Newspace parameters
Level: | \( N \) | \(=\) | \( 213 = 3 \cdot 71 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 213.l (of order \(14\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.70081356305\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{14})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −2.17375 | + | 1.73351i | −0.833794 | + | 1.51815i | 1.27510 | − | 5.58657i | − | 2.20653i | −0.819269 | − | 4.74547i | 2.00764 | + | 1.60104i | 4.49993 | + | 9.34420i | −1.60957 | − | 2.53165i | 3.82504 | + | 4.79645i | |
23.2 | −1.95866 | + | 1.56198i | 1.56487 | − | 0.742422i | 0.951534 | − | 4.16894i | − | 1.25570i | −1.90540 | + | 3.89845i | −1.63347 | − | 1.30265i | 2.47413 | + | 5.13758i | 1.89762 | − | 2.32358i | 1.96138 | + | 2.45949i | |
23.3 | −1.74810 | + | 1.39407i | 1.11251 | + | 1.32753i | 0.667405 | − | 2.92409i | 3.11868i | −3.79544 | − | 0.769744i | −0.583477 | − | 0.465307i | 0.969434 | + | 2.01305i | −0.524652 | + | 2.95377i | −4.34764 | − | 5.45177i | ||
23.4 | −1.44834 | + | 1.15502i | −1.73136 | + | 0.0489550i | 0.318597 | − | 1.39586i | 0.149249i | 2.45106 | − | 2.07065i | −2.05988 | − | 1.64270i | −0.456734 | − | 0.948417i | 2.99521 | − | 0.169517i | −0.172385 | − | 0.216164i | ||
23.5 | −1.43340 | + | 1.14310i | 0.715776 | − | 1.57723i | 0.302917 | − | 1.32717i | 1.45768i | 0.776937 | + | 3.07900i | 1.88203 | + | 1.50087i | −0.508072 | − | 1.05502i | −1.97533 | − | 2.25789i | −1.66627 | − | 2.08944i | ||
23.6 | −1.11358 | + | 0.888049i | −0.0493701 | + | 1.73135i | 0.00638361 | − | 0.0279684i | − | 3.18442i | −1.48254 | − | 1.97183i | −3.37622 | − | 2.69244i | −1.21825 | − | 2.52972i | −2.99513 | − | 0.170954i | 2.82792 | + | 3.54610i | |
23.7 | −1.01153 | + | 0.806668i | 1.70091 | + | 0.326966i | −0.0725631 | + | 0.317920i | − | 3.12921i | −1.98427 | + | 1.04133i | 1.87483 | + | 1.49512i | −1.30577 | − | 2.71146i | 2.78619 | + | 1.11228i | 2.52424 | + | 3.16529i | |
23.8 | −0.782614 | + | 0.624114i | −0.908953 | + | 1.47438i | −0.222075 | + | 0.972975i | 2.40824i | −0.208824 | − | 1.72116i | 2.42488 | + | 1.93378i | −1.30208 | − | 2.70381i | −1.34761 | − | 2.68029i | −1.50302 | − | 1.88472i | ||
23.9 | −0.569704 | + | 0.454324i | −0.628011 | − | 1.61419i | −0.326889 | + | 1.43220i | − | 2.87043i | 1.09114 | + | 0.634289i | 0.816025 | + | 0.650759i | −1.09677 | − | 2.27748i | −2.21120 | + | 2.02746i | 1.30411 | + | 1.63530i | |
23.10 | −0.524364 | + | 0.418166i | −0.528285 | − | 1.64952i | −0.344947 | + | 1.51131i | 3.23325i | 0.966787 | + | 0.644037i | −3.33086 | − | 2.65627i | −1.03310 | − | 2.14526i | −2.44183 | + | 1.74283i | −1.35204 | − | 1.69540i | ||
23.11 | −0.208082 | + | 0.165940i | 1.72906 | + | 0.101725i | −0.429280 | + | 1.88080i | 0.782738i | −0.376667 | + | 0.265753i | 0.755976 | + | 0.602871i | −0.453728 | − | 0.942175i | 2.97930 | + | 0.351777i | −0.129888 | − | 0.162874i | ||
23.12 | 0.208082 | − | 0.165940i | −1.60197 | − | 0.658560i | −0.429280 | + | 1.88080i | − | 0.782738i | −0.442622 | + | 0.128796i | 0.755976 | + | 0.602871i | 0.453728 | + | 0.942175i | 2.13260 | + | 2.10998i | −0.129888 | − | 0.162874i | |
23.13 | 0.524364 | − | 0.418166i | 1.19167 | − | 1.25695i | −0.344947 | + | 1.51131i | − | 3.23325i | 0.0992530 | − | 1.15742i | −3.33086 | − | 2.65627i | 1.03310 | + | 2.14526i | −0.159854 | − | 2.99574i | −1.35204 | − | 1.69540i | |
23.14 | 0.569704 | − | 0.454324i | 1.26619 | − | 1.18185i | −0.326889 | + | 1.43220i | 2.87043i | 0.184410 | − | 1.24856i | 0.816025 | + | 0.650759i | 1.09677 | + | 2.27748i | 0.206465 | − | 2.99289i | 1.30411 | + | 1.63530i | ||
23.15 | 0.782614 | − | 0.624114i | 0.179227 | + | 1.72275i | −0.222075 | + | 0.972975i | − | 2.40824i | 1.21546 | + | 1.23639i | 2.42488 | + | 1.93378i | 1.30208 | + | 2.70381i | −2.93576 | + | 0.617528i | −1.50302 | − | 1.88472i | |
23.16 | 1.01153 | − | 0.806668i | −1.67433 | − | 0.443411i | −0.0725631 | + | 0.317920i | 3.12921i | −2.05132 | + | 0.902106i | 1.87483 | + | 1.49512i | 1.30577 | + | 2.71146i | 2.60677 | + | 1.48483i | 2.52424 | + | 3.16529i | ||
23.17 | 1.11358 | − | 0.888049i | −0.706722 | + | 1.58131i | 0.00638361 | − | 0.0279684i | 3.18442i | 0.617291 | + | 2.38852i | −3.37622 | − | 2.69244i | 1.21825 | + | 2.52972i | −2.00109 | − | 2.23510i | 2.82792 | + | 3.54610i | ||
23.18 | 1.43340 | − | 1.14310i | 0.0394435 | − | 1.73160i | 0.302917 | − | 1.32717i | − | 1.45768i | −1.92285 | − | 2.52716i | 1.88203 | + | 1.50087i | 0.508072 | + | 1.05502i | −2.99689 | − | 0.136601i | −1.66627 | − | 2.08944i | |
23.19 | 1.44834 | − | 1.15502i | 1.53866 | + | 0.795315i | 0.318597 | − | 1.39586i | − | 0.149249i | 3.14711 | − | 0.625286i | −2.05988 | − | 1.64270i | 0.456734 | + | 0.948417i | 1.73495 | + | 2.44744i | −0.172385 | − | 0.216164i | |
23.20 | 1.74810 | − | 1.39407i | −1.57833 | + | 0.713361i | 0.667405 | − | 2.92409i | − | 3.11868i | −1.76461 | + | 3.44732i | −0.583477 | − | 0.465307i | −0.969434 | − | 2.01305i | 1.98223 | − | 2.25183i | −4.34764 | − | 5.45177i | |
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
71.f | odd | 14 | 1 | inner |
213.l | even | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 213.2.l.a | ✓ | 132 |
3.b | odd | 2 | 1 | inner | 213.2.l.a | ✓ | 132 |
71.f | odd | 14 | 1 | inner | 213.2.l.a | ✓ | 132 |
213.l | even | 14 | 1 | inner | 213.2.l.a | ✓ | 132 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
213.2.l.a | ✓ | 132 | 1.a | even | 1 | 1 | trivial |
213.2.l.a | ✓ | 132 | 3.b | odd | 2 | 1 | inner |
213.2.l.a | ✓ | 132 | 71.f | odd | 14 | 1 | inner |
213.2.l.a | ✓ | 132 | 213.l | even | 14 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(213, [\chi])\).