
0.513429 0.858132i \(-0.328375\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 400.012i 1.42353i −0.702418 0.711765i \(-0.747896\pi\)
0.702418 0.711765i \(-0.252104\pi\)
\(282\) 0 0
\(283\) 205.228i 0.725189i −0.931947 0.362594i \(-0.881891\pi\)
0.931947 0.362594i \(-0.118109\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.11644 0.00389004
\(288\) 0 0
\(289\) −266.249 −0.921278
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 520.290 1.77574 0.887868 0.460099i \(-0.152186\pi\)
0.887868 + 0.460099i \(0.152186\pi\)
\(294\) 0 0
\(295\) 255.483 + 119.928i 0.866043 + 0.406535i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 452.692i 1.51402i
\(300\) 0 0
\(301\) 20.7617 0.0689756
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −231.168 + 492.459i −0.757928 + 1.61462i
\(306\) 0 0
\(307\) 527.621i 1.71863i −0.511443 0.859317i \(-0.670889\pi\)
0.511443 0.859317i \(-0.329111\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 604.316i 1.94314i 0.236755 + 0.971569i \(0.423916\pi\)
−0.236755 + 0.971569i \(0.576084\pi\)
\(312\) 0 0
\(313\) 36.8867i 0.117849i −0.998262 0.0589244i \(-0.981233\pi\)
0.998262 0.0589244i \(-0.0187671\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 416.238 1.31305 0.656526 0.754303i \(-0.272025\pi\)
0.656526 + 0.754303i \(0.272025\pi\)
\(318\) 0 0
\(319\) 246.532 0.772828
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −39.5105 −0.122323
\(324\) 0 0
\(325\) −260.609 + 216.421i −0.801873 + 0.665911i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 200.902i 0.610645i
\(330\) 0 0
\(331\) 40.4935 0.122337 0.0611684 0.998127i \(-0.480517\pi\)
0.0611684 + 0.998127i \(0.480517\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −279.387 131.149i −0.833991 0.391489i
\(336\) 0 0
\(337\) 340.334i 1.00989i −0.863151 0.504946i \(-0.831512\pi\)
0.863151 0.504946i \(-0.168488\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 592.608i 1.73785i
\(342\) 0 0
\(343\) 329.118i 0.959527i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 306.046 0.881976 0.440988 0.897513i \(-0.354628\pi\)
0.440988 + 0.897513i \(0.354628\pi\)
\(348\) 0 0
\(349\) −491.641 −1.40871 −0.704357 0.709846i \(-0.748765\pi\)
−0.704357 + 0.709846i \(0.748765\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −603.944 −1.71089 −0.855444 0.517895i \(-0.826716\pi\)
−0.855444 + 0.517895i \(0.826716\pi\)
\(354\) 0 0
\(355\) 288.107 + 135.242i 0.811569 + 0.380964i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 253.931i 0.707328i −0.935372 0.353664i \(-0.884936\pi\)
0.935372 0.353664i \(-0.115064\pi\)
\(360\) 0 0
\(361\) −292.384 −0.809927
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.7260 6.44322i −0.0376055 0.0176527i
\(366\) 0 0
\(367\) 599.158i 1.63258i −0.577641 0.816291i \(-0.696026\pi\)
0.577641 0.816291i \(-0.303974\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 58.6716i 0.158144i
\(372\) 0 0
\(373\) 24.9992i 0.0670220i −0.999438 0.0335110i \(-0.989331\pi\)
0.999438 0.0335110i \(-0.0106689\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −289.025 −0.766644
\(378\) 0 0
\(379\) −201.602 −0.531931 −0.265966 0.963983i \(-0.585691\pi\)
−0.265966 + 0.963983i \(0.585691\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 123.029 0.321226 0.160613 0.987017i \(-0.448653\pi\)
0.160613 + 0.987017i \(0.448653\pi\)
\(384\) 0 0
\(385\) −98.7788 + 210.429i −0.256568 + 0.546569i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 720.820i 1.85301i −0.376287 0.926503i \(-0.622799\pi\)
0.376287 0.926503i \(-0.377201\pi\)
\(390\) 0 0
\(391\) 159.351 0.407547
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 51.2923 109.268i 0.129854 0.276629i
\(396\) 0 0
\(397\) 164.898i 0.415360i 0.978197 + 0.207680i \(0.0665913\pi\)
−0.978197 + 0.207680i \(0.933409\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 183.334i 0.457192i 0.973521 + 0.228596i \(0.0734134\pi\)
−0.973521 + 0.228596i \(0.926587\pi\)
\(402\) 0 0
\(403\) 694.750i 1.72395i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.0416 −0.0369572
\(408\) 0 0
\(409\) 105.873 0.258857 0.129429 0.991589i \(-0.458686\pi\)
0.129429 + 0.991589i \(0.458686\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −227.053 −0.549766
\(414\) 0 0
\(415\) −115.021 + 245.030i −0.277159 + 0.590433i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 167.717i 0.400280i 0.979767 + 0.200140i \(0.0641397\pi\)
−0.979767 + 0.200140i \(0.935860\pi\)
\(420\) 0 0
\(421\) −38.9554 −0.0925307 −0.0462653 0.998929i \(-0.514732\pi\)
−0.0462653 + 0.998929i \(0.514732\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −76.1819 91.7363i −0.179251 0.215850i
\(426\) 0 0
\(427\) 437.659i 1.02496i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 649.135i 1.50611i 0.657955 + 0.753057i \(0.271422\pi\)
−0.657955 + 0.753057i \(0.728578\pi\)
\(432\) 0 0
\(433\) 805.930i 1.86127i 0.365950 + 0.930635i \(0.380744\pi\)
−0.365950 + 0.930635i \(0.619256\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −276.739 −0.633270
\(438\) 0 0
\(439\) 695.630 1.58458 0.792289 0.610146i \(-0.208889\pi\)
0.792289 + 0.610146i \(0.208889\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −633.721 −1.43052 −0.715261 0.698858i \(-0.753692\pi\)
−0.715261 + 0.698858i \(0.753692\pi\)
\(444\) 0 0
\(445\) −86.9673 40.8238i −0.195432 0.0917390i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 525.671i 1.17076i 0.810760 + 0.585379i \(0.199054\pi\)
−0.810760 + 0.585379i \(0.800946\pi\)
\(450\) 0 0
\(451\) −3.20795 −0.00711296
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 115.804 246.699i 0.254515 0.542196i
\(456\) 0 0
\(457\) 119.625i 0.261762i 0.991398 + 0.130881i \(0.0417805\pi\)
−0.991398 + 0.130881i \(0.958219\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 799.662i 1.73463i −0.497764 0.867313i \(-0.665845\pi\)
0.497764 0.867313i \(-0.334155\pi\)
\(462\) 0 0
\(463\) 246.612i 0.532640i −0.963885 0.266320i \(-0.914192\pi\)
0.963885 0.266320i \(-0.0858078\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.9382 0.0341288 0.0170644 0.999854i \(-0.494568\pi\)
0.0170644 + 0.999854i \(0.494568\pi\)
\(468\) 0 0
\(469\) 248.298 0.529419
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −59.6558 −0.126122
\(474\) 0 0
\(475\) 132.303 + 159.315i 0.278532 + 0.335401i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 106.512i 0.222363i −0.993800 0.111182i \(-0.964536\pi\)
0.993800 0.111182i \(-0.0354635\pi\)
\(480\) 0 0
\(481\) 17.6342 0.0366615
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 813.020 + 381.645i 1.67633 + 0.786897i
\(486\) 0 0
\(487\) 51.8946i 0.106560i −0.998580 0.0532798i \(-0.983032\pi\)
0.998580 0.0532798i \(-0.0169675\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 169.261i 0.344728i 0.985033 + 0.172364i \(0.0551405\pi\)
−0.985033 + 0.172364i \(0.944860\pi\)
\(492\) 0 0
\(493\) 101.739i 0.206367i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −256.047 −0.515186
\(498\) 0 0
\(499\) 512.534 1.02712 0.513561 0.858053i \(-0.328326\pi\)
0.513561 + 0.858053i \(0.328326\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 451.842 0.898295 0.449148 0.893458i \(-0.351728\pi\)
0.449148 + 0.893458i \(0.351728\pi\)
\(504\) 0 0
\(505\) 741.702 + 348.167i 1.46872 + 0.689439i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 847.482i 1.66499i 0.554029 + 0.832497i \(0.313090\pi\)
−0.554029 + 0.832497i \(0.686910\pi\)
\(510\) 0 0
\(511\) 12.1986 0.0238721
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −562.576 264.082i −1.09238 0.512781i
\(516\) 0 0
\(517\) 577.265i 1.11657i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.8677i 0.0515694i 0.999668 + 0.0257847i \(0.00820843\pi\)
−0.999668 + 0.0257847i \(0.991792\pi\)
\(522\) 0 0
\(523\) 645.180i 1.23361i 0.787115 + 0.616806i \(0.211574\pi\)
−0.787115 + 0.616806i \(0.788426\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −244.557 −0.464056
\(528\) 0 0
\(529\) 587.125 1.10988
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.76087 0.00705604
\(534\) 0 0
\(535\) −205.439 + 437.647i −0.383998 + 0.818033i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 379.331i 0.703768i
\(540\) 0 0
\(541\) −733.306 −1.35546 −0.677732 0.735309i \(-0.737037\pi\)
−0.677732 + 0.735309i \(0.737037\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −398.909 + 849.799i −0.731944 + 1.55926i
\(546\) 0 0
\(547\) 396.610i 0.725063i 0.931971 + 0.362532i \(0.118088\pi\)
−0.931971 + 0.362532i \(0.881912\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 176.687i 0.320665i
\(552\) 0 0
\(553\) 97.1093i 0.175604i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 439.875 0.789722 0.394861 0.918741i \(-0.370793\pi\)
0.394861 + 0.918741i \(0.370793\pi\)
\(558\) 0 0
\(559\) 69.9382 0.125113
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −631.764 −1.12214 −0.561069 0.827769i \(-0.689610\pi\)
−0.561069 + 0.827769i \(0.689610\pi\)
\(564\) 0 0
\(565\) −151.561 + 322.872i −0.268250 + 0.571454i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 874.810i 1.53745i 0.639579 + 0.768726i \(0.279109\pi\)
−0.639579 + 0.768726i \(0.720891\pi\)
\(570\) 0 0
\(571\) 167.804 0.293877 0.146938 0.989146i \(-0.453058\pi\)
0.146938 + 0.989146i \(0.453058\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −533.593 642.539i −0.927988 1.11746i
\(576\) 0 0
\(577\) 706.060i 1.22367i −0.790984 0.611837i \(-0.790431\pi\)
0.790984 0.611837i \(-0.209569\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 217.764i 0.374808i
\(582\) 0 0
\(583\) 168.585i 0.289168i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −540.407 −0.920626 −0.460313 0.887757i \(-0.652263\pi\)
−0.460313 + 0.887757i \(0.652263\pi\)
\(588\) 0 0
\(589\) 424.714 0.721077
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −605.315 −1.02077 −0.510384 0.859947i \(-0.670497\pi\)
−0.510384 + 0.859947i \(0.670497\pi\)
\(594\) 0 0
\(595\) 86.8399 + 40.7640i 0.145949 + 0.0685110i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 599.687i 1.00115i 0.865694 + 0.500574i \(0.166878\pi\)
−0.865694 + 0.500574i \(0.833122\pi\)
\(600\) 0 0
\(601\) 304.427 0.506533 0.253267 0.967397i \(-0.418495\pi\)
0.253267 + 0.967397i \(0.418495\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26.7459 56.9769i 0.0442081 0.0941767i
\(606\) 0 0
\(607\) 160.000i 0.263592i −0.991277 0.131796i \(-0.957926\pi\)
0.991277 0.131796i \(-0.0420744\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 676.763i 1.10763i
\(612\) 0 0
\(613\) 18.0851i 0.0295026i −0.999891 0.0147513i \(-0.995304\pi\)
0.999891 0.0147513i \(-0.00469565\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1058.31 −1.71525 −0.857625 0.514276i \(-0.828061\pi\)
−0.857625 + 0.514276i \(0.828061\pi\)
\(618\) 0 0
\(619\) −981.467 −1.58557 −0.792784 0.609502i \(-0.791369\pi\)
−0.792784 + 0.609502i \(0.791369\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 77.2898 0.124061
\(624\) 0 0
\(625\) −114.803 + 614.366i −0.183685 + 0.982985i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.20736i 0.00986862i
\(630\) 0 0
\(631\) −635.232 −1.00671 −0.503353 0.864081i \(-0.667900\pi\)
−0.503353 + 0.864081i \(0.667900\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 639.870 + 300.365i 1.00767 + 0.473016i
\(636\) 0 0
\(637\) 444.713i 0.698137i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 659.039i 1.02814i −0.857748 0.514071i \(-0.828137\pi\)
0.857748 0.514071i \(-0.171863\pi\)
\(642\) 0 0
\(643\) 75.0317i 0.116690i −0.998296 0.0583450i \(-0.981418\pi\)
0.998296 0.0583450i \(-0.0185823\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −913.249 −1.41151 −0.705756 0.708455i \(-0.749393\pi\)
−0.705756 + 0.708455i \(0.749393\pi\)
\(648\) 0 0
\(649\) 652.407 1.00525
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1028.62 1.57522 0.787609 0.616176i \(-0.211319\pi\)
0.787609 + 0.616176i \(0.211319\pi\)
\(654\) 0 0
\(655\) −979.092 459.602i −1.49480 0.701682i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 755.002i 1.14568i −0.819668 0.572839i \(-0.805842\pi\)
0.819668 0.572839i \(-0.194158\pi\)
\(660\) 0 0
\(661\) −57.9908 −0.0877319 −0.0438660 0.999037i \(-0.513967\pi\)
−0.0438660 + 0.999037i \(0.513967\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −150.812 70.7935i −0.226785 0.106456i
\(666\) 0 0
\(667\) 712.600i 1.06837i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1257.55i 1.87415i
\(672\) 0 0
\(673\) 389.002i 0.578011i −0.957327 0.289006i \(-0.906675\pi\)
0.957327 0.289006i \(-0.0933247\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −739.927 −1.09295 −0.546475 0.837475i \(-0.684031\pi\)
−0.546475 + 0.837475i \(0.684031\pi\)
\(678\) 0 0
\(679\) −722.550 −1.06414
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1098.80 1.60878 0.804392 0.594100i \(-0.202491\pi\)
0.804392 + 0.594100i \(0.202491\pi\)
\(684\) 0 0
\(685\) 251.390 535.537i 0.366992 0.781805i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 197.642i 0.286854i
\(690\) 0 0
\(691\) −138.645 −0.200644 −0.100322 0.994955i \(-0.531987\pi\)
−0.100322 + 0.994955i \(0.531987\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 231.115 492.346i 0.332540 0.708412i
\(696\) 0 0
\(697\) 1.32385i 0.00189936i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.42379i 0.00345762i −0.999999 0.00172881i \(-0.999450\pi\)
0.999999 0.00172881i \(-0.000550298\pi\)
\(702\) 0 0
\(703\) 10.7801i 0.0153344i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −659.167 −0.932344
\(708\) 0 0
\(709\) 64.3983 0.0908298 0.0454149 0.998968i \(-0.485539\pi\)
0.0454149 + 0.998968i \(0.485539\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1712.93 −2.40242
\(714\) 0 0
\(715\) −332.748 + 708.856i −0.465382 + 0.991407i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 129.041i 0.179473i −0.995966 0.0897363i \(-0.971398\pi\)
0.995966 0.0897363i \(-0.0286024\pi\)
\(720\) 0 0
\(721\) 499.974 0.693446
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −410.235 + 340.677i −0.565841 + 0.469900i
\(726\) 0 0
\(727\) 380.981i 0.524045i −0.965062 0.262023i \(-0.915611\pi\)
0.965062 0.262023i \(-0.0843895\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 24.6188i 0.0336782i
\(732\) 0 0
\(733\) 155.618i 0.212303i 0.994350 + 0.106152i \(0.0338529\pi\)
−0.994350 + 0.106152i \(0.966147\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −713.449 −0.968045
\(738\) 0 0
\(739\) 569.361 0.770448 0.385224 0.922823i \(-0.374124\pi\)
0.385224 + 0.922823i \(0.374124\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1360.27 −1.83078 −0.915390 0.402569i \(-0.868117\pi\)
−0.915390 + 0.402569i \(0.868117\pi\)
\(744\) 0 0
\(745\) −191.880 90.0715i −0.257557 0.120901i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 388.947i 0.519289i
\(750\) 0 0
\(751\) −1062.32 −1.41454 −0.707268 0.706946i \(-0.750072\pi\)
−0.707268 + 0.706946i \(0.750072\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −291.905 + 621.847i −0.386629 + 0.823638i
\(756\) 0 0
\(757\) 1289.84i 1.70389i −0.523633 0.851944i \(-0.675424\pi\)
0.523633 0.851944i \(-0.324576\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 88.5494i 0.116359i 0.998306 + 0.0581796i \(0.0185296\pi\)
−0.998306 + 0.0581796i \(0.981470\pi\)
\(762\) 0 0
\(763\) 755.236i 0.989824i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −764.857 −0.997206
\(768\) 0 0
\(769\) −46.8810 −0.0609637 −0.0304818 0.999535i \(-0.509704\pi\)
−0.0304818 + 0.999535i \(0.509704\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −204.832 −0.264983 −0.132491 0.991184i \(-0.542298\pi\)
−0.132491 + 0.991184i \(0.542298\pi\)
\(774\) 0 0
\(775\) 818.911 + 986.111i 1.05666 + 1.27240i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.29909i 0.00295134i
\(780\) 0 0
\(781\) 735.717 0.942020
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −365.790 171.708i −0.465974 0.218736i
\(786\) 0 0
\(787\) 628.504i 0.798608i −0.916819 0.399304i \(-0.869252\pi\)
0.916819 0.399304i \(-0.130748\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 286.943i 0.362760i
\(792\) 0 0
\(793\) 1474.31i 1.85915i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1005.12 1.26113 0.630566 0.776136i \(-0.282823\pi\)
0.630566 + 0.776136i \(0.282823\pi\)
\(798\) 0 0
\(799\) −238.226 −0.298155
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −35.0511 −0.0436502
\(804\) 0 0
\(805\) 608.244 + 285.520i 0.755583 + 0.354683i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.1783i 0.0249423i −0.999922 0.0124712i \(-0.996030\pi\)
0.999922 0.0124712i \(-0.00396980\pi\)
\(810\) 0 0
\(811\) −854.296 −1.05339 −0.526693 0.850055i \(-0.676568\pi\)
−0.526693 + 0.850055i \(0.676568\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 450.322 + 211.389i 0.552543 + 0.259373i
\(816\) 0 0
\(817\) 42.7546i 0.0523312i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 77.1306i 0.0939471i 0.998896 + 0.0469736i \(0.0149577\pi\)
−0.998896 + 0.0469736i \(0.985042\pi\)
\(822\) 0 0
\(823\) 1548.24i 1.88122i 0.339493 + 0.940609i \(0.389745\pi\)
−0.339493 + 0.940609i \(0.610255\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.6739 0.0346722 0.0173361 0.999850i \(-0.494481\pi\)
0.0173361 + 0.999850i \(0.494481\pi\)
\(828\) 0 0
\(829\) −467.578 −0.564026 −0.282013 0.959411i \(-0.591002\pi\)
−0.282013 + 0.959411i \(0.591002\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 156.542 0.187926
\(834\) 0 0
\(835\) −420.492 + 895.777i −0.503584 + 1.07279i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1277.59i 1.52275i −0.648311 0.761376i \(-0.724524\pi\)
0.648311 0.761376i \(-0.275476\pi\)
\(840\) 0 0
\(841\) 386.034 0.459018
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 31.0371 66.1186i 0.0367303 0.0782468i
\(846\) 0 0
\(847\) 50.6367i 0.0597836i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 43.4776i 0.0510900i
\(852\) 0 0
\(853\) 1657.14i 1.94272i 0.237604 + 0.971362i \(0.423638\pi\)
−0.237604 + 0.971362i \(0.576362\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −917.993 −1.07117 −0.535585 0.844481i \(-0.679909\pi\)
−0.535585 + 0.844481i \(0.679909\pi\)
\(858\) 0 0
\(859\) −1471.65 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −847.452 −0.981984 −0.490992 0.871164i \(-0.663366\pi\)
−0.490992 + 0.871164i \(0.663366\pi\)
\(864\) 0 0
\(865\) −372.276 + 793.061i −0.430376 + 0.916833i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 279.030i 0.321094i
\(870\) 0 0
\(871\) 836.420 0.960299
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −126.417 486.659i −0.144477 0.556181i
\(876\) 0 0
\(877\) 960.589i 1.09531i −0.836703 0.547656i \(-0.815520\pi\)
0.836703 0.547656i \(-0.184480\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1239.44i 1.40685i 0.710768 + 0.703427i \(0.248348\pi\)
−0.710768 + 0.703427i \(0.751652\pi\)
\(882\) 0 0
\(883\) 1081.77i 1.22511i 0.790430 + 0.612553i \(0.209857\pi\)
−0.790430 + 0.612553i \(0.790143\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1493.65 1.68393 0.841967 0.539529i \(-0.181398\pi\)
0.841967 + 0.539529i \(0.181398\pi\)
\(888\) 0 0
\(889\) −568.667 −0.639670
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 413.718 0.463291
\(894\) 0 0
\(895\) 9.20698 + 4.32191i 0.0102871 + 0.00482894i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1093.63i 1.21650i
\(900\) 0 0
\(901\) 69.5715 0.0772159
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −476.675 + 1015.46i −0.526713 + 1.12206i
\(906\) 0 0
\(907\) 1331.28i 1.46779i −0.679263 0.733895i \(-0.737701\pi\)
0.679263 0.733895i \(-0.262299\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 926.885i 1.01744i 0.860933 + 0.508719i \(0.169881\pi\)
−0.860933 + 0.508719i \(0.830119\pi\)
\(912\) 0 0
\(913\) 625.714i 0.685339i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 870.142 0.948900
\(918\) 0 0
\(919\) 130.701 0.142221 0.0711104 0.997468i \(-0.477346\pi\)
0.0711104 + 0.997468i \(0.477346\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −862.527 −0.934482
\(924\) 0 0
\(925\) 25.0295 20.7856i 0.0270589 0.0224709i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 514.471i 0.553790i 0.960900 + 0.276895i \(0.0893054\pi\)
−0.960900 + 0.276895i \(0.910695\pi\)
\(930\) 0 0
\(931\) −271.862 −0.292011
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −249.523 117.130i −0.266869 0.125273i
\(936\) 0 0
\(937\) 1538.89i 1.64236i −0.570670 0.821179i \(-0.693316\pi\)
0.570670 0.821179i \(-0.306684\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 832.549i 0.884749i −0.896830 0.442374i \(-0.854136\pi\)
0.896830 0.442374i \(-0.145864\pi\)
\(942\) 0 0
\(943\) 9.27255i 0.00983303i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1196.52 −1.26349 −0.631743 0.775178i \(-0.717660\pi\)
−0.631743 + 0.775178i \(0.717660\pi\)
\(948\) 0 0
\(949\) 41.0926 0.0433009
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −405.006 −0.424980 −0.212490 0.977163i \(-0.568157\pi\)
−0.212490 + 0.977163i \(0.568157\pi\)
\(954\) 0 0
\(955\) 659.417 + 309.541i 0.690489 + 0.324127i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 475.944i 0.496292i
\(960\) 0 0
\(961\) 1667.85 1.73553
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 948.383 + 445.187i 0.982781 + 0.461333i
\(966\) 0 0
\(967\) 1461.35i 1.51122i −0.655019 0.755612i \(-0.727339\pi\)
0.655019 0.755612i \(-0.272661\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 987.845i 1.01735i 0.860959 + 0.508674i \(0.169864\pi\)
−0.860959 + 0.508674i \(0.830136\pi\)
\(972\) 0 0
\(973\) 437.559i 0.449701i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1032.47 −1.05677 −0.528386 0.849004i \(-0.677203\pi\)
−0.528386 + 0.849004i \(0.677203\pi\)
\(978\) 0 0
\(979\) −222.082 −0.226845
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 254.697 0.259102 0.129551 0.991573i \(-0.458646\pi\)
0.129551 + 0.991573i \(0.458646\pi\)
\(984\) 0 0
\(985\) −632.627 + 1347.69i −0.642261 + 1.36821i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 172.435i 0.174353i
\(990\) 0 0
\(991\) 275.074 0.277572 0.138786 0.990322i \(-0.455680\pi\)
0.138786 + 0.990322i \(0.455680\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 53.1615 113.250i 0.0534286 0.113819i
\(996\) 0 0
\(997\) 139.811i 0.140232i −0.997539 0.0701161i \(-0.977663\pi\)
0.997539 0.0701161i \(-0.0223370\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.c.q.1889.8 24
3.2 odd 2 inner 2160.3.c.q.1889.17 24
4.3 odd 2 1080.3.c.c.809.8 yes 24
5.4 even 2 inner 2160.3.c.q.1889.18 24
12.11 even 2 1080.3.c.c.809.17 yes 24
15.14 odd 2 inner 2160.3.c.q.1889.7 24
20.19 odd 2 1080.3.c.c.809.18 yes 24
60.59 even 2 1080.3.c.c.809.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.3.c.c.809.7 24 60.59 even 2
1080.3.c.c.809.8 yes 24 4.3 odd 2
1080.3.c.c.809.17 yes 24 12.11 even 2
1080.3.c.c.809.18 yes 24 20.19 odd 2
2160.3.c.q.1889.7 24 15.14 odd 2 inner
2160.3.c.q.1889.8 24 1.1 even 1 trivial
2160.3.c.q.1889.17 24 3.2 odd 2 inner
2160.3.c.q.1889.18 24 5.4 even 2 inner