Properties

Label 215.1.d.a.214.3
Level $215$
Weight $1$
Character 215.214
Self dual yes
Analytic conductor $0.107$
Analytic rank $0$
Dimension $3$
Projective image $D_{7}$
CM discriminant -215
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [215,1,Mod(214,215)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("215.214"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(215, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 215 = 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 215.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.107298977716\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.9938375.1
Artin image: $D_7$
Artin field: Galois closure of 7.1.9938375.1

Embedding invariants

Embedding label 214.3
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 215.214

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.24698 q^{2} -0.445042 q^{3} +0.554958 q^{4} +1.00000 q^{5} -0.554958 q^{6} -1.80194 q^{7} -0.554958 q^{8} -0.801938 q^{9} +1.24698 q^{10} +1.24698 q^{11} -0.246980 q^{12} -2.24698 q^{14} -0.445042 q^{15} -1.24698 q^{16} -1.00000 q^{18} +0.554958 q^{20} +0.801938 q^{21} +1.55496 q^{22} +0.246980 q^{24} +1.00000 q^{25} +0.801938 q^{27} -1.00000 q^{28} -0.554958 q^{30} -1.80194 q^{31} -1.00000 q^{32} -0.554958 q^{33} -1.80194 q^{35} -0.445042 q^{36} +1.24698 q^{37} -0.554958 q^{40} -0.445042 q^{41} +1.00000 q^{42} +1.00000 q^{43} +0.692021 q^{44} -0.801938 q^{45} +0.554958 q^{48} +2.24698 q^{49} +1.24698 q^{50} +1.00000 q^{54} +1.24698 q^{55} +1.00000 q^{56} -0.445042 q^{59} -0.246980 q^{60} -2.24698 q^{62} +1.44504 q^{63} -0.692021 q^{66} -2.24698 q^{70} +0.445042 q^{72} -0.445042 q^{73} +1.55496 q^{74} -0.445042 q^{75} -2.24698 q^{77} +1.24698 q^{79} -1.24698 q^{80} +0.445042 q^{81} -0.554958 q^{82} +0.445042 q^{84} +1.24698 q^{86} -0.692021 q^{88} -1.00000 q^{90} +0.801938 q^{93} +0.445042 q^{96} +2.80194 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - q^{3} + 2 q^{4} + 3 q^{5} - 2 q^{6} - q^{7} - 2 q^{8} + 2 q^{9} - q^{10} - q^{11} + 4 q^{12} - 2 q^{14} - q^{15} + q^{16} - 3 q^{18} + 2 q^{20} - 2 q^{21} + 5 q^{22} - 4 q^{24} + 3 q^{25}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/215\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(87\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(3\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(4\) 0.554958 0.554958
\(5\) 1.00000 1.00000
\(6\) −0.554958 −0.554958
\(7\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(8\) −0.554958 −0.554958
\(9\) −0.801938 −0.801938
\(10\) 1.24698 1.24698
\(11\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(12\) −0.246980 −0.246980
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −2.24698 −2.24698
\(15\) −0.445042 −0.445042
\(16\) −1.24698 −1.24698
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −1.00000 −1.00000
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0.554958 0.554958
\(21\) 0.801938 0.801938
\(22\) 1.55496 1.55496
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0.246980 0.246980
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0.801938 0.801938
\(28\) −1.00000 −1.00000
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −0.554958 −0.554958
\(31\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(32\) −1.00000 −1.00000
\(33\) −0.554958 −0.554958
\(34\) 0 0
\(35\) −1.80194 −1.80194
\(36\) −0.445042 −0.445042
\(37\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.554958 −0.554958
\(41\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(42\) 1.00000 1.00000
\(43\) 1.00000 1.00000
\(44\) 0.692021 0.692021
\(45\) −0.801938 −0.801938
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0.554958 0.554958
\(49\) 2.24698 2.24698
\(50\) 1.24698 1.24698
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 1.00000 1.00000
\(55\) 1.24698 1.24698
\(56\) 1.00000 1.00000
\(57\) 0 0
\(58\) 0 0
\(59\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(60\) −0.246980 −0.246980
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −2.24698 −2.24698
\(63\) 1.44504 1.44504
\(64\) 0 0
\(65\) 0 0
\(66\) −0.692021 −0.692021
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −2.24698 −2.24698
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.445042 0.445042
\(73\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(74\) 1.55496 1.55496
\(75\) −0.445042 −0.445042
\(76\) 0 0
\(77\) −2.24698 −2.24698
\(78\) 0 0
\(79\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(80\) −1.24698 −1.24698
\(81\) 0.445042 0.445042
\(82\) −0.554958 −0.554958
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0.445042 0.445042
\(85\) 0 0
\(86\) 1.24698 1.24698
\(87\) 0 0
\(88\) −0.692021 −0.692021
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −1.00000 −1.00000
\(91\) 0 0
\(92\) 0 0
\(93\) 0.801938 0.801938
\(94\) 0 0
\(95\) 0 0
\(96\) 0.445042 0.445042
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 2.80194 2.80194
\(99\) −1.00000 −1.00000
\(100\) 0.554958 0.554958
\(101\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0.801938 0.801938
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0.445042 0.445042
\(109\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(110\) 1.55496 1.55496
\(111\) −0.554958 −0.554958
\(112\) 2.24698 2.24698
\(113\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.554958 −0.554958
\(119\) 0 0
\(120\) 0.246980 0.246980
\(121\) 0.554958 0.554958
\(122\) 0 0
\(123\) 0.198062 0.198062
\(124\) −1.00000 −1.00000
\(125\) 1.00000 1.00000
\(126\) 1.80194 1.80194
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000 1.00000
\(129\) −0.445042 −0.445042
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) −0.307979 −0.307979
\(133\) 0 0
\(134\) 0 0
\(135\) 0.801938 0.801938
\(136\) 0 0
\(137\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(138\) 0 0
\(139\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(140\) −1.00000 −1.00000
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 1.00000
\(145\) 0 0
\(146\) −0.554958 −0.554958
\(147\) −1.00000 −1.00000
\(148\) 0.692021 0.692021
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −0.554958 −0.554958
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −2.80194 −2.80194
\(155\) −1.80194 −1.80194
\(156\) 0 0
\(157\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(158\) 1.55496 1.55496
\(159\) 0 0
\(160\) −1.00000 −1.00000
\(161\) 0 0
\(162\) 0.554958 0.554958
\(163\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(164\) −0.246980 −0.246980
\(165\) −0.554958 −0.554958
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) −0.445042 −0.445042
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0.554958 0.554958
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −1.80194 −1.80194
\(176\) −1.55496 −1.55496
\(177\) 0.198062 0.198062
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.445042 −0.445042
\(181\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.24698 1.24698
\(186\) 1.00000 1.00000
\(187\) 0 0
\(188\) 0 0
\(189\) −1.44504 −1.44504
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.24698 1.24698
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −1.24698 −1.24698
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.554958 −0.554958
\(201\) 0 0
\(202\) −2.24698 −2.24698
\(203\) 0 0
\(204\) 0 0
\(205\) −0.445042 −0.445042
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 1.00000 1.00000
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.00000 1.00000
\(216\) −0.445042 −0.445042
\(217\) 3.24698 3.24698
\(218\) −2.24698 −2.24698
\(219\) 0.198062 0.198062
\(220\) 0.692021 0.692021
\(221\) 0 0
\(222\) −0.692021 −0.692021
\(223\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(224\) 1.80194 1.80194
\(225\) −0.801938 −0.801938
\(226\) −2.24698 −2.24698
\(227\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(228\) 0 0
\(229\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(230\) 0 0
\(231\) 1.00000 1.00000
\(232\) 0 0
\(233\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.246980 −0.246980
\(237\) −0.554958 −0.554958
\(238\) 0 0
\(239\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(240\) 0.554958 0.554958
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0.692021 0.692021
\(243\) −1.00000 −1.00000
\(244\) 0 0
\(245\) 2.24698 2.24698
\(246\) 0.246980 0.246980
\(247\) 0 0
\(248\) 1.00000 1.00000
\(249\) 0 0
\(250\) 1.24698 1.24698
\(251\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(252\) 0.801938 0.801938
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.24698 1.24698
\(257\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(258\) −0.554958 −0.554958
\(259\) −2.24698 −2.24698
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(264\) 0.307979 0.307979
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(270\) 1.00000 1.00000
\(271\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −0.554958 −0.554958
\(275\) 1.24698 1.24698
\(276\) 0 0
\(277\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(278\) −0.554958 −0.554958
\(279\) 1.44504 1.44504
\(280\) 1.00000 1.00000
\(281\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.801938 0.801938
\(288\) 0.801938 0.801938
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −0.246980 −0.246980
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −1.24698 −1.24698
\(295\) −0.445042 −0.445042
\(296\) −0.692021 −0.692021
\(297\) 1.00000 1.00000
\(298\) 0 0
\(299\) 0 0
\(300\) −0.246980 −0.246980
\(301\) −1.80194 −1.80194
\(302\) 0 0
\(303\) 0.801938 0.801938
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −1.24698 −1.24698
\(309\) 0 0
\(310\) −2.24698 −2.24698
\(311\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(312\) 0 0
\(313\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(314\) −0.554958 −0.554958
\(315\) 1.44504 1.44504
\(316\) 0.692021 0.692021
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.246980 0.246980
\(325\) 0 0
\(326\) 1.55496 1.55496
\(327\) 0.801938 0.801938
\(328\) 0.246980 0.246980
\(329\) 0 0
\(330\) −0.692021 −0.692021
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −1.00000 −1.00000
\(334\) 0 0
\(335\) 0 0
\(336\) −1.00000 −1.00000
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 1.24698 1.24698
\(339\) 0.801938 0.801938
\(340\) 0 0
\(341\) −2.24698 −2.24698
\(342\) 0 0
\(343\) −2.24698 −2.24698
\(344\) −0.554958 −0.554958
\(345\) 0 0
\(346\) 0 0
\(347\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −2.24698 −2.24698
\(351\) 0 0
\(352\) −1.24698 −1.24698
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0.246980 0.246980
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(360\) 0.445042 0.445042
\(361\) 1.00000 1.00000
\(362\) −0.554958 −0.554958
\(363\) −0.246980 −0.246980
\(364\) 0 0
\(365\) −0.445042 −0.445042
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0.356896 0.356896
\(370\) 1.55496 1.55496
\(371\) 0 0
\(372\) 0.445042 0.445042
\(373\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(374\) 0 0
\(375\) −0.445042 −0.445042
\(376\) 0 0
\(377\) 0 0
\(378\) −1.80194 −1.80194
\(379\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(384\) −0.445042 −0.445042
\(385\) −2.24698 −2.24698
\(386\) 0 0
\(387\) −0.801938 −0.801938
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.24698 −1.24698
\(393\) 0 0
\(394\) 0 0
\(395\) 1.24698 1.24698
\(396\) −0.554958 −0.554958
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.24698 −1.24698
\(401\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.00000 −1.00000
\(405\) 0.445042 0.445042
\(406\) 0 0
\(407\) 1.55496 1.55496
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) −0.554958 −0.554958
\(411\) 0.198062 0.198062
\(412\) 0 0
\(413\) 0.801938 0.801938
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.198062 0.198062
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0.445042 0.445042
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 1.24698 1.24698
\(431\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(432\) −1.00000 −1.00000
\(433\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(434\) 4.04892 4.04892
\(435\) 0 0
\(436\) −1.00000 −1.00000
\(437\) 0 0
\(438\) 0.246980 0.246980
\(439\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(440\) −0.692021 −0.692021
\(441\) −1.80194 −1.80194
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −0.307979 −0.307979
\(445\) 0 0
\(446\) 2.49396 2.49396
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.00000 −1.00000
\(451\) −0.554958 −0.554958
\(452\) −1.00000 −1.00000
\(453\) 0 0
\(454\) −2.24698 −2.24698
\(455\) 0 0
\(456\) 0 0
\(457\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(458\) 1.55496 1.55496
\(459\) 0 0
\(460\) 0 0
\(461\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(462\) 1.24698 1.24698
\(463\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(464\) 0 0
\(465\) 0.801938 0.801938
\(466\) −0.554958 −0.554958
\(467\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.198062 0.198062
\(472\) 0.246980 0.246980
\(473\) 1.24698 1.24698
\(474\) −0.692021 −0.692021
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −2.24698 −2.24698
\(479\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(480\) 0.445042 0.445042
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.307979 0.307979
\(485\) 0 0
\(486\) −1.24698 −1.24698
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −0.554958 −0.554958
\(490\) 2.80194 2.80194
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0.109916 0.109916
\(493\) 0 0
\(494\) 0 0
\(495\) −1.00000 −1.00000
\(496\) 2.24698 2.24698
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0.554958 0.554958
\(501\) 0 0
\(502\) 2.49396 2.49396
\(503\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(504\) −0.801938 −0.801938
\(505\) −1.80194 −1.80194
\(506\) 0 0
\(507\) −0.445042 −0.445042
\(508\) 0 0
\(509\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(510\) 0 0
\(511\) 0.801938 0.801938
\(512\) 0.554958 0.554958
\(513\) 0 0
\(514\) 1.55496 1.55496
\(515\) 0 0
\(516\) −0.246980 −0.246980
\(517\) 0 0
\(518\) −2.80194 −2.80194
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(524\) 0 0
\(525\) 0.801938 0.801938
\(526\) 1.55496 1.55496
\(527\) 0 0
\(528\) 0.692021 0.692021
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0.356896 0.356896
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 1.55496 1.55496
\(539\) 2.80194 2.80194
\(540\) 0.445042 0.445042
\(541\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(542\) −0.554958 −0.554958
\(543\) 0.198062 0.198062
\(544\) 0 0
\(545\) −1.80194 −1.80194
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −0.246980 −0.246980
\(549\) 0 0
\(550\) 1.55496 1.55496
\(551\) 0 0
\(552\) 0 0
\(553\) −2.24698 −2.24698
\(554\) −2.24698 −2.24698
\(555\) −0.554958 −0.554958
\(556\) −0.246980 −0.246980
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 1.80194 1.80194
\(559\) 0 0
\(560\) 2.24698 2.24698
\(561\) 0 0
\(562\) 1.55496 1.55496
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) −1.80194 −1.80194
\(566\) 0 0
\(567\) −0.801938 −0.801938
\(568\) 0 0
\(569\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 1.00000 1.00000
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(578\) 1.24698 1.24698
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.246980 0.246980
\(585\) 0 0
\(586\) 0 0
\(587\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(588\) −0.554958 −0.554958
\(589\) 0 0
\(590\) −0.554958 −0.554958
\(591\) 0 0
\(592\) −1.55496 −1.55496
\(593\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(594\) 1.24698 1.24698
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(600\) 0.246980 0.246980
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −2.24698 −2.24698
\(603\) 0 0
\(604\) 0 0
\(605\) 0.554958 0.554958
\(606\) 1.00000 1.00000
\(607\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0.198062 0.198062
\(616\) 1.24698 1.24698
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(620\) −1.00000 −1.00000
\(621\) 0 0
\(622\) −0.554958 −0.554958
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) −2.24698 −2.24698
\(627\) 0 0
\(628\) −0.246980 −0.246980
\(629\) 0 0
\(630\) 1.80194 1.80194
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) −0.692021 −0.692021
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 1.00000
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) −0.445042 −0.445042
\(646\) 0 0
\(647\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(648\) −0.246980 −0.246980
\(649\) −0.554958 −0.554958
\(650\) 0 0
\(651\) −1.44504 −1.44504
\(652\) 0.692021 0.692021
\(653\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(654\) 1.00000 1.00000
\(655\) 0 0
\(656\) 0.554958 0.554958
\(657\) 0.356896 0.356896
\(658\) 0 0
\(659\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(660\) −0.307979 −0.307979
\(661\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −1.24698 −1.24698
\(667\) 0 0
\(668\) 0 0
\(669\) −0.890084 −0.890084
\(670\) 0 0
\(671\) 0 0
\(672\) −0.801938 −0.801938
\(673\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(674\) 0 0
\(675\) 0.801938 0.801938
\(676\) 0.554958 0.554958
\(677\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(678\) 1.00000 1.00000
\(679\) 0 0
\(680\) 0 0
\(681\) 0.801938 0.801938
\(682\) −2.80194 −2.80194
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −0.445042 −0.445042
\(686\) −2.80194 −2.80194
\(687\) −0.554958 −0.554958
\(688\) −1.24698 −1.24698
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 1.80194 1.80194
\(694\) 1.55496 1.55496
\(695\) −0.445042 −0.445042
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0.198062 0.198062
\(700\) −1.00000 −1.00000
\(701\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.24698 3.24698
\(708\) 0.109916 0.109916
\(709\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(710\) 0 0
\(711\) −1.00000 −1.00000
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.801938 0.801938
\(718\) 2.49396 2.49396
\(719\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(720\) 1.00000 1.00000
\(721\) 0 0
\(722\) 1.24698 1.24698
\(723\) 0 0
\(724\) −0.246980 −0.246980
\(725\) 0 0
\(726\) −0.307979 −0.307979
\(727\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −0.554958 −0.554958
\(731\) 0 0
\(732\) 0 0
\(733\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(734\) 0 0
\(735\) −1.00000 −1.00000
\(736\) 0 0
\(737\) 0 0
\(738\) 0.445042 0.445042
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0.692021 0.692021
\(741\) 0 0
\(742\) 0 0
\(743\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(744\) −0.445042 −0.445042
\(745\) 0 0
\(746\) −2.24698 −2.24698
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −0.554958 −0.554958
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −0.890084 −0.890084
\(754\) 0 0
\(755\) 0 0
\(756\) −0.801938 −0.801938
\(757\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(758\) 1.55496 1.55496
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 3.24698 3.24698
\(764\) 0 0
\(765\) 0 0
\(766\) −0.554958 −0.554958
\(767\) 0 0
\(768\) −0.554958 −0.554958
\(769\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(770\) −2.80194 −2.80194
\(771\) −0.554958 −0.554958
\(772\) 0 0
\(773\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(774\) −1.00000 −1.00000
\(775\) −1.80194 −1.80194
\(776\) 0 0
\(777\) 1.00000 1.00000
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −2.80194 −2.80194
\(785\) −0.445042 −0.445042
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) −0.554958 −0.554958
\(790\) 1.55496 1.55496
\(791\) 3.24698 3.24698
\(792\) 0.554958 0.554958
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −1.00000
\(801\) 0 0
\(802\) −2.24698 −2.24698
\(803\) −0.554958 −0.554958
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.554958 −0.554958
\(808\) 1.00000 1.00000
\(809\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) 0.554958 0.554958
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0.198062 0.198062
\(814\) 1.93900 1.93900
\(815\) 1.24698 1.24698
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −0.246980 −0.246980
\(821\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(822\) 0.246980 0.246980
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) −0.554958 −0.554958
\(826\) 1.00000 1.00000
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0.801938 0.801938
\(832\) 0 0
\(833\) 0 0
\(834\) 0.246980 0.246980
\(835\) 0 0
\(836\) 0 0
\(837\) −1.44504 −1.44504
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) −0.445042 −0.445042
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) −0.554958 −0.554958
\(844\) 0 0
\(845\) 1.00000 1.00000
\(846\) 0 0
\(847\) −1.00000 −1.00000
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0.554958 0.554958
\(861\) −0.356896 −0.356896
\(862\) −0.554958 −0.554958
\(863\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(864\) −0.801938 −0.801938
\(865\) 0 0
\(866\) 1.55496 1.55496
\(867\) −0.445042 −0.445042
\(868\) 1.80194 1.80194
\(869\) 1.55496 1.55496
\(870\) 0 0
\(871\) 0 0
\(872\) 1.00000 1.00000
\(873\) 0 0
\(874\) 0 0
\(875\) −1.80194 −1.80194
\(876\) 0.109916 0.109916
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 1.55496 1.55496
\(879\) 0 0
\(880\) −1.55496 −1.55496
\(881\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(882\) −2.24698 −2.24698
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0.198062 0.198062
\(886\) 0 0
\(887\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(888\) 0.307979 0.307979
\(889\) 0 0
\(890\) 0 0
\(891\) 0.554958 0.554958
\(892\) 1.10992 1.10992
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.80194 −1.80194
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.445042 −0.445042
\(901\) 0 0
\(902\) −0.692021 −0.692021
\(903\) 0.801938 0.801938
\(904\) 1.00000 1.00000
\(905\) −0.445042 −0.445042
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −1.00000 −1.00000
\(909\) 1.44504 1.44504
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.554958 −0.554958
\(915\) 0 0
\(916\) 0.692021 0.692021
\(917\) 0 0
\(918\) 0 0
\(919\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.55496 1.55496
\(923\) 0 0
\(924\) 0.554958 0.554958
\(925\) 1.24698 1.24698
\(926\) −0.554958 −0.554958
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 1.00000 1.00000
\(931\) 0 0
\(932\) −0.246980 −0.246980
\(933\) 0.198062 0.198062
\(934\) 2.49396 2.49396
\(935\) 0 0
\(936\) 0 0
\(937\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(938\) 0 0
\(939\) 0.801938 0.801938
\(940\) 0 0
\(941\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(942\) 0.246980 0.246980
\(943\) 0 0
\(944\) 0.554958 0.554958
\(945\) −1.44504 −1.44504
\(946\) 1.55496 1.55496
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) −0.307979 −0.307979
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.00000 −1.00000
\(957\) 0 0
\(958\) −2.24698 −2.24698
\(959\) 0.801938 0.801938
\(960\) 0 0
\(961\) 2.24698 2.24698
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −0.307979 −0.307979
\(969\) 0 0
\(970\) 0 0
\(971\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(972\) −0.554958 −0.554958
\(973\) 0.801938 0.801938
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) −0.692021 −0.692021
\(979\) 0 0
\(980\) 1.24698 1.24698
\(981\) 1.44504 1.44504
\(982\) 0 0
\(983\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(984\) −0.109916 −0.109916
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −1.24698 −1.24698
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 1.80194 1.80194
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(998\) 0 0
\(999\) 1.00000 1.00000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 215.1.d.a.214.3 3
3.2 odd 2 1935.1.h.b.1504.1 3
4.3 odd 2 3440.1.p.b.3009.2 3
5.2 odd 4 1075.1.c.c.601.5 6
5.3 odd 4 1075.1.c.c.601.2 6
5.4 even 2 215.1.d.b.214.1 yes 3
15.14 odd 2 1935.1.h.a.1504.3 3
20.19 odd 2 3440.1.p.a.3009.2 3
43.42 odd 2 215.1.d.b.214.1 yes 3
129.128 even 2 1935.1.h.a.1504.3 3
172.171 even 2 3440.1.p.a.3009.2 3
215.42 even 4 1075.1.c.c.601.2 6
215.128 even 4 1075.1.c.c.601.5 6
215.214 odd 2 CM 215.1.d.a.214.3 3
645.644 even 2 1935.1.h.b.1504.1 3
860.859 even 2 3440.1.p.b.3009.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
215.1.d.a.214.3 3 1.1 even 1 trivial
215.1.d.a.214.3 3 215.214 odd 2 CM
215.1.d.b.214.1 yes 3 5.4 even 2
215.1.d.b.214.1 yes 3 43.42 odd 2
1075.1.c.c.601.2 6 5.3 odd 4
1075.1.c.c.601.2 6 215.42 even 4
1075.1.c.c.601.5 6 5.2 odd 4
1075.1.c.c.601.5 6 215.128 even 4
1935.1.h.a.1504.3 3 15.14 odd 2
1935.1.h.a.1504.3 3 129.128 even 2
1935.1.h.b.1504.1 3 3.2 odd 2
1935.1.h.b.1504.1 3 645.644 even 2
3440.1.p.a.3009.2 3 20.19 odd 2
3440.1.p.a.3009.2 3 172.171 even 2
3440.1.p.b.3009.2 3 4.3 odd 2
3440.1.p.b.3009.2 3 860.859 even 2