Properties

Label 2160.3.c.q.1889.21
Level $2160$
Weight $3$
Character 2160.1889
Analytic conductor $58.856$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,3,Mod(1889,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.1889"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1889.21
Character \(\chi\) \(=\) 2160.1889
Dual form 2160.3.c.q.1889.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.52542 - 2.12616i) q^{5} -0.343255i q^{7} +3.68323i q^{11} -5.50147i q^{13} +6.36803 q^{17} +2.62792 q^{19} -12.2810 q^{23} +(15.9589 - 19.2435i) q^{25} -24.0167i q^{29} +1.04710 q^{31} +(-0.729815 - 1.55337i) q^{35} -36.2550i q^{37} +8.06180i q^{41} +19.3113i q^{43} +38.7705 q^{47} +48.8822 q^{49} +3.24292 q^{53} +(7.83113 + 16.6682i) q^{55} -51.5904i q^{59} +28.7343 q^{61} +(-11.6970 - 24.8965i) q^{65} +77.8013i q^{67} -87.5582i q^{71} -108.427i q^{73} +1.26429 q^{77} -78.1862 q^{79} +62.1805 q^{83} +(28.8180 - 13.5395i) q^{85} -35.2651i q^{89} -1.88841 q^{91} +(11.8925 - 5.58738i) q^{95} -65.0096i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 72 q^{25} + 72 q^{31} - 408 q^{49} + 168 q^{55} - 240 q^{61} + 312 q^{79} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.52542 2.12616i 0.905084 0.425232i
\(6\) 0 0
\(7\) 0.343255i 0.0490364i −0.999699 0.0245182i \(-0.992195\pi\)
0.999699 0.0245182i \(-0.00780517\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.68323i 0.334839i 0.985886 + 0.167419i \(0.0535434\pi\)
−0.985886 + 0.167419i \(0.946457\pi\)
\(12\) 0 0
\(13\) 5.50147i 0.423190i −0.977357 0.211595i \(-0.932134\pi\)
0.977357 0.211595i \(-0.0678658\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.36803 0.374590 0.187295 0.982304i \(-0.440028\pi\)
0.187295 + 0.982304i \(0.440028\pi\)
\(18\) 0 0
\(19\) 2.62792 0.138312 0.0691558 0.997606i \(-0.477969\pi\)
0.0691558 + 0.997606i \(0.477969\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −12.2810 −0.533959 −0.266979 0.963702i \(-0.586026\pi\)
−0.266979 + 0.963702i \(0.586026\pi\)
\(24\) 0 0
\(25\) 15.9589 19.2435i 0.638355 0.769742i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 24.0167i 0.828162i −0.910240 0.414081i \(-0.864103\pi\)
0.910240 0.414081i \(-0.135897\pi\)
\(30\) 0 0
\(31\) 1.04710 0.0337774 0.0168887 0.999857i \(-0.494624\pi\)
0.0168887 + 0.999857i \(0.494624\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.729815 1.55337i −0.0208519 0.0443821i
\(36\) 0 0
\(37\) 36.2550i 0.979864i −0.871761 0.489932i \(-0.837022\pi\)
0.871761 0.489932i \(-0.162978\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.06180i 0.196629i 0.995155 + 0.0983147i \(0.0313452\pi\)
−0.995155 + 0.0983147i \(0.968655\pi\)
\(42\) 0 0
\(43\) 19.3113i 0.449100i 0.974463 + 0.224550i \(0.0720912\pi\)
−0.974463 + 0.224550i \(0.927909\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 38.7705 0.824904 0.412452 0.910979i \(-0.364672\pi\)
0.412452 + 0.910979i \(0.364672\pi\)
\(48\) 0 0
\(49\) 48.8822 0.997595
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.24292 0.0611871 0.0305936 0.999532i \(-0.490260\pi\)
0.0305936 + 0.999532i \(0.490260\pi\)
\(54\) 0 0
\(55\) 7.83113 + 16.6682i 0.142384 + 0.303057i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 51.5904i 0.874413i −0.899361 0.437206i \(-0.855968\pi\)
0.899361 0.437206i \(-0.144032\pi\)
\(60\) 0 0
\(61\) 28.7343 0.471054 0.235527 0.971868i \(-0.424318\pi\)
0.235527 + 0.971868i \(0.424318\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −11.6970 24.8965i −0.179954 0.383023i
\(66\) 0 0
\(67\) 77.8013i 1.16121i 0.814184 + 0.580607i \(0.197185\pi\)
−0.814184 + 0.580607i \(0.802815\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 87.5582i 1.23321i −0.787271 0.616607i \(-0.788507\pi\)
0.787271 0.616607i \(-0.211493\pi\)
\(72\) 0 0
\(73\) 108.427i 1.48530i −0.669681 0.742649i \(-0.733569\pi\)
0.669681 0.742649i \(-0.266431\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.26429 0.0164193
\(78\) 0 0
\(79\) −78.1862 −0.989699 −0.494849 0.868979i \(-0.664777\pi\)
−0.494849 + 0.868979i \(0.664777\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 62.1805 0.749163 0.374581 0.927194i \(-0.377786\pi\)
0.374581 + 0.927194i \(0.377786\pi\)
\(84\) 0 0
\(85\) 28.8180 13.5395i 0.339036 0.159288i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 35.2651i 0.396237i −0.980178 0.198119i \(-0.936517\pi\)
0.980178 0.198119i \(-0.0634831\pi\)
\(90\) 0 0
\(91\) −1.88841 −0.0207517
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.8925 5.58738i 0.125184 0.0588146i
\(96\) 0 0
\(97\) 65.0096i 0.670202i −0.942182 0.335101i \(-0.891230\pi\)
0.942182 0.335101i \(-0.108770\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 31.8095i 0.314945i −0.987523 0.157473i \(-0.949665\pi\)
0.987523 0.157473i \(-0.0503346\pi\)
\(102\) 0 0
\(103\) 105.375i 1.02306i 0.859266 + 0.511529i \(0.170921\pi\)
−0.859266 + 0.511529i \(0.829079\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.48988 0.0326157 0.0163078 0.999867i \(-0.494809\pi\)
0.0163078 + 0.999867i \(0.494809\pi\)
\(108\) 0 0
\(109\) −111.004 −1.01839 −0.509195 0.860651i \(-0.670057\pi\)
−0.509195 + 0.860651i \(0.670057\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 38.1865 0.337933 0.168967 0.985622i \(-0.445957\pi\)
0.168967 + 0.985622i \(0.445957\pi\)
\(114\) 0 0
\(115\) −55.5769 + 26.1115i −0.483277 + 0.227056i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.18586i 0.0183686i
\(120\) 0 0
\(121\) 107.434 0.887883
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 31.3058 121.016i 0.250446 0.968130i
\(126\) 0 0
\(127\) 138.765i 1.09264i 0.837577 + 0.546320i \(0.183972\pi\)
−0.837577 + 0.546320i \(0.816028\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 131.550i 1.00420i −0.864811 0.502098i \(-0.832562\pi\)
0.864811 0.502098i \(-0.167438\pi\)
\(132\) 0 0
\(133\) 0.902047i 0.00678231i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 152.211 1.11103 0.555513 0.831508i \(-0.312522\pi\)
0.555513 + 0.831508i \(0.312522\pi\)
\(138\) 0 0
\(139\) −64.1907 −0.461803 −0.230902 0.972977i \(-0.574168\pi\)
−0.230902 + 0.972977i \(0.574168\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 20.2632 0.141700
\(144\) 0 0
\(145\) −51.0634 108.686i −0.352161 0.749556i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 233.886i 1.56970i −0.619683 0.784852i \(-0.712739\pi\)
0.619683 0.784852i \(-0.287261\pi\)
\(150\) 0 0
\(151\) −173.707 −1.15038 −0.575189 0.818021i \(-0.695071\pi\)
−0.575189 + 0.818021i \(0.695071\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.73857 2.22630i 0.0305714 0.0143632i
\(156\) 0 0
\(157\) 121.059i 0.771079i 0.922691 + 0.385539i \(0.125985\pi\)
−0.922691 + 0.385539i \(0.874015\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.21553i 0.0261834i
\(162\) 0 0
\(163\) 93.2845i 0.572297i 0.958185 + 0.286149i \(0.0923751\pi\)
−0.958185 + 0.286149i \(0.907625\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.15499 0.0188922 0.00944608 0.999955i \(-0.496993\pi\)
0.00944608 + 0.999955i \(0.496993\pi\)
\(168\) 0 0
\(169\) 138.734 0.820910
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 163.435 0.944708 0.472354 0.881409i \(-0.343404\pi\)
0.472354 + 0.881409i \(0.343404\pi\)
\(174\) 0 0
\(175\) −6.60544 5.47796i −0.0377454 0.0313027i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 39.4592i 0.220442i −0.993907 0.110221i \(-0.964844\pi\)
0.993907 0.110221i \(-0.0351559\pi\)
\(180\) 0 0
\(181\) −278.211 −1.53708 −0.768538 0.639804i \(-0.779015\pi\)
−0.768538 + 0.639804i \(0.779015\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −77.0839 164.069i −0.416669 0.886859i
\(186\) 0 0
\(187\) 23.4549i 0.125427i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 318.694i 1.66855i −0.551347 0.834276i \(-0.685886\pi\)
0.551347 0.834276i \(-0.314114\pi\)
\(192\) 0 0
\(193\) 5.67533i 0.0294059i −0.999892 0.0147029i \(-0.995320\pi\)
0.999892 0.0147029i \(-0.00468026\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 45.3319 0.230111 0.115056 0.993359i \(-0.463295\pi\)
0.115056 + 0.993359i \(0.463295\pi\)
\(198\) 0 0
\(199\) 177.557 0.892245 0.446123 0.894972i \(-0.352805\pi\)
0.446123 + 0.894972i \(0.352805\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.24385 −0.0406101
\(204\) 0 0
\(205\) 17.1407 + 36.4831i 0.0836131 + 0.177966i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.67923i 0.0463121i
\(210\) 0 0
\(211\) −62.1257 −0.294435 −0.147217 0.989104i \(-0.547032\pi\)
−0.147217 + 0.989104i \(0.547032\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 41.0589 + 87.3918i 0.190972 + 0.406473i
\(216\) 0 0
\(217\) 0.359422i 0.00165632i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 35.0335i 0.158523i
\(222\) 0 0
\(223\) 242.729i 1.08847i −0.838933 0.544235i \(-0.816820\pi\)
0.838933 0.544235i \(-0.183180\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 190.244 0.838079 0.419039 0.907968i \(-0.362367\pi\)
0.419039 + 0.907968i \(0.362367\pi\)
\(228\) 0 0
\(229\) 70.8762 0.309503 0.154752 0.987953i \(-0.450542\pi\)
0.154752 + 0.987953i \(0.450542\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −200.325 −0.859763 −0.429881 0.902885i \(-0.641445\pi\)
−0.429881 + 0.902885i \(0.641445\pi\)
\(234\) 0 0
\(235\) 175.453 82.4323i 0.746608 0.350776i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 96.9317i 0.405572i −0.979223 0.202786i \(-0.935000\pi\)
0.979223 0.202786i \(-0.0649996\pi\)
\(240\) 0 0
\(241\) 218.474 0.906532 0.453266 0.891375i \(-0.350259\pi\)
0.453266 + 0.891375i \(0.350259\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 221.212 103.931i 0.902908 0.424210i
\(246\) 0 0
\(247\) 14.4574i 0.0585321i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 429.990i 1.71311i −0.516057 0.856554i \(-0.672601\pi\)
0.516057 0.856554i \(-0.327399\pi\)
\(252\) 0 0
\(253\) 45.2339i 0.178790i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −250.541 −0.974866 −0.487433 0.873160i \(-0.662067\pi\)
−0.487433 + 0.873160i \(0.662067\pi\)
\(258\) 0 0
\(259\) −12.4447 −0.0480490
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 235.274 0.894578 0.447289 0.894389i \(-0.352390\pi\)
0.447289 + 0.894389i \(0.352390\pi\)
\(264\) 0 0
\(265\) 14.6756 6.89496i 0.0553795 0.0260187i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 362.657i 1.34817i −0.738656 0.674083i \(-0.764539\pi\)
0.738656 0.674083i \(-0.235461\pi\)
\(270\) 0 0
\(271\) 435.221 1.60598 0.802992 0.595990i \(-0.203240\pi\)
0.802992 + 0.595990i \(0.203240\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 70.8783 + 58.7802i 0.257739 + 0.213746i
\(276\) 0 0
\(277\) 340.335i 1.22865i 0.789055 + 0.614323i \(0.210571\pi\)
−0.789055 + 0.614323i \(0.789429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 394.063i 1.40236i 0.712985 + 0.701179i \(0.247343\pi\)
−0.712985 + 0.701179i \(0.752657\pi\)
\(282\) 0 0
\(283\) 454.014i 1.60429i −0.597129 0.802145i \(-0.703692\pi\)
0.597129 0.802145i \(-0.296308\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.76725 0.00964200
\(288\) 0 0
\(289\) −248.448 −0.859682
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 98.6447 0.336671 0.168336 0.985730i \(-0.446161\pi\)
0.168336 + 0.985730i \(0.446161\pi\)
\(294\) 0 0
\(295\) −109.689 233.468i −0.371828 0.791417i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 67.5638i 0.225966i
\(300\) 0 0
\(301\) 6.62870 0.0220223
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 130.035 61.0937i 0.426343 0.200307i
\(306\) 0 0
\(307\) 56.4148i 0.183762i 0.995770 + 0.0918809i \(0.0292879\pi\)
−0.995770 + 0.0918809i \(0.970712\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 348.198i 1.11961i −0.828626 0.559803i \(-0.810877\pi\)
0.828626 0.559803i \(-0.189123\pi\)
\(312\) 0 0
\(313\) 220.046i 0.703023i 0.936184 + 0.351512i \(0.114332\pi\)
−0.936184 + 0.351512i \(0.885668\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 270.223 0.852439 0.426220 0.904620i \(-0.359845\pi\)
0.426220 + 0.904620i \(0.359845\pi\)
\(318\) 0 0
\(319\) 88.4589 0.277301
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.7347 0.0518102
\(324\) 0 0
\(325\) −105.868 87.7973i −0.325747 0.270145i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13.3082i 0.0404503i
\(330\) 0 0
\(331\) 128.278 0.387546 0.193773 0.981046i \(-0.437927\pi\)
0.193773 + 0.981046i \(0.437927\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 165.418 + 352.084i 0.493785 + 1.05100i
\(336\) 0 0
\(337\) 308.043i 0.914073i 0.889448 + 0.457037i \(0.151089\pi\)
−0.889448 + 0.457037i \(0.848911\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.85671i 0.0113100i
\(342\) 0 0
\(343\) 33.5985i 0.0979549i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −147.805 −0.425952 −0.212976 0.977057i \(-0.568316\pi\)
−0.212976 + 0.977057i \(0.568316\pi\)
\(348\) 0 0
\(349\) 182.397 0.522627 0.261314 0.965254i \(-0.415844\pi\)
0.261314 + 0.965254i \(0.415844\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 208.438 0.590475 0.295238 0.955424i \(-0.404601\pi\)
0.295238 + 0.955424i \(0.404601\pi\)
\(354\) 0 0
\(355\) −186.163 396.238i −0.524402 1.11616i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 44.2454i 0.123246i −0.998099 0.0616231i \(-0.980372\pi\)
0.998099 0.0616231i \(-0.0196277\pi\)
\(360\) 0 0
\(361\) −354.094 −0.980870
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −230.533 490.677i −0.631596 1.34432i
\(366\) 0 0
\(367\) 281.769i 0.767763i −0.923382 0.383881i \(-0.874587\pi\)
0.923382 0.383881i \(-0.125413\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.11315i 0.00300040i
\(372\) 0 0
\(373\) 26.4362i 0.0708745i −0.999372 0.0354372i \(-0.988718\pi\)
0.999372 0.0354372i \(-0.0112824\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −132.127 −0.350470
\(378\) 0 0
\(379\) 547.809 1.44541 0.722703 0.691158i \(-0.242899\pi\)
0.722703 + 0.691158i \(0.242899\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −685.561 −1.78998 −0.894988 0.446089i \(-0.852816\pi\)
−0.894988 + 0.446089i \(0.852816\pi\)
\(384\) 0 0
\(385\) 5.72142 2.68807i 0.0148608 0.00698201i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 447.088i 1.14933i −0.818390 0.574663i \(-0.805133\pi\)
0.818390 0.574663i \(-0.194867\pi\)
\(390\) 0 0
\(391\) −78.2061 −0.200016
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −353.826 + 166.236i −0.895761 + 0.420852i
\(396\) 0 0
\(397\) 346.488i 0.872766i 0.899761 + 0.436383i \(0.143741\pi\)
−0.899761 + 0.436383i \(0.856259\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 650.283i 1.62165i 0.585286 + 0.810827i \(0.300982\pi\)
−0.585286 + 0.810827i \(0.699018\pi\)
\(402\) 0 0
\(403\) 5.76059i 0.0142943i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 133.535 0.328096
\(408\) 0 0
\(409\) −213.767 −0.522658 −0.261329 0.965250i \(-0.584161\pi\)
−0.261329 + 0.965250i \(0.584161\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −17.7086 −0.0428781
\(414\) 0 0
\(415\) 281.393 132.206i 0.678055 0.318568i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 248.334i 0.592683i 0.955082 + 0.296342i \(0.0957667\pi\)
−0.955082 + 0.296342i \(0.904233\pi\)
\(420\) 0 0
\(421\) 93.8004 0.222804 0.111402 0.993775i \(-0.464466\pi\)
0.111402 + 0.993775i \(0.464466\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 101.627 122.544i 0.239122 0.288338i
\(426\) 0 0
\(427\) 9.86318i 0.0230988i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 125.023i 0.290077i −0.989426 0.145038i \(-0.953669\pi\)
0.989426 0.145038i \(-0.0463306\pi\)
\(432\) 0 0
\(433\) 221.389i 0.511291i 0.966771 + 0.255645i \(0.0822880\pi\)
−0.966771 + 0.255645i \(0.917712\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −32.2736 −0.0738527
\(438\) 0 0
\(439\) −436.727 −0.994823 −0.497412 0.867515i \(-0.665716\pi\)
−0.497412 + 0.867515i \(0.665716\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 755.517 1.70546 0.852729 0.522354i \(-0.174946\pi\)
0.852729 + 0.522354i \(0.174946\pi\)
\(444\) 0 0
\(445\) −74.9793 159.590i −0.168493 0.358628i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 217.633i 0.484706i 0.970188 + 0.242353i \(0.0779191\pi\)
−0.970188 + 0.242353i \(0.922081\pi\)
\(450\) 0 0
\(451\) −29.6934 −0.0658391
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.54583 + 4.01505i −0.0187821 + 0.00882430i
\(456\) 0 0
\(457\) 654.376i 1.43189i 0.698154 + 0.715947i \(0.254005\pi\)
−0.698154 + 0.715947i \(0.745995\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 418.815i 0.908492i 0.890876 + 0.454246i \(0.150091\pi\)
−0.890876 + 0.454246i \(0.849909\pi\)
\(462\) 0 0
\(463\) 282.863i 0.610935i −0.952203 0.305467i \(-0.901187\pi\)
0.952203 0.305467i \(-0.0988127\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −537.024 −1.14994 −0.574972 0.818173i \(-0.694987\pi\)
−0.574972 + 0.818173i \(0.694987\pi\)
\(468\) 0 0
\(469\) 26.7057 0.0569418
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −71.1279 −0.150376
\(474\) 0 0
\(475\) 41.9387 50.5705i 0.0882920 0.106464i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 611.445i 1.27650i 0.769828 + 0.638252i \(0.220342\pi\)
−0.769828 + 0.638252i \(0.779658\pi\)
\(480\) 0 0
\(481\) −199.455 −0.414668
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −138.221 294.196i −0.284991 0.606589i
\(486\) 0 0
\(487\) 706.656i 1.45104i 0.688201 + 0.725520i \(0.258401\pi\)
−0.688201 + 0.725520i \(0.741599\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 628.043i 1.27911i −0.768745 0.639555i \(-0.779119\pi\)
0.768745 0.639555i \(-0.220881\pi\)
\(492\) 0 0
\(493\) 152.939i 0.310221i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −30.0548 −0.0604724
\(498\) 0 0
\(499\) −483.558 −0.969055 −0.484527 0.874776i \(-0.661008\pi\)
−0.484527 + 0.874776i \(0.661008\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 365.346 0.726335 0.363167 0.931724i \(-0.381695\pi\)
0.363167 + 0.931724i \(0.381695\pi\)
\(504\) 0 0
\(505\) −67.6320 143.951i −0.133925 0.285052i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 234.721i 0.461141i −0.973056 0.230570i \(-0.925941\pi\)
0.973056 0.230570i \(-0.0740592\pi\)
\(510\) 0 0
\(511\) −37.2180 −0.0728337
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 224.044 + 476.866i 0.435037 + 0.925953i
\(516\) 0 0
\(517\) 142.801i 0.276210i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 982.201i 1.88522i 0.333891 + 0.942612i \(0.391638\pi\)
−0.333891 + 0.942612i \(0.608362\pi\)
\(522\) 0 0
\(523\) 110.800i 0.211855i −0.994374 0.105927i \(-0.966219\pi\)
0.994374 0.105927i \(-0.0337811\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.66797 0.0126527
\(528\) 0 0
\(529\) −378.176 −0.714888
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 44.3517 0.0832115
\(534\) 0 0
\(535\) 15.7932 7.42004i 0.0295199 0.0138692i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 180.044i 0.334034i
\(540\) 0 0
\(541\) −54.4450 −0.100638 −0.0503189 0.998733i \(-0.516024\pi\)
−0.0503189 + 0.998733i \(0.516024\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −502.342 + 236.013i −0.921729 + 0.433052i
\(546\) 0 0
\(547\) 807.086i 1.47548i 0.675087 + 0.737738i \(0.264106\pi\)
−0.675087 + 0.737738i \(0.735894\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 63.1140i 0.114544i
\(552\) 0 0
\(553\) 26.8378i 0.0485313i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 90.5746 0.162612 0.0813058 0.996689i \(-0.474091\pi\)
0.0813058 + 0.996689i \(0.474091\pi\)
\(558\) 0 0
\(559\) 106.241 0.190055
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −933.320 −1.65776 −0.828881 0.559425i \(-0.811022\pi\)
−0.828881 + 0.559425i \(0.811022\pi\)
\(564\) 0 0
\(565\) 172.810 81.1905i 0.305858 0.143700i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1022.25i 1.79658i 0.439404 + 0.898289i \(0.355190\pi\)
−0.439404 + 0.898289i \(0.644810\pi\)
\(570\) 0 0
\(571\) −102.773 −0.179987 −0.0899936 0.995942i \(-0.528685\pi\)
−0.0899936 + 0.995942i \(0.528685\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −195.992 + 236.331i −0.340855 + 0.411010i
\(576\) 0 0
\(577\) 354.062i 0.613625i 0.951770 + 0.306812i \(0.0992624\pi\)
−0.951770 + 0.306812i \(0.900738\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 21.3438i 0.0367363i
\(582\) 0 0
\(583\) 11.9444i 0.0204878i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 462.839 0.788482 0.394241 0.919007i \(-0.371008\pi\)
0.394241 + 0.919007i \(0.371008\pi\)
\(588\) 0 0
\(589\) 2.75170 0.00467181
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −955.037 −1.61052 −0.805259 0.592923i \(-0.797974\pi\)
−0.805259 + 0.592923i \(0.797974\pi\)
\(594\) 0 0
\(595\) −4.64749 9.89193i −0.00781090 0.0166251i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 156.127i 0.260645i 0.991472 + 0.130323i \(0.0416013\pi\)
−0.991472 + 0.130323i \(0.958399\pi\)
\(600\) 0 0
\(601\) 287.914 0.479059 0.239530 0.970889i \(-0.423007\pi\)
0.239530 + 0.970889i \(0.423007\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 486.183 228.422i 0.803609 0.377556i
\(606\) 0 0
\(607\) 651.496i 1.07331i 0.843803 + 0.536653i \(0.180311\pi\)
−0.843803 + 0.536653i \(0.819689\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 213.295i 0.349091i
\(612\) 0 0
\(613\) 769.780i 1.25576i −0.778311 0.627879i \(-0.783923\pi\)
0.778311 0.627879i \(-0.216077\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −852.034 −1.38093 −0.690465 0.723365i \(-0.742594\pi\)
−0.690465 + 0.723365i \(0.742594\pi\)
\(618\) 0 0
\(619\) 202.420 0.327012 0.163506 0.986542i \(-0.447720\pi\)
0.163506 + 0.986542i \(0.447720\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.1049 −0.0194301
\(624\) 0 0
\(625\) −115.628 614.211i −0.185005 0.982738i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 230.873i 0.367047i
\(630\) 0 0
\(631\) −829.830 −1.31510 −0.657551 0.753410i \(-0.728408\pi\)
−0.657551 + 0.753410i \(0.728408\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 295.037 + 627.971i 0.464625 + 0.988931i
\(636\) 0 0
\(637\) 268.924i 0.422172i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1138.98i 1.77688i 0.458992 + 0.888440i \(0.348211\pi\)
−0.458992 + 0.888440i \(0.651789\pi\)
\(642\) 0 0
\(643\) 322.082i 0.500905i 0.968129 + 0.250452i \(0.0805793\pi\)
−0.968129 + 0.250452i \(0.919421\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −148.507 −0.229531 −0.114766 0.993393i \(-0.536612\pi\)
−0.114766 + 0.993393i \(0.536612\pi\)
\(648\) 0 0
\(649\) 190.019 0.292787
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 332.895 0.509794 0.254897 0.966968i \(-0.417959\pi\)
0.254897 + 0.966968i \(0.417959\pi\)
\(654\) 0 0
\(655\) −279.696 595.317i −0.427016 0.908881i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 718.648i 1.09051i 0.838269 + 0.545257i \(0.183568\pi\)
−0.838269 + 0.545257i \(0.816432\pi\)
\(660\) 0 0
\(661\) 585.033 0.885072 0.442536 0.896751i \(-0.354079\pi\)
0.442536 + 0.896751i \(0.354079\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.91790 4.08214i −0.00288406 0.00613856i
\(666\) 0 0
\(667\) 294.950i 0.442204i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 105.835i 0.157727i
\(672\) 0 0
\(673\) 417.638i 0.620561i −0.950645 0.310281i \(-0.899577\pi\)
0.950645 0.310281i \(-0.100423\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1076.48 1.59007 0.795036 0.606562i \(-0.207452\pi\)
0.795036 + 0.606562i \(0.207452\pi\)
\(678\) 0 0
\(679\) −22.3149 −0.0328643
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −333.571 −0.488391 −0.244195 0.969726i \(-0.578524\pi\)
−0.244195 + 0.969726i \(0.578524\pi\)
\(684\) 0 0
\(685\) 688.817 323.624i 1.00557 0.472444i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 17.8408i 0.0258938i
\(690\) 0 0
\(691\) 366.106 0.529820 0.264910 0.964273i \(-0.414658\pi\)
0.264910 + 0.964273i \(0.414658\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −290.490 + 136.480i −0.417971 + 0.196374i
\(696\) 0 0
\(697\) 51.3378i 0.0736554i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 188.763i 0.269277i −0.990895 0.134639i \(-0.957013\pi\)
0.990895 0.134639i \(-0.0429873\pi\)
\(702\) 0 0
\(703\) 95.2752i 0.135527i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.9188 −0.0154438
\(708\) 0 0
\(709\) 101.543 0.143220 0.0716102 0.997433i \(-0.477186\pi\)
0.0716102 + 0.997433i \(0.477186\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.8595 −0.0180357
\(714\) 0 0
\(715\) 91.6993 43.0827i 0.128251 0.0602555i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 856.985i 1.19191i 0.803017 + 0.595956i \(0.203227\pi\)
−0.803017 + 0.595956i \(0.796773\pi\)
\(720\) 0 0
\(721\) 36.1705 0.0501671
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −462.166 383.280i −0.637471 0.528661i
\(726\) 0 0
\(727\) 910.786i 1.25280i 0.779502 + 0.626400i \(0.215472\pi\)
−0.779502 + 0.626400i \(0.784528\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 122.975i 0.168228i
\(732\) 0 0
\(733\) 925.303i 1.26235i −0.775640 0.631175i \(-0.782573\pi\)
0.775640 0.631175i \(-0.217427\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −286.560 −0.388819
\(738\) 0 0
\(739\) −935.453 −1.26584 −0.632918 0.774219i \(-0.718143\pi\)
−0.632918 + 0.774219i \(0.718143\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1014.92 −1.36597 −0.682985 0.730433i \(-0.739318\pi\)
−0.682985 + 0.730433i \(0.739318\pi\)
\(744\) 0 0
\(745\) −497.279 1058.43i −0.667489 1.42071i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.19792i 0.00159936i
\(750\) 0 0
\(751\) 813.709 1.08350 0.541750 0.840540i \(-0.317762\pi\)
0.541750 + 0.840540i \(0.317762\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −786.097 + 369.329i −1.04119 + 0.489178i
\(756\) 0 0
\(757\) 137.031i 0.181018i 0.995896 + 0.0905092i \(0.0288495\pi\)
−0.995896 + 0.0905092i \(0.971151\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 703.254i 0.924118i 0.886849 + 0.462059i \(0.152889\pi\)
−0.886849 + 0.462059i \(0.847111\pi\)
\(762\) 0 0
\(763\) 38.1028i 0.0499382i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −283.823 −0.370043
\(768\) 0 0
\(769\) 515.478 0.670322 0.335161 0.942161i \(-0.391209\pi\)
0.335161 + 0.942161i \(0.391209\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −405.636 −0.524756 −0.262378 0.964965i \(-0.584507\pi\)
−0.262378 + 0.964965i \(0.584507\pi\)
\(774\) 0 0
\(775\) 16.7105 20.1499i 0.0215620 0.0259999i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 21.1858i 0.0271961i
\(780\) 0 0
\(781\) 322.497 0.412928
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 257.392 + 547.845i 0.327887 + 0.697891i
\(786\) 0 0
\(787\) 701.437i 0.891279i 0.895212 + 0.445640i \(0.147024\pi\)
−0.895212 + 0.445640i \(0.852976\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13.1077i 0.0165710i
\(792\) 0 0
\(793\) 158.081i 0.199345i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −867.533 −1.08850 −0.544249 0.838924i \(-0.683185\pi\)
−0.544249 + 0.838924i \(0.683185\pi\)
\(798\) 0 0
\(799\) 246.892 0.309001
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 399.360 0.497335
\(804\) 0 0
\(805\) 8.96289 + 19.0770i 0.0111340 + 0.0236982i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 348.682i 0.431003i 0.976503 + 0.215502i \(0.0691387\pi\)
−0.976503 + 0.215502i \(0.930861\pi\)
\(810\) 0 0
\(811\) −591.992 −0.729953 −0.364977 0.931017i \(-0.618923\pi\)
−0.364977 + 0.931017i \(0.618923\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 198.338 + 422.151i 0.243359 + 0.517977i
\(816\) 0 0
\(817\) 50.7486i 0.0621158i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 285.989i 0.348342i 0.984715 + 0.174171i \(0.0557246\pi\)
−0.984715 + 0.174171i \(0.944275\pi\)
\(822\) 0 0
\(823\) 510.682i 0.620513i 0.950653 + 0.310256i \(0.100415\pi\)
−0.950653 + 0.310256i \(0.899585\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −454.533 −0.549617 −0.274809 0.961499i \(-0.588614\pi\)
−0.274809 + 0.961499i \(0.588614\pi\)
\(828\) 0 0
\(829\) 741.467 0.894411 0.447205 0.894431i \(-0.352419\pi\)
0.447205 + 0.894431i \(0.352419\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 311.283 0.373689
\(834\) 0 0
\(835\) 14.2777 6.70802i 0.0170990 0.00803355i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 284.263i 0.338811i −0.985546 0.169406i \(-0.945815\pi\)
0.985546 0.169406i \(-0.0541848\pi\)
\(840\) 0 0
\(841\) 264.198 0.314148
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 627.829 294.970i 0.742993 0.349077i
\(846\) 0 0
\(847\) 36.8772i 0.0435386i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 445.249i 0.523207i
\(852\) 0 0
\(853\) 1145.18i 1.34253i −0.741218 0.671264i \(-0.765752\pi\)
0.741218 0.671264i \(-0.234248\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 174.584 0.203715 0.101858 0.994799i \(-0.467521\pi\)
0.101858 + 0.994799i \(0.467521\pi\)
\(858\) 0 0
\(859\) 642.095 0.747491 0.373746 0.927531i \(-0.378073\pi\)
0.373746 + 0.927531i \(0.378073\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1175.06 1.36160 0.680801 0.732468i \(-0.261632\pi\)
0.680801 + 0.732468i \(0.261632\pi\)
\(864\) 0 0
\(865\) 739.610 347.488i 0.855041 0.401720i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 287.977i 0.331389i
\(870\) 0 0
\(871\) 428.022 0.491414
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −41.5394 10.7459i −0.0474736 0.0122810i
\(876\) 0 0
\(877\) 790.089i 0.900899i 0.892802 + 0.450450i \(0.148736\pi\)
−0.892802 + 0.450450i \(0.851264\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 982.888i 1.11565i 0.829958 + 0.557825i \(0.188364\pi\)
−0.829958 + 0.557825i \(0.811636\pi\)
\(882\) 0 0
\(883\) 289.110i 0.327418i −0.986509 0.163709i \(-0.947654\pi\)
0.986509 0.163709i \(-0.0523457\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −174.200 −0.196392 −0.0981960 0.995167i \(-0.531307\pi\)
−0.0981960 + 0.995167i \(0.531307\pi\)
\(888\) 0 0
\(889\) 47.6318 0.0535791
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 101.886 0.114094
\(894\) 0 0
\(895\) −83.8966 178.569i −0.0937392 0.199519i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 25.1479i 0.0279732i
\(900\) 0 0
\(901\) 20.6510 0.0229201
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1259.02 + 591.521i −1.39118 + 0.653614i
\(906\) 0 0
\(907\) 814.675i 0.898208i 0.893479 + 0.449104i \(0.148257\pi\)
−0.893479 + 0.449104i \(0.851743\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 205.317i 0.225376i 0.993630 + 0.112688i \(0.0359460\pi\)
−0.993630 + 0.112688i \(0.964054\pi\)
\(912\) 0 0
\(913\) 229.025i 0.250849i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −45.1550 −0.0492421
\(918\) 0 0
\(919\) −299.910 −0.326344 −0.163172 0.986598i \(-0.552172\pi\)
−0.163172 + 0.986598i \(0.552172\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −481.699 −0.521884
\(924\) 0 0
\(925\) −697.674 578.588i −0.754242 0.625501i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 625.007i 0.672774i 0.941724 + 0.336387i \(0.109205\pi\)
−0.941724 + 0.336387i \(0.890795\pi\)
\(930\) 0 0
\(931\) 128.459 0.137979
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 49.8689 + 106.143i 0.0533357 + 0.113522i
\(936\) 0 0
\(937\) 112.805i 0.120389i 0.998187 + 0.0601946i \(0.0191721\pi\)
−0.998187 + 0.0601946i \(0.980828\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 669.751i 0.711744i −0.934535 0.355872i \(-0.884184\pi\)
0.934535 0.355872i \(-0.115816\pi\)
\(942\) 0 0
\(943\) 99.0074i 0.104992i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 739.023 0.780383 0.390191 0.920734i \(-0.372409\pi\)
0.390191 + 0.920734i \(0.372409\pi\)
\(948\) 0 0
\(949\) −596.506 −0.628563
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1043.04 −1.09448 −0.547241 0.836975i \(-0.684322\pi\)
−0.547241 + 0.836975i \(0.684322\pi\)
\(954\) 0 0
\(955\) −677.594 1442.22i −0.709522 1.51018i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 52.2470i 0.0544808i
\(960\) 0 0
\(961\) −959.904 −0.998859
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.0667 25.6833i −0.0125043 0.0266148i
\(966\) 0 0
\(967\) 1198.42i 1.23931i 0.784873 + 0.619657i \(0.212728\pi\)
−0.784873 + 0.619657i \(0.787272\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 528.245i 0.544021i −0.962294 0.272011i \(-0.912311\pi\)
0.962294 0.272011i \(-0.0876886\pi\)
\(972\) 0 0
\(973\) 22.0338i 0.0226452i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −252.143 −0.258079 −0.129040 0.991639i \(-0.541189\pi\)
−0.129040 + 0.991639i \(0.541189\pi\)
\(978\) 0 0
\(979\) 129.889 0.132676
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 532.362 0.541569 0.270784 0.962640i \(-0.412717\pi\)
0.270784 + 0.962640i \(0.412717\pi\)
\(984\) 0 0
\(985\) 205.146 96.3829i 0.208270 0.0978506i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 237.163i 0.239801i
\(990\) 0 0
\(991\) −1560.13 −1.57429 −0.787147 0.616765i \(-0.788443\pi\)
−0.787147 + 0.616765i \(0.788443\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 803.519 377.514i 0.807557 0.379411i
\(996\) 0 0
\(997\) 1466.05i 1.47046i 0.677819 + 0.735229i \(0.262925\pi\)
−0.677819 + 0.735229i \(0.737075\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.c.q.1889.21 24
3.2 odd 2 inner 2160.3.c.q.1889.4 24
4.3 odd 2 1080.3.c.c.809.21 yes 24
5.4 even 2 inner 2160.3.c.q.1889.3 24
12.11 even 2 1080.3.c.c.809.4 yes 24
15.14 odd 2 inner 2160.3.c.q.1889.22 24
20.19 odd 2 1080.3.c.c.809.3 24
60.59 even 2 1080.3.c.c.809.22 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.3.c.c.809.3 24 20.19 odd 2
1080.3.c.c.809.4 yes 24 12.11 even 2
1080.3.c.c.809.21 yes 24 4.3 odd 2
1080.3.c.c.809.22 yes 24 60.59 even 2
2160.3.c.q.1889.3 24 5.4 even 2 inner
2160.3.c.q.1889.4 24 3.2 odd 2 inner
2160.3.c.q.1889.21 24 1.1 even 1 trivial
2160.3.c.q.1889.22 24 15.14 odd 2 inner