Properties

Label 213.2.l.a
Level $213$
Weight $2$
Character orbit 213.l
Analytic conductor $1.701$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [213,2,Mod(23,213)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(213, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("213.23"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 213 = 3 \cdot 71 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 213.l (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.70081356305\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 132 q - 10 q^{3} + 10 q^{4} - 15 q^{6} - 14 q^{7} - 14 q^{9} + 2 q^{10} + 20 q^{12} - 14 q^{13} + 22 q^{15} - 30 q^{16} + 8 q^{18} - 14 q^{19} - 28 q^{21} - 14 q^{22} + 8 q^{24} - 84 q^{25} - 7 q^{27} - 42 q^{28}+ \cdots + 49 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
23.1 −2.17375 + 1.73351i −0.833794 + 1.51815i 1.27510 5.58657i 2.20653i −0.819269 4.74547i 2.00764 + 1.60104i 4.49993 + 9.34420i −1.60957 2.53165i 3.82504 + 4.79645i
23.2 −1.95866 + 1.56198i 1.56487 0.742422i 0.951534 4.16894i 1.25570i −1.90540 + 3.89845i −1.63347 1.30265i 2.47413 + 5.13758i 1.89762 2.32358i 1.96138 + 2.45949i
23.3 −1.74810 + 1.39407i 1.11251 + 1.32753i 0.667405 2.92409i 3.11868i −3.79544 0.769744i −0.583477 0.465307i 0.969434 + 2.01305i −0.524652 + 2.95377i −4.34764 5.45177i
23.4 −1.44834 + 1.15502i −1.73136 + 0.0489550i 0.318597 1.39586i 0.149249i 2.45106 2.07065i −2.05988 1.64270i −0.456734 0.948417i 2.99521 0.169517i −0.172385 0.216164i
23.5 −1.43340 + 1.14310i 0.715776 1.57723i 0.302917 1.32717i 1.45768i 0.776937 + 3.07900i 1.88203 + 1.50087i −0.508072 1.05502i −1.97533 2.25789i −1.66627 2.08944i
23.6 −1.11358 + 0.888049i −0.0493701 + 1.73135i 0.00638361 0.0279684i 3.18442i −1.48254 1.97183i −3.37622 2.69244i −1.21825 2.52972i −2.99513 0.170954i 2.82792 + 3.54610i
23.7 −1.01153 + 0.806668i 1.70091 + 0.326966i −0.0725631 + 0.317920i 3.12921i −1.98427 + 1.04133i 1.87483 + 1.49512i −1.30577 2.71146i 2.78619 + 1.11228i 2.52424 + 3.16529i
23.8 −0.782614 + 0.624114i −0.908953 + 1.47438i −0.222075 + 0.972975i 2.40824i −0.208824 1.72116i 2.42488 + 1.93378i −1.30208 2.70381i −1.34761 2.68029i −1.50302 1.88472i
23.9 −0.569704 + 0.454324i −0.628011 1.61419i −0.326889 + 1.43220i 2.87043i 1.09114 + 0.634289i 0.816025 + 0.650759i −1.09677 2.27748i −2.21120 + 2.02746i 1.30411 + 1.63530i
23.10 −0.524364 + 0.418166i −0.528285 1.64952i −0.344947 + 1.51131i 3.23325i 0.966787 + 0.644037i −3.33086 2.65627i −1.03310 2.14526i −2.44183 + 1.74283i −1.35204 1.69540i
23.11 −0.208082 + 0.165940i 1.72906 + 0.101725i −0.429280 + 1.88080i 0.782738i −0.376667 + 0.265753i 0.755976 + 0.602871i −0.453728 0.942175i 2.97930 + 0.351777i −0.129888 0.162874i
23.12 0.208082 0.165940i −1.60197 0.658560i −0.429280 + 1.88080i 0.782738i −0.442622 + 0.128796i 0.755976 + 0.602871i 0.453728 + 0.942175i 2.13260 + 2.10998i −0.129888 0.162874i
23.13 0.524364 0.418166i 1.19167 1.25695i −0.344947 + 1.51131i 3.23325i 0.0992530 1.15742i −3.33086 2.65627i 1.03310 + 2.14526i −0.159854 2.99574i −1.35204 1.69540i
23.14 0.569704 0.454324i 1.26619 1.18185i −0.326889 + 1.43220i 2.87043i 0.184410 1.24856i 0.816025 + 0.650759i 1.09677 + 2.27748i 0.206465 2.99289i 1.30411 + 1.63530i
23.15 0.782614 0.624114i 0.179227 + 1.72275i −0.222075 + 0.972975i 2.40824i 1.21546 + 1.23639i 2.42488 + 1.93378i 1.30208 + 2.70381i −2.93576 + 0.617528i −1.50302 1.88472i
23.16 1.01153 0.806668i −1.67433 0.443411i −0.0725631 + 0.317920i 3.12921i −2.05132 + 0.902106i 1.87483 + 1.49512i 1.30577 + 2.71146i 2.60677 + 1.48483i 2.52424 + 3.16529i
23.17 1.11358 0.888049i −0.706722 + 1.58131i 0.00638361 0.0279684i 3.18442i 0.617291 + 2.38852i −3.37622 2.69244i 1.21825 + 2.52972i −2.00109 2.23510i 2.82792 + 3.54610i
23.18 1.43340 1.14310i 0.0394435 1.73160i 0.302917 1.32717i 1.45768i −1.92285 2.52716i 1.88203 + 1.50087i 0.508072 + 1.05502i −2.99689 0.136601i −1.66627 2.08944i
23.19 1.44834 1.15502i 1.53866 + 0.795315i 0.318597 1.39586i 0.149249i 3.14711 0.625286i −2.05988 1.64270i 0.456734 + 0.948417i 1.73495 + 2.44744i −0.172385 0.216164i
23.20 1.74810 1.39407i −1.57833 + 0.713361i 0.667405 2.92409i 3.11868i −1.76461 + 3.44732i −0.583477 0.465307i −0.969434 2.01305i 1.98223 2.25183i −4.34764 5.45177i
See next 80 embeddings (of 132 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.22
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
71.f odd 14 1 inner
213.l even 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 213.2.l.a 132
3.b odd 2 1 inner 213.2.l.a 132
71.f odd 14 1 inner 213.2.l.a 132
213.l even 14 1 inner 213.2.l.a 132
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
213.2.l.a 132 1.a even 1 1 trivial
213.2.l.a 132 3.b odd 2 1 inner
213.2.l.a 132 71.f odd 14 1 inner
213.2.l.a 132 213.l even 14 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(213, [\chi])\).