Properties

Label 2160.2.h.g.431.4
Level $2160$
Weight $2$
Character 2160.431
Analytic conductor $17.248$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,2,Mod(431,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1731891456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 65x^{4} - 144x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.4
Root \(-2.21837 + 1.28078i\) of defining polynomial
Character \(\chi\) \(=\) 2160.431
Dual form 2160.2.h.g.431.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} +4.43674i q^{7} -6.16879 q^{11} +1.00000 q^{13} +4.68466i q^{17} -4.43674i q^{19} -6.16879 q^{23} -1.00000 q^{25} -10.6847i q^{29} -6.16879i q^{31} +4.43674 q^{35} +9.68466 q^{37} -6.00000i q^{41} -6.16879i q^{43} -4.22351 q^{47} -12.6847 q^{49} -6.00000i q^{53} +6.16879i q^{55} +12.3376 q^{59} -5.68466 q^{61} -1.00000i q^{65} +9.84612i q^{67} +1.94528 q^{71} -3.68466 q^{73} -27.3693i q^{77} -0.213225i q^{79} -10.3923 q^{83} +4.68466 q^{85} -12.0000i q^{89} +4.43674i q^{91} -4.43674 q^{95} +5.68466 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{13} - 8 q^{25} + 28 q^{37} - 52 q^{49} + 4 q^{61} + 20 q^{73} - 12 q^{85} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) 4.43674i 1.67693i 0.544955 + 0.838465i \(0.316547\pi\)
−0.544955 + 0.838465i \(0.683453\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.16879 −1.85996 −0.929980 0.367610i \(-0.880176\pi\)
−0.929980 + 0.367610i \(0.880176\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.68466i 1.13620i 0.822961 + 0.568098i \(0.192321\pi\)
−0.822961 + 0.568098i \(0.807679\pi\)
\(18\) 0 0
\(19\) − 4.43674i − 1.01786i −0.860809 0.508929i \(-0.830042\pi\)
0.860809 0.508929i \(-0.169958\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.16879 −1.28628 −0.643141 0.765748i \(-0.722369\pi\)
−0.643141 + 0.765748i \(0.722369\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 10.6847i − 1.98409i −0.125879 0.992046i \(-0.540175\pi\)
0.125879 0.992046i \(-0.459825\pi\)
\(30\) 0 0
\(31\) − 6.16879i − 1.10795i −0.832534 0.553974i \(-0.813111\pi\)
0.832534 0.553974i \(-0.186889\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.43674 0.749946
\(36\) 0 0
\(37\) 9.68466 1.59215 0.796074 0.605199i \(-0.206907\pi\)
0.796074 + 0.605199i \(0.206907\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 6.00000i − 0.937043i −0.883452 0.468521i \(-0.844787\pi\)
0.883452 0.468521i \(-0.155213\pi\)
\(42\) 0 0
\(43\) − 6.16879i − 0.940732i −0.882472 0.470366i \(-0.844122\pi\)
0.882472 0.470366i \(-0.155878\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.22351 −0.616063 −0.308031 0.951376i \(-0.599670\pi\)
−0.308031 + 0.951376i \(0.599670\pi\)
\(48\) 0 0
\(49\) −12.6847 −1.81209
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 6.16879i 0.831800i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.3376 1.60622 0.803108 0.595833i \(-0.203178\pi\)
0.803108 + 0.595833i \(0.203178\pi\)
\(60\) 0 0
\(61\) −5.68466 −0.727846 −0.363923 0.931429i \(-0.618563\pi\)
−0.363923 + 0.931429i \(0.618563\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 1.00000i − 0.124035i
\(66\) 0 0
\(67\) 9.84612i 1.20289i 0.798912 + 0.601447i \(0.205409\pi\)
−0.798912 + 0.601447i \(0.794591\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.94528 0.230862 0.115431 0.993316i \(-0.463175\pi\)
0.115431 + 0.993316i \(0.463175\pi\)
\(72\) 0 0
\(73\) −3.68466 −0.431257 −0.215628 0.976476i \(-0.569180\pi\)
−0.215628 + 0.976476i \(0.569180\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 27.3693i − 3.11902i
\(78\) 0 0
\(79\) − 0.213225i − 0.0239897i −0.999928 0.0119949i \(-0.996182\pi\)
0.999928 0.0119949i \(-0.00381817\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.3923 −1.14070 −0.570352 0.821401i \(-0.693193\pi\)
−0.570352 + 0.821401i \(0.693193\pi\)
\(84\) 0 0
\(85\) 4.68466 0.508123
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 12.0000i − 1.27200i −0.771690 0.635999i \(-0.780588\pi\)
0.771690 0.635999i \(-0.219412\pi\)
\(90\) 0 0
\(91\) 4.43674i 0.465097i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.43674 −0.455200
\(96\) 0 0
\(97\) 5.68466 0.577190 0.288595 0.957451i \(-0.406812\pi\)
0.288595 + 0.957451i \(0.406812\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.68466i 0.466141i 0.972460 + 0.233070i \(0.0748773\pi\)
−0.972460 + 0.233070i \(0.925123\pi\)
\(102\) 0 0
\(103\) − 7.90084i − 0.778493i −0.921134 0.389247i \(-0.872735\pi\)
0.921134 0.389247i \(-0.127265\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.94528 −0.188057 −0.0940285 0.995570i \(-0.529974\pi\)
−0.0940285 + 0.995570i \(0.529974\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1.31534i − 0.123737i −0.998084 0.0618685i \(-0.980294\pi\)
0.998084 0.0618685i \(-0.0197059\pi\)
\(114\) 0 0
\(115\) 6.16879i 0.575243i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −20.7846 −1.90532
\(120\) 0 0
\(121\) 27.0540 2.45945
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 10.3923i 0.922168i 0.887357 + 0.461084i \(0.152539\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.22351 0.369010 0.184505 0.982832i \(-0.440932\pi\)
0.184505 + 0.982832i \(0.440932\pi\)
\(132\) 0 0
\(133\) 19.6847 1.70688
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) 2.49146i 0.211323i 0.994402 + 0.105662i \(0.0336960\pi\)
−0.994402 + 0.105662i \(0.966304\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.16879 −0.515860
\(144\) 0 0
\(145\) −10.6847 −0.887313
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.0540i 1.15135i 0.817680 + 0.575673i \(0.195260\pi\)
−0.817680 + 0.575673i \(0.804740\pi\)
\(150\) 0 0
\(151\) 3.67733i 0.299257i 0.988742 + 0.149628i \(0.0478077\pi\)
−0.988742 + 0.149628i \(0.952192\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.16879 −0.495489
\(156\) 0 0
\(157\) −24.0540 −1.91972 −0.959858 0.280486i \(-0.909504\pi\)
−0.959858 + 0.280486i \(0.909504\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 27.3693i − 2.15700i
\(162\) 0 0
\(163\) − 12.1244i − 0.949653i −0.880079 0.474826i \(-0.842511\pi\)
0.880079 0.474826i \(-0.157489\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.3376 −0.954711 −0.477355 0.878710i \(-0.658405\pi\)
−0.477355 + 0.878710i \(0.658405\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) − 4.43674i − 0.335386i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.2829 −1.06755 −0.533775 0.845626i \(-0.679227\pi\)
−0.533775 + 0.845626i \(0.679227\pi\)
\(180\) 0 0
\(181\) −19.0540 −1.41627 −0.708135 0.706077i \(-0.750463\pi\)
−0.708135 + 0.706077i \(0.750463\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 9.68466i − 0.712030i
\(186\) 0 0
\(187\) − 28.8987i − 2.11328i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.7846 −1.50392 −0.751961 0.659208i \(-0.770892\pi\)
−0.751961 + 0.659208i \(0.770892\pi\)
\(192\) 0 0
\(193\) 12.3153 0.886478 0.443239 0.896404i \(-0.353829\pi\)
0.443239 + 0.896404i \(0.353829\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) − 1.73205i − 0.122782i −0.998114 0.0613909i \(-0.980446\pi\)
0.998114 0.0613909i \(-0.0195536\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 47.4050 3.32718
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 27.3693i 1.89318i
\(210\) 0 0
\(211\) − 9.84612i − 0.677835i −0.940816 0.338917i \(-0.889939\pi\)
0.940816 0.338917i \(-0.110061\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.16879 −0.420708
\(216\) 0 0
\(217\) 27.3693 1.85795
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.68466i 0.315124i
\(222\) 0 0
\(223\) 1.94528i 0.130265i 0.997877 + 0.0651327i \(0.0207471\pi\)
−0.997877 + 0.0651327i \(0.979253\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.94528 0.129113 0.0645563 0.997914i \(-0.479437\pi\)
0.0645563 + 0.997914i \(0.479437\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 21.3693i − 1.39995i −0.714167 0.699975i \(-0.753194\pi\)
0.714167 0.699975i \(-0.246806\pi\)
\(234\) 0 0
\(235\) 4.22351i 0.275512i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.94528 −0.125829 −0.0629147 0.998019i \(-0.520040\pi\)
−0.0629147 + 0.998019i \(0.520040\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.6847i 0.810393i
\(246\) 0 0
\(247\) − 4.43674i − 0.282303i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.6158 0.922542 0.461271 0.887259i \(-0.347394\pi\)
0.461271 + 0.887259i \(0.347394\pi\)
\(252\) 0 0
\(253\) 38.0540 2.39243
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.68466i 0.292221i 0.989268 + 0.146110i \(0.0466755\pi\)
−0.989268 + 0.146110i \(0.953324\pi\)
\(258\) 0 0
\(259\) 42.9683i 2.66992i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.44703 −0.520866 −0.260433 0.965492i \(-0.583865\pi\)
−0.260433 + 0.965492i \(0.583865\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 14.0540i − 0.856886i −0.903569 0.428443i \(-0.859062\pi\)
0.903569 0.428443i \(-0.140938\pi\)
\(270\) 0 0
\(271\) − 12.8838i − 0.782633i −0.920256 0.391317i \(-0.872020\pi\)
0.920256 0.391317i \(-0.127980\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.16879 0.371992
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.63068i 0.156933i 0.996917 + 0.0784667i \(0.0250024\pi\)
−0.996917 + 0.0784667i \(0.974998\pi\)
\(282\) 0 0
\(283\) 14.2829i 0.849028i 0.905421 + 0.424514i \(0.139555\pi\)
−0.905421 + 0.424514i \(0.860445\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.6204 1.57135
\(288\) 0 0
\(289\) −4.94602 −0.290943
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 15.3693i − 0.897885i −0.893561 0.448943i \(-0.851801\pi\)
0.893561 0.448943i \(-0.148199\pi\)
\(294\) 0 0
\(295\) − 12.3376i − 0.718322i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.16879 −0.356750
\(300\) 0 0
\(301\) 27.3693 1.57754
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.68466i 0.325503i
\(306\) 0 0
\(307\) − 10.0593i − 0.574117i −0.957913 0.287058i \(-0.907323\pi\)
0.957913 0.287058i \(-0.0926774\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.3376 0.699600 0.349800 0.936824i \(-0.386250\pi\)
0.349800 + 0.936824i \(0.386250\pi\)
\(312\) 0 0
\(313\) −9.05398 −0.511761 −0.255880 0.966708i \(-0.582365\pi\)
−0.255880 + 0.966708i \(0.582365\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.3693i 1.20022i 0.799917 + 0.600110i \(0.204877\pi\)
−0.799917 + 0.600110i \(0.795123\pi\)
\(318\) 0 0
\(319\) 65.9114i 3.69033i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.7846 1.15649
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 18.7386i − 1.03309i
\(330\) 0 0
\(331\) 2.49146i 0.136943i 0.997653 + 0.0684716i \(0.0218123\pi\)
−0.997653 + 0.0684716i \(0.978188\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.84612 0.537951
\(336\) 0 0
\(337\) −25.0540 −1.36478 −0.682388 0.730990i \(-0.739059\pi\)
−0.682388 + 0.730990i \(0.739059\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 38.0540i 2.06074i
\(342\) 0 0
\(343\) − 25.2213i − 1.36182i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 31.1769 1.67366 0.836832 0.547459i \(-0.184405\pi\)
0.836832 + 0.547459i \(0.184405\pi\)
\(348\) 0 0
\(349\) −8.31534 −0.445110 −0.222555 0.974920i \(-0.571440\pi\)
−0.222555 + 0.974920i \(0.571440\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.3153i 1.02805i 0.857775 + 0.514026i \(0.171847\pi\)
−0.857775 + 0.514026i \(0.828153\pi\)
\(354\) 0 0
\(355\) − 1.94528i − 0.103245i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.2829 0.753820 0.376910 0.926250i \(-0.376987\pi\)
0.376910 + 0.926250i \(0.376987\pi\)
\(360\) 0 0
\(361\) −0.684658 −0.0360347
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.68466i 0.192864i
\(366\) 0 0
\(367\) − 20.2384i − 1.05644i −0.849108 0.528219i \(-0.822860\pi\)
0.849108 0.528219i \(-0.177140\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 26.6204 1.38206
\(372\) 0 0
\(373\) 26.3693 1.36535 0.682676 0.730721i \(-0.260816\pi\)
0.682676 + 0.730721i \(0.260816\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 10.6847i − 0.550288i
\(378\) 0 0
\(379\) − 0.546188i − 0.0280558i −0.999902 0.0140279i \(-0.995535\pi\)
0.999902 0.0140279i \(-0.00446536\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −20.4516 −1.04503 −0.522515 0.852630i \(-0.675006\pi\)
−0.522515 + 0.852630i \(0.675006\pi\)
\(384\) 0 0
\(385\) −27.3693 −1.39487
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.31534i 0.370903i 0.982653 + 0.185451i \(0.0593747\pi\)
−0.982653 + 0.185451i \(0.940625\pi\)
\(390\) 0 0
\(391\) − 28.8987i − 1.46147i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.213225 −0.0107285
\(396\) 0 0
\(397\) −12.0540 −0.604972 −0.302486 0.953154i \(-0.597816\pi\)
−0.302486 + 0.953154i \(0.597816\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000i 0.299626i 0.988714 + 0.149813i \(0.0478671\pi\)
−0.988714 + 0.149813i \(0.952133\pi\)
\(402\) 0 0
\(403\) − 6.16879i − 0.307289i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −59.7426 −2.96133
\(408\) 0 0
\(409\) −17.0000 −0.840596 −0.420298 0.907386i \(-0.638074\pi\)
−0.420298 + 0.907386i \(0.638074\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 54.7386i 2.69351i
\(414\) 0 0
\(415\) 10.3923i 0.510138i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.6705 0.618997 0.309498 0.950900i \(-0.399839\pi\)
0.309498 + 0.950900i \(0.399839\pi\)
\(420\) 0 0
\(421\) 2.31534 0.112843 0.0564214 0.998407i \(-0.482031\pi\)
0.0564214 + 0.998407i \(0.482031\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 4.68466i − 0.227239i
\(426\) 0 0
\(427\) − 25.2213i − 1.22055i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.1734 −0.875382 −0.437691 0.899125i \(-0.644204\pi\)
−0.437691 + 0.899125i \(0.644204\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 27.3693i 1.30925i
\(438\) 0 0
\(439\) 6.50175i 0.310312i 0.987890 + 0.155156i \(0.0495880\pi\)
−0.987890 + 0.155156i \(0.950412\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −40.9033 −1.94337 −0.971687 0.236271i \(-0.924075\pi\)
−0.971687 + 0.236271i \(0.924075\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.7386i 1.45065i 0.688409 + 0.725323i \(0.258310\pi\)
−0.688409 + 0.725323i \(0.741690\pi\)
\(450\) 0 0
\(451\) 37.0127i 1.74286i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.43674 0.207998
\(456\) 0 0
\(457\) −14.0000 −0.654892 −0.327446 0.944870i \(-0.606188\pi\)
−0.327446 + 0.944870i \(0.606188\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.63068i 0.122523i 0.998122 + 0.0612616i \(0.0195124\pi\)
−0.998122 + 0.0612616i \(0.980488\pi\)
\(462\) 0 0
\(463\) − 7.90084i − 0.367183i −0.983003 0.183592i \(-0.941228\pi\)
0.983003 0.183592i \(-0.0587724\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.3376 0.570915 0.285458 0.958391i \(-0.407854\pi\)
0.285458 + 0.958391i \(0.407854\pi\)
\(468\) 0 0
\(469\) −43.6847 −2.01717
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 38.0540i 1.74972i
\(474\) 0 0
\(475\) 4.43674i 0.203572i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.3923 0.474837 0.237418 0.971408i \(-0.423699\pi\)
0.237418 + 0.971408i \(0.423699\pi\)
\(480\) 0 0
\(481\) 9.68466 0.441582
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 5.68466i − 0.258127i
\(486\) 0 0
\(487\) 21.3308i 0.966591i 0.875457 + 0.483295i \(0.160560\pi\)
−0.875457 + 0.483295i \(0.839440\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.3923 0.468998 0.234499 0.972116i \(-0.424655\pi\)
0.234499 + 0.972116i \(0.424655\pi\)
\(492\) 0 0
\(493\) 50.0540 2.25432
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.63068i 0.387139i
\(498\) 0 0
\(499\) − 18.1734i − 0.813554i −0.913528 0.406777i \(-0.866653\pi\)
0.913528 0.406777i \(-0.133347\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.27824 −0.101582 −0.0507908 0.998709i \(-0.516174\pi\)
−0.0507908 + 0.998709i \(0.516174\pi\)
\(504\) 0 0
\(505\) 4.68466 0.208465
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 22.6847i − 1.00548i −0.864438 0.502740i \(-0.832325\pi\)
0.864438 0.502740i \(-0.167675\pi\)
\(510\) 0 0
\(511\) − 16.3479i − 0.723187i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.90084 −0.348153
\(516\) 0 0
\(517\) 26.0540 1.14585
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.7386i 1.08382i 0.840437 + 0.541910i \(0.182298\pi\)
−0.840437 + 0.541910i \(0.817702\pi\)
\(522\) 0 0
\(523\) − 6.71498i − 0.293625i −0.989164 0.146813i \(-0.953099\pi\)
0.989164 0.146813i \(-0.0469015\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.8987 1.25885
\(528\) 0 0
\(529\) 15.0540 0.654521
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 6.00000i − 0.259889i
\(534\) 0 0
\(535\) 1.94528i 0.0841016i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 78.2490 3.37042
\(540\) 0 0
\(541\) 11.6847 0.502363 0.251181 0.967940i \(-0.419181\pi\)
0.251181 + 0.967940i \(0.419181\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.0000i 0.599694i
\(546\) 0 0
\(547\) − 20.5714i − 0.879569i −0.898103 0.439784i \(-0.855055\pi\)
0.898103 0.439784i \(-0.144945\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −47.4050 −2.01952
\(552\) 0 0
\(553\) 0.946025 0.0402291
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.6307i 0.619922i 0.950749 + 0.309961i \(0.100316\pi\)
−0.950749 + 0.309961i \(0.899684\pi\)
\(558\) 0 0
\(559\) − 6.16879i − 0.260912i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.5657 −1.20390 −0.601951 0.798533i \(-0.705610\pi\)
−0.601951 + 0.798533i \(0.705610\pi\)
\(564\) 0 0
\(565\) −1.31534 −0.0553368
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.0000i 0.503066i 0.967849 + 0.251533i \(0.0809347\pi\)
−0.967849 + 0.251533i \(0.919065\pi\)
\(570\) 0 0
\(571\) 32.5760i 1.36326i 0.731695 + 0.681632i \(0.238729\pi\)
−0.731695 + 0.681632i \(0.761271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.16879 0.257256
\(576\) 0 0
\(577\) 24.3153 1.01226 0.506130 0.862457i \(-0.331075\pi\)
0.506130 + 0.862457i \(0.331075\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 46.1080i − 1.91288i
\(582\) 0 0
\(583\) 37.0127i 1.53291i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.1769 1.28681 0.643404 0.765526i \(-0.277521\pi\)
0.643404 + 0.765526i \(0.277521\pi\)
\(588\) 0 0
\(589\) −27.3693 −1.12773
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 1.31534i − 0.0540146i −0.999635 0.0270073i \(-0.991402\pi\)
0.999635 0.0270073i \(-0.00859774\pi\)
\(594\) 0 0
\(595\) 20.7846i 0.852086i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.83583 0.238445 0.119223 0.992868i \(-0.461960\pi\)
0.119223 + 0.992868i \(0.461960\pi\)
\(600\) 0 0
\(601\) 40.0540 1.63384 0.816918 0.576754i \(-0.195681\pi\)
0.816918 + 0.576754i \(0.195681\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 27.0540i − 1.09990i
\(606\) 0 0
\(607\) − 7.90084i − 0.320685i −0.987061 0.160343i \(-0.948740\pi\)
0.987061 0.160343i \(-0.0512599\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.22351 −0.170865
\(612\) 0 0
\(613\) −4.36932 −0.176475 −0.0882375 0.996099i \(-0.528123\pi\)
−0.0882375 + 0.996099i \(0.528123\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.6847i 0.913250i 0.889659 + 0.456625i \(0.150942\pi\)
−0.889659 + 0.456625i \(0.849058\pi\)
\(618\) 0 0
\(619\) 32.5760i 1.30934i 0.755915 + 0.654670i \(0.227192\pi\)
−0.755915 + 0.654670i \(0.772808\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 53.2409 2.13305
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 45.3693i 1.80899i
\(630\) 0 0
\(631\) − 37.5589i − 1.49520i −0.664151 0.747599i \(-0.731207\pi\)
0.664151 0.747599i \(-0.268793\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.3923 0.412406
\(636\) 0 0
\(637\) −12.6847 −0.502584
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.7386i 1.68807i 0.536285 + 0.844037i \(0.319827\pi\)
−0.536285 + 0.844037i \(0.680173\pi\)
\(642\) 0 0
\(643\) − 39.2910i − 1.54949i −0.632277 0.774743i \(-0.717879\pi\)
0.632277 0.774743i \(-0.282121\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −38.9580 −1.53160 −0.765799 0.643080i \(-0.777656\pi\)
−0.765799 + 0.643080i \(0.777656\pi\)
\(648\) 0 0
\(649\) −76.1080 −2.98750
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 21.3693i − 0.836246i −0.908390 0.418123i \(-0.862688\pi\)
0.908390 0.418123i \(-0.137312\pi\)
\(654\) 0 0
\(655\) − 4.22351i − 0.165026i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.2281 0.632158 0.316079 0.948733i \(-0.397633\pi\)
0.316079 + 0.948733i \(0.397633\pi\)
\(660\) 0 0
\(661\) −24.4233 −0.949956 −0.474978 0.879998i \(-0.657544\pi\)
−0.474978 + 0.879998i \(0.657544\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 19.6847i − 0.763338i
\(666\) 0 0
\(667\) 65.9114i 2.55210i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 35.0675 1.35376
\(672\) 0 0
\(673\) 33.6847 1.29845 0.649224 0.760597i \(-0.275094\pi\)
0.649224 + 0.760597i \(0.275094\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 42.7386i − 1.64258i −0.570512 0.821290i \(-0.693255\pi\)
0.570512 0.821290i \(-0.306745\pi\)
\(678\) 0 0
\(679\) 25.2213i 0.967907i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.0675 1.34182 0.670910 0.741539i \(-0.265904\pi\)
0.670910 + 0.741539i \(0.265904\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 6.00000i − 0.228582i
\(690\) 0 0
\(691\) − 5.83583i − 0.222005i −0.993820 0.111003i \(-0.964594\pi\)
0.993820 0.111003i \(-0.0354062\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.49146 0.0945066
\(696\) 0 0
\(697\) 28.1080 1.06466
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 20.0540i − 0.757428i −0.925514 0.378714i \(-0.876366\pi\)
0.925514 0.378714i \(-0.123634\pi\)
\(702\) 0 0
\(703\) − 42.9683i − 1.62058i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20.7846 −0.781686
\(708\) 0 0
\(709\) −40.4233 −1.51813 −0.759064 0.651016i \(-0.774343\pi\)
−0.759064 + 0.651016i \(0.774343\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 38.0540i 1.42513i
\(714\) 0 0
\(715\) 6.16879i 0.230700i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −38.9580 −1.45289 −0.726444 0.687225i \(-0.758829\pi\)
−0.726444 + 0.687225i \(0.758829\pi\)
\(720\) 0 0
\(721\) 35.0540 1.30548
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.6847i 0.396818i
\(726\) 0 0
\(727\) 18.1734i 0.674014i 0.941502 + 0.337007i \(0.109415\pi\)
−0.941502 + 0.337007i \(0.890585\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 28.8987 1.06886
\(732\) 0 0
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 60.7386i − 2.23734i
\(738\) 0 0
\(739\) − 47.4050i − 1.74382i −0.489664 0.871911i \(-0.662880\pi\)
0.489664 0.871911i \(-0.337120\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.332962 −0.0122152 −0.00610760 0.999981i \(-0.501944\pi\)
−0.00610760 + 0.999981i \(0.501944\pi\)
\(744\) 0 0
\(745\) 14.0540 0.514898
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 8.63068i − 0.315358i
\(750\) 0 0
\(751\) − 4.76970i − 0.174049i −0.996206 0.0870244i \(-0.972264\pi\)
0.996206 0.0870244i \(-0.0277358\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.67733 0.133832
\(756\) 0 0
\(757\) 43.7386 1.58971 0.794854 0.606801i \(-0.207547\pi\)
0.794854 + 0.606801i \(0.207547\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 48.7386i 1.76677i 0.468644 + 0.883387i \(0.344743\pi\)
−0.468644 + 0.883387i \(0.655257\pi\)
\(762\) 0 0
\(763\) − 62.1144i − 2.24869i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.3376 0.445484
\(768\) 0 0
\(769\) 39.1080 1.41027 0.705134 0.709074i \(-0.250887\pi\)
0.705134 + 0.709074i \(0.250887\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 34.1080i − 1.22678i −0.789781 0.613389i \(-0.789806\pi\)
0.789781 0.613389i \(-0.210194\pi\)
\(774\) 0 0
\(775\) 6.16879i 0.221589i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −26.6204 −0.953776
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 24.0540i 0.858523i
\(786\) 0 0
\(787\) − 27.4996i − 0.980254i −0.871651 0.490127i \(-0.836950\pi\)
0.871651 0.490127i \(-0.163050\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.83583 0.207498
\(792\) 0 0
\(793\) −5.68466 −0.201868
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.7386i 1.08882i 0.838820 + 0.544409i \(0.183246\pi\)
−0.838820 + 0.544409i \(0.816754\pi\)
\(798\) 0 0
\(799\) − 19.7857i − 0.699969i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 22.7299 0.802120
\(804\) 0 0
\(805\) −27.3693 −0.964642
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 45.3693i − 1.59510i −0.603253 0.797550i \(-0.706129\pi\)
0.603253 0.797550i \(-0.293871\pi\)
\(810\) 0 0
\(811\) − 55.1862i − 1.93785i −0.247359 0.968924i \(-0.579563\pi\)
0.247359 0.968924i \(-0.420437\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12.1244 −0.424698
\(816\) 0 0
\(817\) −27.3693 −0.957531
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 26.6307i − 0.929417i −0.885464 0.464709i \(-0.846159\pi\)
0.885464 0.464709i \(-0.153841\pi\)
\(822\) 0 0
\(823\) − 6.38202i − 0.222463i −0.993795 0.111232i \(-0.964520\pi\)
0.993795 0.111232i \(-0.0354795\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.6752 −0.858039 −0.429020 0.903295i \(-0.641141\pi\)
−0.429020 + 0.903295i \(0.641141\pi\)
\(828\) 0 0
\(829\) 18.4233 0.639867 0.319934 0.947440i \(-0.396339\pi\)
0.319934 + 0.947440i \(0.396339\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 59.4233i − 2.05890i
\(834\) 0 0
\(835\) 12.3376i 0.426960i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −49.3503 −1.70376 −0.851881 0.523735i \(-0.824538\pi\)
−0.851881 + 0.523735i \(0.824538\pi\)
\(840\) 0 0
\(841\) −85.1619 −2.93662
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.0000i 0.412813i
\(846\) 0 0
\(847\) 120.031i 4.12433i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −59.7426 −2.04795
\(852\) 0 0
\(853\) −35.1080 −1.20207 −0.601037 0.799221i \(-0.705245\pi\)
−0.601037 + 0.799221i \(0.705245\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.7386i 0.435143i 0.976044 + 0.217572i \(0.0698136\pi\)
−0.976044 + 0.217572i \(0.930186\pi\)
\(858\) 0 0
\(859\) − 34.5213i − 1.17785i −0.808187 0.588925i \(-0.799551\pi\)
0.808187 0.588925i \(-0.200449\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.3422 −0.828618 −0.414309 0.910136i \(-0.635977\pi\)
−0.414309 + 0.910136i \(0.635977\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.31534i 0.0446199i
\(870\) 0 0
\(871\) 9.84612i 0.333623i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.43674 −0.149989
\(876\) 0 0
\(877\) 14.3693 0.485217 0.242609 0.970124i \(-0.421997\pi\)
0.242609 + 0.970124i \(0.421997\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 24.7386i − 0.833466i −0.909029 0.416733i \(-0.863175\pi\)
0.909029 0.416733i \(-0.136825\pi\)
\(882\) 0 0
\(883\) − 0.119737i − 0.00402948i −0.999998 0.00201474i \(-0.999359\pi\)
0.999998 0.00201474i \(-0.000641312\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.6798 1.23159 0.615793 0.787908i \(-0.288836\pi\)
0.615793 + 0.787908i \(0.288836\pi\)
\(888\) 0 0
\(889\) −46.1080 −1.54641
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.7386i 0.627064i
\(894\) 0 0
\(895\) 14.2829i 0.477423i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −65.9114 −2.19827
\(900\) 0 0
\(901\) 28.1080 0.936412
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.0540i 0.633376i
\(906\) 0 0
\(907\) − 15.1620i − 0.503446i −0.967799 0.251723i \(-0.919003\pi\)
0.967799 0.251723i \(-0.0809972\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.2316 0.968487 0.484244 0.874933i \(-0.339095\pi\)
0.484244 + 0.874933i \(0.339095\pi\)
\(912\) 0 0
\(913\) 64.1080 2.12166
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.7386i 0.618804i
\(918\) 0 0
\(919\) 1.61231i 0.0531853i 0.999646 + 0.0265927i \(0.00846570\pi\)
−0.999646 + 0.0265927i \(0.991534\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.94528 0.0640295
\(924\) 0 0
\(925\) −9.68466 −0.318430
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 24.7386i − 0.811648i −0.913951 0.405824i \(-0.866985\pi\)
0.913951 0.405824i \(-0.133015\pi\)
\(930\) 0 0
\(931\) 56.2785i 1.84445i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −28.8987 −0.945088
\(936\) 0 0
\(937\) 24.3153 0.794348 0.397174 0.917743i \(-0.369991\pi\)
0.397174 + 0.917743i \(0.369991\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.42329i 0.176794i 0.996085 + 0.0883971i \(0.0281745\pi\)
−0.996085 + 0.0883971i \(0.971826\pi\)
\(942\) 0 0
\(943\) 37.0127i 1.20530i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.55648 −0.148066 −0.0740328 0.997256i \(-0.523587\pi\)
−0.0740328 + 0.997256i \(0.523587\pi\)
\(948\) 0 0
\(949\) −3.68466 −0.119609
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 31.3153i − 1.01440i −0.861827 0.507202i \(-0.830680\pi\)
0.861827 0.507202i \(-0.169320\pi\)
\(954\) 0 0
\(955\) 20.7846i 0.672574i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −26.6204 −0.859619
\(960\) 0 0
\(961\) −7.05398 −0.227548
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 12.3153i − 0.396445i
\(966\) 0 0
\(967\) 18.2931i 0.588268i 0.955764 + 0.294134i \(0.0950312\pi\)
−0.955764 + 0.294134i \(0.904969\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.4516 0.656325 0.328162 0.944621i \(-0.393571\pi\)
0.328162 + 0.944621i \(0.393571\pi\)
\(972\) 0 0
\(973\) −11.0540 −0.354374
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 10.6847i − 0.341833i −0.985286 0.170916i \(-0.945327\pi\)
0.985286 0.170916i \(-0.0546728\pi\)
\(978\) 0 0
\(979\) 74.0255i 2.36586i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.0593 −0.320843 −0.160422 0.987049i \(-0.551285\pi\)
−0.160422 + 0.987049i \(0.551285\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 38.0540i 1.21005i
\(990\) 0 0
\(991\) − 51.0824i − 1.62269i −0.584571 0.811343i \(-0.698737\pi\)
0.584571 0.811343i \(-0.301263\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.73205 −0.0549097
\(996\) 0 0
\(997\) −7.94602 −0.251653 −0.125827 0.992052i \(-0.540158\pi\)
−0.125827 + 0.992052i \(0.540158\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.h.g.431.4 yes 8
3.2 odd 2 inner 2160.2.h.g.431.8 yes 8
4.3 odd 2 inner 2160.2.h.g.431.1 8
12.11 even 2 inner 2160.2.h.g.431.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.2.h.g.431.1 8 4.3 odd 2 inner
2160.2.h.g.431.4 yes 8 1.1 even 1 trivial
2160.2.h.g.431.5 yes 8 12.11 even 2 inner
2160.2.h.g.431.8 yes 8 3.2 odd 2 inner