Properties

Label 2112.2.k.j.287.3
Level $2112$
Weight $2$
Character 2112.287
Analytic conductor $16.864$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2112,2,Mod(287,2112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2112.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.3
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2112.287
Dual form 2112.2.k.j.287.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 + 1.00000i) q^{3} +2.00000 q^{5} -4.44949i q^{7} +(1.00000 - 2.82843i) q^{9} -1.00000i q^{11} +3.46410i q^{13} +(-2.82843 + 2.00000i) q^{15} +4.87832i q^{17} -0.778539 q^{19} +(4.44949 + 6.29253i) q^{21} +6.29253 q^{23} -1.00000 q^{25} +(1.41421 + 5.00000i) q^{27} +5.34847 q^{29} -6.89898i q^{31} +(1.00000 + 1.41421i) q^{33} -8.89898i q^{35} +2.19275i q^{37} +(-3.46410 - 4.89898i) q^{39} -7.70674i q^{41} +2.04989 q^{43} +(2.00000 - 5.65685i) q^{45} -2.82843 q^{47} -12.7980 q^{49} +(-4.87832 - 6.89898i) q^{51} +2.89898 q^{53} -2.00000i q^{55} +(1.10102 - 0.778539i) q^{57} -9.79796i q^{59} -9.12096i q^{61} +(-12.5851 - 4.44949i) q^{63} +6.92820i q^{65} +9.75663 q^{67} +(-8.89898 + 6.29253i) q^{69} -8.48528 q^{71} +6.89898 q^{73} +(1.41421 - 1.00000i) q^{75} -4.44949 q^{77} +9.34847i q^{79} +(-7.00000 - 5.65685i) q^{81} -9.79796i q^{83} +9.75663i q^{85} +(-7.56388 + 5.34847i) q^{87} -13.8564i q^{89} +15.4135 q^{91} +(6.89898 + 9.75663i) q^{93} -1.55708 q^{95} +12.0000 q^{97} +(-2.82843 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} + 8 q^{9} + 16 q^{21} - 8 q^{25} - 16 q^{29} + 8 q^{33} + 16 q^{45} - 24 q^{49} - 16 q^{53} + 48 q^{57} - 32 q^{69} + 16 q^{73} - 16 q^{77} - 56 q^{81} + 16 q^{93} + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2112\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1409\) \(1729\) \(2047\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 + 1.00000i −0.816497 + 0.577350i
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 4.44949i 1.68175i −0.541230 0.840875i \(-0.682041\pi\)
0.541230 0.840875i \(-0.317959\pi\)
\(8\) 0 0
\(9\) 1.00000 2.82843i 0.333333 0.942809i
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 3.46410i 0.960769i 0.877058 + 0.480384i \(0.159503\pi\)
−0.877058 + 0.480384i \(0.840497\pi\)
\(14\) 0 0
\(15\) −2.82843 + 2.00000i −0.730297 + 0.516398i
\(16\) 0 0
\(17\) 4.87832i 1.18317i 0.806244 + 0.591583i \(0.201497\pi\)
−0.806244 + 0.591583i \(0.798503\pi\)
\(18\) 0 0
\(19\) −0.778539 −0.178609 −0.0893046 0.996004i \(-0.528464\pi\)
−0.0893046 + 0.996004i \(0.528464\pi\)
\(20\) 0 0
\(21\) 4.44949 + 6.29253i 0.970958 + 1.37314i
\(22\) 0 0
\(23\) 6.29253 1.31208 0.656041 0.754725i \(-0.272230\pi\)
0.656041 + 0.754725i \(0.272230\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.41421 + 5.00000i 0.272166 + 0.962250i
\(28\) 0 0
\(29\) 5.34847 0.993186 0.496593 0.867984i \(-0.334584\pi\)
0.496593 + 0.867984i \(0.334584\pi\)
\(30\) 0 0
\(31\) 6.89898i 1.23909i −0.784960 0.619547i \(-0.787316\pi\)
0.784960 0.619547i \(-0.212684\pi\)
\(32\) 0 0
\(33\) 1.00000 + 1.41421i 0.174078 + 0.246183i
\(34\) 0 0
\(35\) 8.89898i 1.50420i
\(36\) 0 0
\(37\) 2.19275i 0.360486i 0.983622 + 0.180243i \(0.0576885\pi\)
−0.983622 + 0.180243i \(0.942312\pi\)
\(38\) 0 0
\(39\) −3.46410 4.89898i −0.554700 0.784465i
\(40\) 0 0
\(41\) 7.70674i 1.20359i −0.798650 0.601795i \(-0.794452\pi\)
0.798650 0.601795i \(-0.205548\pi\)
\(42\) 0 0
\(43\) 2.04989 0.312605 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(44\) 0 0
\(45\) 2.00000 5.65685i 0.298142 0.843274i
\(46\) 0 0
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) −12.7980 −1.82828
\(50\) 0 0
\(51\) −4.87832 6.89898i −0.683101 0.966050i
\(52\) 0 0
\(53\) 2.89898 0.398205 0.199103 0.979979i \(-0.436197\pi\)
0.199103 + 0.979979i \(0.436197\pi\)
\(54\) 0 0
\(55\) 2.00000i 0.269680i
\(56\) 0 0
\(57\) 1.10102 0.778539i 0.145834 0.103120i
\(58\) 0 0
\(59\) 9.79796i 1.27559i −0.770208 0.637793i \(-0.779848\pi\)
0.770208 0.637793i \(-0.220152\pi\)
\(60\) 0 0
\(61\) 9.12096i 1.16782i −0.811819 0.583909i \(-0.801522\pi\)
0.811819 0.583909i \(-0.198478\pi\)
\(62\) 0 0
\(63\) −12.5851 4.44949i −1.58557 0.560583i
\(64\) 0 0
\(65\) 6.92820i 0.859338i
\(66\) 0 0
\(67\) 9.75663 1.19196 0.595981 0.802998i \(-0.296763\pi\)
0.595981 + 0.802998i \(0.296763\pi\)
\(68\) 0 0
\(69\) −8.89898 + 6.29253i −1.07131 + 0.757531i
\(70\) 0 0
\(71\) −8.48528 −1.00702 −0.503509 0.863990i \(-0.667958\pi\)
−0.503509 + 0.863990i \(0.667958\pi\)
\(72\) 0 0
\(73\) 6.89898 0.807464 0.403732 0.914877i \(-0.367713\pi\)
0.403732 + 0.914877i \(0.367713\pi\)
\(74\) 0 0
\(75\) 1.41421 1.00000i 0.163299 0.115470i
\(76\) 0 0
\(77\) −4.44949 −0.507066
\(78\) 0 0
\(79\) 9.34847i 1.05178i 0.850551 + 0.525892i \(0.176269\pi\)
−0.850551 + 0.525892i \(0.823731\pi\)
\(80\) 0 0
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 0 0
\(83\) 9.79796i 1.07547i −0.843115 0.537733i \(-0.819281\pi\)
0.843115 0.537733i \(-0.180719\pi\)
\(84\) 0 0
\(85\) 9.75663i 1.05826i
\(86\) 0 0
\(87\) −7.56388 + 5.34847i −0.810933 + 0.573416i
\(88\) 0 0
\(89\) 13.8564i 1.46878i −0.678730 0.734388i \(-0.737469\pi\)
0.678730 0.734388i \(-0.262531\pi\)
\(90\) 0 0
\(91\) 15.4135 1.61577
\(92\) 0 0
\(93\) 6.89898 + 9.75663i 0.715391 + 1.01172i
\(94\) 0 0
\(95\) −1.55708 −0.159753
\(96\) 0 0
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) 0 0
\(99\) −2.82843 1.00000i −0.284268 0.100504i
\(100\) 0 0
\(101\) 10.2474 1.01966 0.509830 0.860275i \(-0.329708\pi\)
0.509830 + 0.860275i \(0.329708\pi\)
\(102\) 0 0
\(103\) 7.79796i 0.768356i 0.923259 + 0.384178i \(0.125515\pi\)
−0.923259 + 0.384178i \(0.874485\pi\)
\(104\) 0 0
\(105\) 8.89898 + 12.5851i 0.868451 + 1.22818i
\(106\) 0 0
\(107\) 4.89898i 0.473602i −0.971558 0.236801i \(-0.923901\pi\)
0.971558 0.236801i \(-0.0760990\pi\)
\(108\) 0 0
\(109\) 0.635674i 0.0608866i 0.999536 + 0.0304433i \(0.00969190\pi\)
−0.999536 + 0.0304433i \(0.990308\pi\)
\(110\) 0 0
\(111\) −2.19275 3.10102i −0.208127 0.294336i
\(112\) 0 0
\(113\) 16.6848i 1.56958i −0.619764 0.784789i \(-0.712772\pi\)
0.619764 0.784789i \(-0.287228\pi\)
\(114\) 0 0
\(115\) 12.5851 1.17356
\(116\) 0 0
\(117\) 9.79796 + 3.46410i 0.905822 + 0.320256i
\(118\) 0 0
\(119\) 21.7060 1.98979
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 7.70674 + 10.8990i 0.694894 + 0.982728i
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 20.4495i 1.81460i −0.420485 0.907299i \(-0.638140\pi\)
0.420485 0.907299i \(-0.361860\pi\)
\(128\) 0 0
\(129\) −2.89898 + 2.04989i −0.255241 + 0.180483i
\(130\) 0 0
\(131\) 18.6969i 1.63356i 0.576950 + 0.816780i \(0.304243\pi\)
−0.576950 + 0.816780i \(0.695757\pi\)
\(132\) 0 0
\(133\) 3.46410i 0.300376i
\(134\) 0 0
\(135\) 2.82843 + 10.0000i 0.243432 + 0.860663i
\(136\) 0 0
\(137\) 8.48528i 0.724947i −0.931994 0.362473i \(-0.881932\pi\)
0.931994 0.362473i \(-0.118068\pi\)
\(138\) 0 0
\(139\) −2.04989 −0.173869 −0.0869346 0.996214i \(-0.527707\pi\)
−0.0869346 + 0.996214i \(0.527707\pi\)
\(140\) 0 0
\(141\) 4.00000 2.82843i 0.336861 0.238197i
\(142\) 0 0
\(143\) 3.46410 0.289683
\(144\) 0 0
\(145\) 10.6969 0.888332
\(146\) 0 0
\(147\) 18.0990 12.7980i 1.49278 1.05556i
\(148\) 0 0
\(149\) 20.4495 1.67529 0.837644 0.546217i \(-0.183933\pi\)
0.837644 + 0.546217i \(0.183933\pi\)
\(150\) 0 0
\(151\) 7.55051i 0.614452i 0.951637 + 0.307226i \(0.0994007\pi\)
−0.951637 + 0.307226i \(0.900599\pi\)
\(152\) 0 0
\(153\) 13.7980 + 4.87832i 1.11550 + 0.394388i
\(154\) 0 0
\(155\) 13.7980i 1.10828i
\(156\) 0 0
\(157\) 8.19955i 0.654396i 0.944956 + 0.327198i \(0.106104\pi\)
−0.944956 + 0.327198i \(0.893896\pi\)
\(158\) 0 0
\(159\) −4.09978 + 2.89898i −0.325133 + 0.229904i
\(160\) 0 0
\(161\) 27.9985i 2.20659i
\(162\) 0 0
\(163\) −23.8988 −1.87190 −0.935948 0.352138i \(-0.885455\pi\)
−0.935948 + 0.352138i \(0.885455\pi\)
\(164\) 0 0
\(165\) 2.00000 + 2.82843i 0.155700 + 0.220193i
\(166\) 0 0
\(167\) 2.82843 0.218870 0.109435 0.993994i \(-0.465096\pi\)
0.109435 + 0.993994i \(0.465096\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −0.778539 + 2.20204i −0.0595364 + 0.168394i
\(172\) 0 0
\(173\) 6.24745 0.474985 0.237492 0.971389i \(-0.423675\pi\)
0.237492 + 0.971389i \(0.423675\pi\)
\(174\) 0 0
\(175\) 4.44949i 0.336350i
\(176\) 0 0
\(177\) 9.79796 + 13.8564i 0.736460 + 1.04151i
\(178\) 0 0
\(179\) 17.5959i 1.31518i 0.753376 + 0.657590i \(0.228424\pi\)
−0.753376 + 0.657590i \(0.771576\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i −0.966282 0.257485i \(-0.917106\pi\)
0.966282 0.257485i \(-0.0828937\pi\)
\(182\) 0 0
\(183\) 9.12096 + 12.8990i 0.674240 + 0.953520i
\(184\) 0 0
\(185\) 4.38551i 0.322429i
\(186\) 0 0
\(187\) 4.87832 0.356738
\(188\) 0 0
\(189\) 22.2474 6.29253i 1.61826 0.457714i
\(190\) 0 0
\(191\) −19.7990 −1.43260 −0.716302 0.697790i \(-0.754167\pi\)
−0.716302 + 0.697790i \(0.754167\pi\)
\(192\) 0 0
\(193\) 24.6969 1.77772 0.888862 0.458175i \(-0.151497\pi\)
0.888862 + 0.458175i \(0.151497\pi\)
\(194\) 0 0
\(195\) −6.92820 9.79796i −0.496139 0.701646i
\(196\) 0 0
\(197\) −18.2474 −1.30008 −0.650038 0.759901i \(-0.725247\pi\)
−0.650038 + 0.759901i \(0.725247\pi\)
\(198\) 0 0
\(199\) 14.8990i 1.05616i 0.849194 + 0.528080i \(0.177088\pi\)
−0.849194 + 0.528080i \(0.822912\pi\)
\(200\) 0 0
\(201\) −13.7980 + 9.75663i −0.973233 + 0.688180i
\(202\) 0 0
\(203\) 23.7980i 1.67029i
\(204\) 0 0
\(205\) 15.4135i 1.07652i
\(206\) 0 0
\(207\) 6.29253 17.7980i 0.437361 1.23704i
\(208\) 0 0
\(209\) 0.778539i 0.0538527i
\(210\) 0 0
\(211\) −22.8345 −1.57199 −0.785996 0.618232i \(-0.787849\pi\)
−0.785996 + 0.618232i \(0.787849\pi\)
\(212\) 0 0
\(213\) 12.0000 8.48528i 0.822226 0.581402i
\(214\) 0 0
\(215\) 4.09978 0.279602
\(216\) 0 0
\(217\) −30.6969 −2.08384
\(218\) 0 0
\(219\) −9.75663 + 6.89898i −0.659292 + 0.466190i
\(220\) 0 0
\(221\) −16.8990 −1.13675
\(222\) 0 0
\(223\) 0.202041i 0.0135297i −0.999977 0.00676483i \(-0.997847\pi\)
0.999977 0.00676483i \(-0.00215333\pi\)
\(224\) 0 0
\(225\) −1.00000 + 2.82843i −0.0666667 + 0.188562i
\(226\) 0 0
\(227\) 13.7980i 0.915803i −0.889003 0.457901i \(-0.848601\pi\)
0.889003 0.457901i \(-0.151399\pi\)
\(228\) 0 0
\(229\) 27.3629i 1.80819i 0.427332 + 0.904095i \(0.359453\pi\)
−0.427332 + 0.904095i \(0.640547\pi\)
\(230\) 0 0
\(231\) 6.29253 4.44949i 0.414018 0.292755i
\(232\) 0 0
\(233\) 19.0205i 1.24607i −0.782193 0.623036i \(-0.785899\pi\)
0.782193 0.623036i \(-0.214101\pi\)
\(234\) 0 0
\(235\) −5.65685 −0.369012
\(236\) 0 0
\(237\) −9.34847 13.2207i −0.607248 0.858779i
\(238\) 0 0
\(239\) 12.2993 0.795577 0.397789 0.917477i \(-0.369778\pi\)
0.397789 + 0.917477i \(0.369778\pi\)
\(240\) 0 0
\(241\) 10.8990 0.702065 0.351032 0.936363i \(-0.385831\pi\)
0.351032 + 0.936363i \(0.385831\pi\)
\(242\) 0 0
\(243\) 15.5563 + 1.00000i 0.997940 + 0.0641500i
\(244\) 0 0
\(245\) −25.5959 −1.63526
\(246\) 0 0
\(247\) 2.69694i 0.171602i
\(248\) 0 0
\(249\) 9.79796 + 13.8564i 0.620920 + 0.878114i
\(250\) 0 0
\(251\) 8.20204i 0.517708i −0.965916 0.258854i \(-0.916655\pi\)
0.965916 0.258854i \(-0.0833449\pi\)
\(252\) 0 0
\(253\) 6.29253i 0.395608i
\(254\) 0 0
\(255\) −9.75663 13.7980i −0.610984 0.864062i
\(256\) 0 0
\(257\) 1.27135i 0.0793046i −0.999214 0.0396523i \(-0.987375\pi\)
0.999214 0.0396523i \(-0.0126250\pi\)
\(258\) 0 0
\(259\) 9.75663 0.606248
\(260\) 0 0
\(261\) 5.34847 15.1278i 0.331062 0.936385i
\(262\) 0 0
\(263\) 14.1421 0.872041 0.436021 0.899937i \(-0.356387\pi\)
0.436021 + 0.899937i \(0.356387\pi\)
\(264\) 0 0
\(265\) 5.79796 0.356166
\(266\) 0 0
\(267\) 13.8564 + 19.5959i 0.847998 + 1.19925i
\(268\) 0 0
\(269\) −14.8990 −0.908407 −0.454203 0.890898i \(-0.650076\pi\)
−0.454203 + 0.890898i \(0.650076\pi\)
\(270\) 0 0
\(271\) 8.44949i 0.513270i −0.966508 0.256635i \(-0.917386\pi\)
0.966508 0.256635i \(-0.0826138\pi\)
\(272\) 0 0
\(273\) −21.7980 + 15.4135i −1.31927 + 0.932867i
\(274\) 0 0
\(275\) 1.00000i 0.0603023i
\(276\) 0 0
\(277\) 5.02118i 0.301693i −0.988557 0.150847i \(-0.951800\pi\)
0.988557 0.150847i \(-0.0482000\pi\)
\(278\) 0 0
\(279\) −19.5133 6.89898i −1.16823 0.413031i
\(280\) 0 0
\(281\) 20.2918i 1.21051i 0.796033 + 0.605254i \(0.206928\pi\)
−0.796033 + 0.605254i \(0.793072\pi\)
\(282\) 0 0
\(283\) 10.5352 0.626251 0.313125 0.949712i \(-0.398624\pi\)
0.313125 + 0.949712i \(0.398624\pi\)
\(284\) 0 0
\(285\) 2.20204 1.55708i 0.130438 0.0922333i
\(286\) 0 0
\(287\) −34.2911 −2.02414
\(288\) 0 0
\(289\) −6.79796 −0.399880
\(290\) 0 0
\(291\) −16.9706 + 12.0000i −0.994832 + 0.703452i
\(292\) 0 0
\(293\) 11.1464 0.651181 0.325591 0.945511i \(-0.394437\pi\)
0.325591 + 0.945511i \(0.394437\pi\)
\(294\) 0 0
\(295\) 19.5959i 1.14092i
\(296\) 0 0
\(297\) 5.00000 1.41421i 0.290129 0.0820610i
\(298\) 0 0
\(299\) 21.7980i 1.26061i
\(300\) 0 0
\(301\) 9.12096i 0.525723i
\(302\) 0 0
\(303\) −14.4921 + 10.2474i −0.832548 + 0.588701i
\(304\) 0 0
\(305\) 18.2419i 1.04453i
\(306\) 0 0
\(307\) 30.3342 1.73126 0.865631 0.500683i \(-0.166918\pi\)
0.865631 + 0.500683i \(0.166918\pi\)
\(308\) 0 0
\(309\) −7.79796 11.0280i −0.443610 0.627360i
\(310\) 0 0
\(311\) 28.9199 1.63990 0.819950 0.572435i \(-0.194001\pi\)
0.819950 + 0.572435i \(0.194001\pi\)
\(312\) 0 0
\(313\) −4.00000 −0.226093 −0.113047 0.993590i \(-0.536061\pi\)
−0.113047 + 0.993590i \(0.536061\pi\)
\(314\) 0 0
\(315\) −25.1701 8.89898i −1.41818 0.501401i
\(316\) 0 0
\(317\) −15.7980 −0.887302 −0.443651 0.896200i \(-0.646317\pi\)
−0.443651 + 0.896200i \(0.646317\pi\)
\(318\) 0 0
\(319\) 5.34847i 0.299457i
\(320\) 0 0
\(321\) 4.89898 + 6.92820i 0.273434 + 0.386695i
\(322\) 0 0
\(323\) 3.79796i 0.211324i
\(324\) 0 0
\(325\) 3.46410i 0.192154i
\(326\) 0 0
\(327\) −0.635674 0.898979i −0.0351529 0.0497137i
\(328\) 0 0
\(329\) 12.5851i 0.693837i
\(330\) 0 0
\(331\) −30.8270 −1.69440 −0.847202 0.531271i \(-0.821714\pi\)
−0.847202 + 0.531271i \(0.821714\pi\)
\(332\) 0 0
\(333\) 6.20204 + 2.19275i 0.339870 + 0.120162i
\(334\) 0 0
\(335\) 19.5133 1.06612
\(336\) 0 0
\(337\) −14.4949 −0.789587 −0.394794 0.918770i \(-0.629184\pi\)
−0.394794 + 0.918770i \(0.629184\pi\)
\(338\) 0 0
\(339\) 16.6848 + 23.5959i 0.906196 + 1.28155i
\(340\) 0 0
\(341\) −6.89898 −0.373601
\(342\) 0 0
\(343\) 25.7980i 1.39296i
\(344\) 0 0
\(345\) −17.7980 + 12.5851i −0.958210 + 0.677557i
\(346\) 0 0
\(347\) 6.20204i 0.332943i −0.986046 0.166472i \(-0.946763\pi\)
0.986046 0.166472i \(-0.0532374\pi\)
\(348\) 0 0
\(349\) 28.9199i 1.54805i 0.633156 + 0.774025i \(0.281759\pi\)
−0.633156 + 0.774025i \(0.718241\pi\)
\(350\) 0 0
\(351\) −17.3205 + 4.89898i −0.924500 + 0.261488i
\(352\) 0 0
\(353\) 18.2419i 0.970919i 0.874259 + 0.485459i \(0.161348\pi\)
−0.874259 + 0.485459i \(0.838652\pi\)
\(354\) 0 0
\(355\) −16.9706 −0.900704
\(356\) 0 0
\(357\) −30.6969 + 21.7060i −1.62465 + 1.14880i
\(358\) 0 0
\(359\) 12.8708 0.679294 0.339647 0.940553i \(-0.389692\pi\)
0.339647 + 0.940553i \(0.389692\pi\)
\(360\) 0 0
\(361\) −18.3939 −0.968099
\(362\) 0 0
\(363\) 1.41421 1.00000i 0.0742270 0.0524864i
\(364\) 0 0
\(365\) 13.7980 0.722218
\(366\) 0 0
\(367\) 11.7980i 0.615848i −0.951411 0.307924i \(-0.900366\pi\)
0.951411 0.307924i \(-0.0996343\pi\)
\(368\) 0 0
\(369\) −21.7980 7.70674i −1.13476 0.401197i
\(370\) 0 0
\(371\) 12.8990i 0.669682i
\(372\) 0 0
\(373\) 10.6780i 0.552888i −0.961030 0.276444i \(-0.910844\pi\)
0.961030 0.276444i \(-0.0891560\pi\)
\(374\) 0 0
\(375\) 16.9706 12.0000i 0.876356 0.619677i
\(376\) 0 0
\(377\) 18.5276i 0.954222i
\(378\) 0 0
\(379\) −25.1701 −1.29290 −0.646451 0.762956i \(-0.723748\pi\)
−0.646451 + 0.762956i \(0.723748\pi\)
\(380\) 0 0
\(381\) 20.4495 + 28.9199i 1.04766 + 1.48161i
\(382\) 0 0
\(383\) 14.4921 0.740511 0.370255 0.928930i \(-0.379270\pi\)
0.370255 + 0.928930i \(0.379270\pi\)
\(384\) 0 0
\(385\) −8.89898 −0.453534
\(386\) 0 0
\(387\) 2.04989 5.79796i 0.104202 0.294727i
\(388\) 0 0
\(389\) 8.20204 0.415860 0.207930 0.978144i \(-0.433327\pi\)
0.207930 + 0.978144i \(0.433327\pi\)
\(390\) 0 0
\(391\) 30.6969i 1.55241i
\(392\) 0 0
\(393\) −18.6969 26.4415i −0.943136 1.33380i
\(394\) 0 0
\(395\) 18.6969i 0.940745i
\(396\) 0 0
\(397\) 2.19275i 0.110051i 0.998485 + 0.0550256i \(0.0175240\pi\)
−0.998485 + 0.0550256i \(0.982476\pi\)
\(398\) 0 0
\(399\) −3.46410 4.89898i −0.173422 0.245256i
\(400\) 0 0
\(401\) 6.64247i 0.331709i −0.986150 0.165855i \(-0.946962\pi\)
0.986150 0.165855i \(-0.0530383\pi\)
\(402\) 0 0
\(403\) 23.8988 1.19048
\(404\) 0 0
\(405\) −14.0000 11.3137i −0.695666 0.562183i
\(406\) 0 0
\(407\) 2.19275 0.108691
\(408\) 0 0
\(409\) 7.79796 0.385584 0.192792 0.981240i \(-0.438246\pi\)
0.192792 + 0.981240i \(0.438246\pi\)
\(410\) 0 0
\(411\) 8.48528 + 12.0000i 0.418548 + 0.591916i
\(412\) 0 0
\(413\) −43.5959 −2.14521
\(414\) 0 0
\(415\) 19.5959i 0.961926i
\(416\) 0 0
\(417\) 2.89898 2.04989i 0.141964 0.100383i
\(418\) 0 0
\(419\) 37.5959i 1.83668i 0.395792 + 0.918340i \(0.370470\pi\)
−0.395792 + 0.918340i \(0.629530\pi\)
\(420\) 0 0
\(421\) 22.6274i 1.10279i 0.834243 + 0.551396i \(0.185905\pi\)
−0.834243 + 0.551396i \(0.814095\pi\)
\(422\) 0 0
\(423\) −2.82843 + 8.00000i −0.137523 + 0.388973i
\(424\) 0 0
\(425\) 4.87832i 0.236633i
\(426\) 0 0
\(427\) −40.5836 −1.96398
\(428\) 0 0
\(429\) −4.89898 + 3.46410i −0.236525 + 0.167248i
\(430\) 0 0
\(431\) −18.2419 −0.878682 −0.439341 0.898320i \(-0.644788\pi\)
−0.439341 + 0.898320i \(0.644788\pi\)
\(432\) 0 0
\(433\) −2.20204 −0.105823 −0.0529117 0.998599i \(-0.516850\pi\)
−0.0529117 + 0.998599i \(0.516850\pi\)
\(434\) 0 0
\(435\) −15.1278 + 10.6969i −0.725320 + 0.512879i
\(436\) 0 0
\(437\) −4.89898 −0.234350
\(438\) 0 0
\(439\) 24.0454i 1.14762i 0.818987 + 0.573812i \(0.194536\pi\)
−0.818987 + 0.573812i \(0.805464\pi\)
\(440\) 0 0
\(441\) −12.7980 + 36.1981i −0.609427 + 1.72372i
\(442\) 0 0
\(443\) 23.5959i 1.12108i 0.828129 + 0.560538i \(0.189406\pi\)
−0.828129 + 0.560538i \(0.810594\pi\)
\(444\) 0 0
\(445\) 27.7128i 1.31371i
\(446\) 0 0
\(447\) −28.9199 + 20.4495i −1.36787 + 0.967228i
\(448\) 0 0
\(449\) 39.0265i 1.84178i −0.389828 0.920888i \(-0.627466\pi\)
0.389828 0.920888i \(-0.372534\pi\)
\(450\) 0 0
\(451\) −7.70674 −0.362896
\(452\) 0 0
\(453\) −7.55051 10.6780i −0.354754 0.501698i
\(454\) 0 0
\(455\) 30.8270 1.44519
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 0 0
\(459\) −24.3916 + 6.89898i −1.13850 + 0.322017i
\(460\) 0 0
\(461\) 22.6515 1.05499 0.527493 0.849559i \(-0.323132\pi\)
0.527493 + 0.849559i \(0.323132\pi\)
\(462\) 0 0
\(463\) 21.5959i 1.00365i 0.864970 + 0.501824i \(0.167337\pi\)
−0.864970 + 0.501824i \(0.832663\pi\)
\(464\) 0 0
\(465\) 13.7980 + 19.5133i 0.639865 + 0.904906i
\(466\) 0 0
\(467\) 2.20204i 0.101898i −0.998701 0.0509492i \(-0.983775\pi\)
0.998701 0.0509492i \(-0.0162246\pi\)
\(468\) 0 0
\(469\) 43.4120i 2.00458i
\(470\) 0 0
\(471\) −8.19955 11.5959i −0.377815 0.534312i
\(472\) 0 0
\(473\) 2.04989i 0.0942540i
\(474\) 0 0
\(475\) 0.778539 0.0357218
\(476\) 0 0
\(477\) 2.89898 8.19955i 0.132735 0.375432i
\(478\) 0 0
\(479\) 25.1701 1.15005 0.575026 0.818135i \(-0.304992\pi\)
0.575026 + 0.818135i \(0.304992\pi\)
\(480\) 0 0
\(481\) −7.59592 −0.346344
\(482\) 0 0
\(483\) 27.9985 + 39.5959i 1.27398 + 1.80168i
\(484\) 0 0
\(485\) 24.0000 1.08978
\(486\) 0 0
\(487\) 10.8990i 0.493880i −0.969031 0.246940i \(-0.920575\pi\)
0.969031 0.246940i \(-0.0794250\pi\)
\(488\) 0 0
\(489\) 33.7980 23.8988i 1.52840 1.08074i
\(490\) 0 0
\(491\) 2.69694i 0.121711i −0.998147 0.0608556i \(-0.980617\pi\)
0.998147 0.0608556i \(-0.0193829\pi\)
\(492\) 0 0
\(493\) 26.0915i 1.17510i
\(494\) 0 0
\(495\) −5.65685 2.00000i −0.254257 0.0898933i
\(496\) 0 0
\(497\) 37.7552i 1.69355i
\(498\) 0 0
\(499\) −31.8126 −1.42413 −0.712064 0.702115i \(-0.752239\pi\)
−0.712064 + 0.702115i \(0.752239\pi\)
\(500\) 0 0
\(501\) −4.00000 + 2.82843i −0.178707 + 0.126365i
\(502\) 0 0
\(503\) 16.3991 0.731200 0.365600 0.930772i \(-0.380864\pi\)
0.365600 + 0.930772i \(0.380864\pi\)
\(504\) 0 0
\(505\) 20.4949 0.912011
\(506\) 0 0
\(507\) −1.41421 + 1.00000i −0.0628074 + 0.0444116i
\(508\) 0 0
\(509\) −30.4949 −1.35166 −0.675831 0.737056i \(-0.736215\pi\)
−0.675831 + 0.737056i \(0.736215\pi\)
\(510\) 0 0
\(511\) 30.6969i 1.35795i
\(512\) 0 0
\(513\) −1.10102 3.89270i −0.0486112 0.171867i
\(514\) 0 0
\(515\) 15.5959i 0.687238i
\(516\) 0 0
\(517\) 2.82843i 0.124394i
\(518\) 0 0
\(519\) −8.83523 + 6.24745i −0.387823 + 0.274233i
\(520\) 0 0
\(521\) 26.7272i 1.17094i −0.810694 0.585470i \(-0.800910\pi\)
0.810694 0.585470i \(-0.199090\pi\)
\(522\) 0 0
\(523\) 28.7771 1.25833 0.629167 0.777270i \(-0.283396\pi\)
0.629167 + 0.777270i \(0.283396\pi\)
\(524\) 0 0
\(525\) −4.44949 6.29253i −0.194192 0.274628i
\(526\) 0 0
\(527\) 33.6554 1.46605
\(528\) 0 0
\(529\) 16.5959 0.721562
\(530\) 0 0
\(531\) −27.7128 9.79796i −1.20263 0.425195i
\(532\) 0 0
\(533\) 26.6969 1.15637
\(534\) 0 0
\(535\) 9.79796i 0.423603i
\(536\) 0 0
\(537\) −17.5959 24.8844i −0.759320 1.07384i
\(538\) 0 0
\(539\) 12.7980i 0.551247i
\(540\) 0 0
\(541\) 2.47848i 0.106558i 0.998580 + 0.0532791i \(0.0169673\pi\)
−0.998580 + 0.0532791i \(0.983033\pi\)
\(542\) 0 0
\(543\) 6.92820 + 9.79796i 0.297318 + 0.420471i
\(544\) 0 0
\(545\) 1.27135i 0.0544586i
\(546\) 0 0
\(547\) −33.1626 −1.41793 −0.708965 0.705244i \(-0.750838\pi\)
−0.708965 + 0.705244i \(0.750838\pi\)
\(548\) 0 0
\(549\) −25.7980 9.12096i −1.10103 0.389273i
\(550\) 0 0
\(551\) −4.16399 −0.177392
\(552\) 0 0
\(553\) 41.5959 1.76884
\(554\) 0 0
\(555\) −4.38551 6.20204i −0.186154 0.263262i
\(556\) 0 0
\(557\) −6.65153 −0.281834 −0.140917 0.990021i \(-0.545005\pi\)
−0.140917 + 0.990021i \(0.545005\pi\)
\(558\) 0 0
\(559\) 7.10102i 0.300341i
\(560\) 0 0
\(561\) −6.89898 + 4.87832i −0.291275 + 0.205963i
\(562\) 0 0
\(563\) 25.7980i 1.08725i −0.839327 0.543627i \(-0.817051\pi\)
0.839327 0.543627i \(-0.182949\pi\)
\(564\) 0 0
\(565\) 33.3697i 1.40387i
\(566\) 0 0
\(567\) −25.1701 + 31.1464i −1.05705 + 1.30803i
\(568\) 0 0
\(569\) 24.9630i 1.04650i 0.852178 + 0.523252i \(0.175282\pi\)
−0.852178 + 0.523252i \(0.824718\pi\)
\(570\) 0 0
\(571\) 7.70674 0.322517 0.161259 0.986912i \(-0.448445\pi\)
0.161259 + 0.986912i \(0.448445\pi\)
\(572\) 0 0
\(573\) 28.0000 19.7990i 1.16972 0.827115i
\(574\) 0 0
\(575\) −6.29253 −0.262417
\(576\) 0 0
\(577\) −43.7980 −1.82333 −0.911666 0.410931i \(-0.865204\pi\)
−0.911666 + 0.410931i \(0.865204\pi\)
\(578\) 0 0
\(579\) −34.9267 + 24.6969i −1.45151 + 1.02637i
\(580\) 0 0
\(581\) −43.5959 −1.80866
\(582\) 0 0
\(583\) 2.89898i 0.120063i
\(584\) 0 0
\(585\) 19.5959 + 6.92820i 0.810191 + 0.286446i
\(586\) 0 0
\(587\) 8.00000i 0.330195i −0.986277 0.165098i \(-0.947206\pi\)
0.986277 0.165098i \(-0.0527939\pi\)
\(588\) 0 0
\(589\) 5.37113i 0.221313i
\(590\) 0 0
\(591\) 25.8058 18.2474i 1.06151 0.750600i
\(592\) 0 0
\(593\) 37.2624i 1.53018i 0.643922 + 0.765091i \(0.277306\pi\)
−0.643922 + 0.765091i \(0.722694\pi\)
\(594\) 0 0
\(595\) 43.4120 1.77972
\(596\) 0 0
\(597\) −14.8990 21.0703i −0.609775 0.862352i
\(598\) 0 0
\(599\) 45.3191 1.85169 0.925843 0.377908i \(-0.123356\pi\)
0.925843 + 0.377908i \(0.123356\pi\)
\(600\) 0 0
\(601\) −38.8990 −1.58672 −0.793361 0.608751i \(-0.791671\pi\)
−0.793361 + 0.608751i \(0.791671\pi\)
\(602\) 0 0
\(603\) 9.75663 27.5959i 0.397321 1.12379i
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) 24.0454i 0.975973i 0.872851 + 0.487986i \(0.162268\pi\)
−0.872851 + 0.487986i \(0.837732\pi\)
\(608\) 0 0
\(609\) 23.7980 + 33.6554i 0.964342 + 1.36379i
\(610\) 0 0
\(611\) 9.79796i 0.396383i
\(612\) 0 0
\(613\) 30.4770i 1.23096i −0.788154 0.615478i \(-0.788963\pi\)
0.788154 0.615478i \(-0.211037\pi\)
\(614\) 0 0
\(615\) 15.4135 + 21.7980i 0.621532 + 0.878979i
\(616\) 0 0
\(617\) 5.37113i 0.216233i 0.994138 + 0.108117i \(0.0344820\pi\)
−0.994138 + 0.108117i \(0.965518\pi\)
\(618\) 0 0
\(619\) 6.92820 0.278468 0.139234 0.990260i \(-0.455536\pi\)
0.139234 + 0.990260i \(0.455536\pi\)
\(620\) 0 0
\(621\) 8.89898 + 31.4626i 0.357104 + 1.26255i
\(622\) 0 0
\(623\) −61.6539 −2.47011
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −0.778539 1.10102i −0.0310919 0.0439705i
\(628\) 0 0
\(629\) −10.6969 −0.426515
\(630\) 0 0
\(631\) 17.1010i 0.680781i 0.940284 + 0.340390i \(0.110559\pi\)
−0.940284 + 0.340390i \(0.889441\pi\)
\(632\) 0 0
\(633\) 32.2929 22.8345i 1.28353 0.907590i
\(634\) 0 0
\(635\) 40.8990i 1.62303i
\(636\) 0 0
\(637\) 44.3334i 1.75655i
\(638\) 0 0
\(639\) −8.48528 + 24.0000i −0.335673 + 0.949425i
\(640\) 0 0
\(641\) 20.7846i 0.820943i 0.911873 + 0.410471i \(0.134636\pi\)
−0.911873 + 0.410471i \(0.865364\pi\)
\(642\) 0 0
\(643\) 4.38551 0.172947 0.0864737 0.996254i \(-0.472440\pi\)
0.0864737 + 0.996254i \(0.472440\pi\)
\(644\) 0 0
\(645\) −5.79796 + 4.09978i −0.228294 + 0.161429i
\(646\) 0 0
\(647\) 29.6198 1.16448 0.582238 0.813018i \(-0.302177\pi\)
0.582238 + 0.813018i \(0.302177\pi\)
\(648\) 0 0
\(649\) −9.79796 −0.384604
\(650\) 0 0
\(651\) 43.4120 30.6969i 1.70145 1.20311i
\(652\) 0 0
\(653\) 2.49490 0.0976329 0.0488164 0.998808i \(-0.484455\pi\)
0.0488164 + 0.998808i \(0.484455\pi\)
\(654\) 0 0
\(655\) 37.3939i 1.46110i
\(656\) 0 0
\(657\) 6.89898 19.5133i 0.269155 0.761285i
\(658\) 0 0
\(659\) 3.10102i 0.120799i −0.998174 0.0603993i \(-0.980763\pi\)
0.998174 0.0603993i \(-0.0192374\pi\)
\(660\) 0 0
\(661\) 10.7423i 0.417825i 0.977934 + 0.208913i \(0.0669924\pi\)
−0.977934 + 0.208913i \(0.933008\pi\)
\(662\) 0 0
\(663\) 23.8988 16.8990i 0.928151 0.656302i
\(664\) 0 0
\(665\) 6.92820i 0.268664i
\(666\) 0 0
\(667\) 33.6554 1.30314
\(668\) 0 0
\(669\) 0.202041 + 0.285729i 0.00781136 + 0.0110469i
\(670\) 0 0
\(671\) −9.12096 −0.352111
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) −1.41421 5.00000i −0.0544331 0.192450i
\(676\) 0 0
\(677\) 15.5505 0.597655 0.298827 0.954307i \(-0.403405\pi\)
0.298827 + 0.954307i \(0.403405\pi\)
\(678\) 0 0
\(679\) 53.3939i 2.04907i
\(680\) 0 0
\(681\) 13.7980 + 19.5133i 0.528739 + 0.747750i
\(682\) 0 0
\(683\) 27.7980i 1.06366i 0.846851 + 0.531830i \(0.178495\pi\)
−0.846851 + 0.531830i \(0.821505\pi\)
\(684\) 0 0
\(685\) 16.9706i 0.648412i
\(686\) 0 0
\(687\) −27.3629 38.6969i −1.04396 1.47638i
\(688\) 0 0
\(689\) 10.0424i 0.382583i
\(690\) 0 0
\(691\) 20.7846 0.790684 0.395342 0.918534i \(-0.370626\pi\)
0.395342 + 0.918534i \(0.370626\pi\)
\(692\) 0 0
\(693\) −4.44949 + 12.5851i −0.169022 + 0.478067i
\(694\) 0 0
\(695\) −4.09978 −0.155513
\(696\) 0 0
\(697\) 37.5959 1.42405
\(698\) 0 0
\(699\) 19.0205 + 26.8990i 0.719420 + 1.01741i
\(700\) 0 0
\(701\) −24.4495 −0.923444 −0.461722 0.887025i \(-0.652768\pi\)
−0.461722 + 0.887025i \(0.652768\pi\)
\(702\) 0 0
\(703\) 1.70714i 0.0643861i
\(704\) 0 0
\(705\) 8.00000 5.65685i 0.301297 0.213049i
\(706\) 0 0
\(707\) 45.5959i 1.71481i
\(708\) 0 0
\(709\) 41.2193i 1.54802i −0.633172 0.774011i \(-0.718247\pi\)
0.633172 0.774011i \(-0.281753\pi\)
\(710\) 0 0
\(711\) 26.4415 + 9.34847i 0.991632 + 0.350595i
\(712\) 0 0
\(713\) 43.4120i 1.62579i
\(714\) 0 0
\(715\) 6.92820 0.259100
\(716\) 0 0
\(717\) −17.3939 + 12.2993i −0.649586 + 0.459327i
\(718\) 0 0
\(719\) −11.0280 −0.411274 −0.205637 0.978628i \(-0.565927\pi\)
−0.205637 + 0.978628i \(0.565927\pi\)
\(720\) 0 0
\(721\) 34.6969 1.29218
\(722\) 0 0
\(723\) −15.4135 + 10.8990i −0.573234 + 0.405337i
\(724\) 0 0
\(725\) −5.34847 −0.198637
\(726\) 0 0
\(727\) 10.4949i 0.389234i 0.980879 + 0.194617i \(0.0623464\pi\)
−0.980879 + 0.194617i \(0.937654\pi\)
\(728\) 0 0
\(729\) −23.0000 + 14.1421i −0.851852 + 0.523783i
\(730\) 0 0
\(731\) 10.0000i 0.369863i
\(732\) 0 0
\(733\) 41.5050i 1.53302i 0.642231 + 0.766511i \(0.278009\pi\)
−0.642231 + 0.766511i \(0.721991\pi\)
\(734\) 0 0
\(735\) 36.1981 25.5959i 1.33519 0.944120i
\(736\) 0 0
\(737\) 9.75663i 0.359390i
\(738\) 0 0
\(739\) −20.2918 −0.746446 −0.373223 0.927742i \(-0.621747\pi\)
−0.373223 + 0.927742i \(0.621747\pi\)
\(740\) 0 0
\(741\) 2.69694 + 3.81405i 0.0990745 + 0.140113i
\(742\) 0 0
\(743\) −35.2125 −1.29182 −0.645910 0.763413i \(-0.723522\pi\)
−0.645910 + 0.763413i \(0.723522\pi\)
\(744\) 0 0
\(745\) 40.8990 1.49842
\(746\) 0 0
\(747\) −27.7128 9.79796i −1.01396 0.358489i
\(748\) 0 0
\(749\) −21.7980 −0.796480
\(750\) 0 0
\(751\) 42.0908i 1.53592i −0.640500 0.767958i \(-0.721273\pi\)
0.640500 0.767958i \(-0.278727\pi\)
\(752\) 0 0
\(753\) 8.20204 + 11.5994i 0.298899 + 0.422707i
\(754\) 0 0
\(755\) 15.1010i 0.549582i
\(756\) 0 0
\(757\) 20.0847i 0.729992i 0.931009 + 0.364996i \(0.118930\pi\)
−0.931009 + 0.364996i \(0.881070\pi\)
\(758\) 0 0
\(759\) 6.29253 + 8.89898i 0.228404 + 0.323012i
\(760\) 0 0
\(761\) 21.8489i 0.792021i −0.918246 0.396011i \(-0.870394\pi\)
0.918246 0.396011i \(-0.129606\pi\)
\(762\) 0 0
\(763\) 2.82843 0.102396
\(764\) 0 0
\(765\) 27.5959 + 9.75663i 0.997733 + 0.352752i
\(766\) 0 0
\(767\) 33.9411 1.22554
\(768\) 0 0
\(769\) 20.2929 0.731779 0.365890 0.930658i \(-0.380765\pi\)
0.365890 + 0.930658i \(0.380765\pi\)
\(770\) 0 0
\(771\) 1.27135 + 1.79796i 0.0457865 + 0.0647519i
\(772\) 0 0
\(773\) 4.69694 0.168937 0.0844686 0.996426i \(-0.473081\pi\)
0.0844686 + 0.996426i \(0.473081\pi\)
\(774\) 0 0
\(775\) 6.89898i 0.247819i
\(776\) 0 0
\(777\) −13.7980 + 9.75663i −0.494999 + 0.350017i
\(778\) 0 0
\(779\) 6.00000i 0.214972i
\(780\) 0 0
\(781\) 8.48528i 0.303627i
\(782\) 0 0
\(783\) 7.56388 + 26.7423i 0.270311 + 0.955693i
\(784\) 0 0
\(785\) 16.3991i 0.585309i
\(786\) 0 0
\(787\) 6.14966 0.219212 0.109606 0.993975i \(-0.465041\pi\)
0.109606 + 0.993975i \(0.465041\pi\)
\(788\) 0 0
\(789\) −20.0000 + 14.1421i −0.712019 + 0.503473i
\(790\) 0 0
\(791\) −74.2390 −2.63963
\(792\) 0 0
\(793\) 31.5959 1.12200
\(794\) 0 0
\(795\) −8.19955 + 5.79796i −0.290808 + 0.205632i
\(796\) 0 0
\(797\) −8.20204 −0.290531 −0.145266 0.989393i \(-0.546404\pi\)
−0.145266 + 0.989393i \(0.546404\pi\)
\(798\) 0 0
\(799\) 13.7980i 0.488137i
\(800\) 0 0
\(801\) −39.1918 13.8564i −1.38478 0.489592i
\(802\) 0 0
\(803\) 6.89898i 0.243460i
\(804\) 0 0
\(805\) 55.9971i 1.97364i
\(806\) 0 0
\(807\) 21.0703 14.8990i 0.741711 0.524469i
\(808\) 0 0
\(809\) 19.0205i 0.668723i −0.942445 0.334362i \(-0.891479\pi\)
0.942445 0.334362i \(-0.108521\pi\)
\(810\) 0 0
\(811\) 7.13528 0.250554 0.125277 0.992122i \(-0.460018\pi\)
0.125277 + 0.992122i \(0.460018\pi\)
\(812\) 0 0
\(813\) 8.44949 + 11.9494i 0.296337 + 0.419083i
\(814\) 0 0
\(815\) −47.7975 −1.67427
\(816\) 0 0
\(817\) −1.59592 −0.0558341
\(818\) 0 0
\(819\) 15.4135 43.5959i 0.538591 1.52336i
\(820\) 0 0
\(821\) 5.75255 0.200765 0.100383 0.994949i \(-0.467993\pi\)
0.100383 + 0.994949i \(0.467993\pi\)
\(822\) 0 0
\(823\) 14.0000i 0.488009i 0.969774 + 0.244005i \(0.0784612\pi\)
−0.969774 + 0.244005i \(0.921539\pi\)
\(824\) 0 0
\(825\) −1.00000 1.41421i −0.0348155 0.0492366i
\(826\) 0 0
\(827\) 35.1010i 1.22058i 0.792177 + 0.610291i \(0.208947\pi\)
−0.792177 + 0.610291i \(0.791053\pi\)
\(828\) 0 0
\(829\) 46.8761i 1.62808i 0.580812 + 0.814038i \(0.302735\pi\)
−0.580812 + 0.814038i \(0.697265\pi\)
\(830\) 0 0
\(831\) 5.02118 + 7.10102i 0.174183 + 0.246332i
\(832\) 0 0
\(833\) 62.4325i 2.16316i
\(834\) 0 0
\(835\) 5.65685 0.195764
\(836\) 0 0
\(837\) 34.4949 9.75663i 1.19232 0.337238i
\(838\) 0 0
\(839\) −7.56388 −0.261134 −0.130567 0.991439i \(-0.541680\pi\)
−0.130567 + 0.991439i \(0.541680\pi\)
\(840\) 0 0
\(841\) −0.393877 −0.0135820
\(842\) 0 0
\(843\) −20.2918 28.6969i −0.698887 0.988375i
\(844\) 0 0
\(845\) 2.00000 0.0688021
\(846\) 0 0
\(847\) 4.44949i 0.152886i
\(848\) 0 0
\(849\) −14.8990 + 10.5352i −0.511332 + 0.361566i
\(850\) 0 0
\(851\) 13.7980i 0.472988i
\(852\) 0 0
\(853\) 22.6916i 0.776947i 0.921460 + 0.388473i \(0.126997\pi\)
−0.921460 + 0.388473i \(0.873003\pi\)
\(854\) 0 0
\(855\) −1.55708 + 4.40408i −0.0532509 + 0.150616i
\(856\) 0 0
\(857\) 18.4490i 0.630206i 0.949058 + 0.315103i \(0.102039\pi\)
−0.949058 + 0.315103i \(0.897961\pi\)
\(858\) 0 0
\(859\) 1.84281 0.0628758 0.0314379 0.999506i \(-0.489991\pi\)
0.0314379 + 0.999506i \(0.489991\pi\)
\(860\) 0 0
\(861\) 48.4949 34.2911i 1.65270 1.16864i
\(862\) 0 0
\(863\) 52.2473 1.77852 0.889259 0.457405i \(-0.151221\pi\)
0.889259 + 0.457405i \(0.151221\pi\)
\(864\) 0 0
\(865\) 12.4949 0.424839
\(866\) 0 0
\(867\) 9.61377 6.79796i 0.326501 0.230871i
\(868\) 0 0
\(869\) 9.34847 0.317125
\(870\) 0 0
\(871\) 33.7980i 1.14520i
\(872\) 0 0
\(873\) 12.0000 33.9411i 0.406138 1.14873i
\(874\) 0 0
\(875\) 53.3939i 1.80504i
\(876\) 0 0
\(877\) 30.4770i 1.02914i 0.857450 + 0.514568i \(0.172048\pi\)
−0.857450 + 0.514568i \(0.827952\pi\)
\(878\) 0 0
\(879\) −15.7634 + 11.1464i −0.531687 + 0.375960i
\(880\) 0 0
\(881\) 39.3123i 1.32446i −0.749299 0.662232i \(-0.769609\pi\)
0.749299 0.662232i \(-0.230391\pi\)
\(882\) 0 0
\(883\) 12.2993 0.413905 0.206953 0.978351i \(-0.433645\pi\)
0.206953 + 0.978351i \(0.433645\pi\)
\(884\) 0 0
\(885\) 19.5959 + 27.7128i 0.658710 + 0.931556i
\(886\) 0 0
\(887\) −34.6410 −1.16313 −0.581566 0.813499i \(-0.697560\pi\)
−0.581566 + 0.813499i \(0.697560\pi\)
\(888\) 0 0
\(889\) −90.9898 −3.05170
\(890\) 0 0
\(891\) −5.65685 + 7.00000i −0.189512 + 0.234509i
\(892\) 0 0
\(893\) 2.20204 0.0736885
\(894\) 0 0
\(895\) 35.1918i 1.17633i
\(896\) 0 0
\(897\) −21.7980 30.8270i −0.727813 1.02928i
\(898\) 0 0
\(899\) 36.8990i 1.23065i
\(900\) 0 0
\(901\) 14.1421i 0.471143i
\(902\) 0 0
\(903\) 9.12096 + 12.8990i 0.303526 + 0.429251i
\(904\) 0 0
\(905\) 13.8564i 0.460603i
\(906\) 0 0
\(907\) −30.2555 −1.00462 −0.502309 0.864688i \(-0.667516\pi\)
−0.502309 + 0.864688i \(0.667516\pi\)
\(908\) 0 0
\(909\) 10.2474 28.9842i 0.339886 0.961344i
\(910\) 0 0
\(911\) −27.9985 −0.927633 −0.463817 0.885931i \(-0.653520\pi\)
−0.463817 + 0.885931i \(0.653520\pi\)
\(912\) 0 0
\(913\) −9.79796 −0.324265
\(914\) 0 0
\(915\) 18.2419 + 25.7980i 0.603059 + 0.852854i
\(916\) 0 0
\(917\) 83.1918 2.74724
\(918\) 0 0
\(919\) 2.65153i 0.0874659i −0.999043 0.0437330i \(-0.986075\pi\)
0.999043 0.0437330i \(-0.0139251\pi\)
\(920\) 0 0
\(921\) −42.8990 + 30.3342i −1.41357 + 0.999545i
\(922\) 0 0
\(923\) 29.3939i 0.967511i
\(924\) 0 0
\(925\) 2.19275i 0.0720973i
\(926\) 0 0
\(927\) 22.0560 + 7.79796i 0.724413 + 0.256119i
\(928\) 0 0
\(929\) 34.9267i 1.14591i 0.819587 + 0.572955i \(0.194203\pi\)
−0.819587 + 0.572955i \(0.805797\pi\)
\(930\) 0 0
\(931\) 9.96371 0.326547
\(932\) 0 0
\(933\) −40.8990 + 28.9199i −1.33897 + 0.946797i
\(934\) 0 0
\(935\) 9.75663 0.319076
\(936\) 0 0
\(937\) 27.7980 0.908120 0.454060 0.890971i \(-0.349975\pi\)
0.454060 + 0.890971i \(0.349975\pi\)
\(938\) 0 0
\(939\) 5.65685 4.00000i 0.184604 0.130535i
\(940\) 0 0
\(941\) 46.7423 1.52376 0.761878 0.647720i \(-0.224277\pi\)
0.761878 + 0.647720i \(0.224277\pi\)
\(942\) 0 0
\(943\) 48.4949i 1.57921i
\(944\) 0 0
\(945\) 44.4949 12.5851i 1.44742 0.409392i
\(946\) 0 0
\(947\) 14.4041i 0.468070i 0.972228 + 0.234035i \(0.0751930\pi\)
−0.972228 + 0.234035i \(0.924807\pi\)
\(948\) 0 0
\(949\) 23.8988i 0.775787i
\(950\) 0 0
\(951\) 22.3417 15.7980i 0.724479 0.512284i
\(952\) 0 0
\(953\) 0.492810i 0.0159637i −0.999968 0.00798184i \(-0.997459\pi\)
0.999968 0.00798184i \(-0.00254073\pi\)
\(954\) 0 0
\(955\) −39.5980 −1.28136
\(956\) 0 0
\(957\) 5.34847 + 7.56388i 0.172891 + 0.244505i
\(958\) 0 0
\(959\) −37.7552 −1.21918
\(960\) 0 0
\(961\) −16.5959 −0.535352
\(962\) 0 0
\(963\) −13.8564 4.89898i −0.446516 0.157867i
\(964\) 0 0
\(965\) 49.3939 1.59005
\(966\) 0 0
\(967\) 38.2474i 1.22996i 0.788545 + 0.614978i \(0.210835\pi\)
−0.788545 + 0.614978i \(0.789165\pi\)
\(968\) 0 0
\(969\) 3.79796 + 5.37113i 0.122008 + 0.172545i
\(970\) 0 0
\(971\) 34.2020i 1.09760i 0.835955 + 0.548798i \(0.184914\pi\)
−0.835955 + 0.548798i \(0.815086\pi\)
\(972\) 0 0
\(973\) 9.12096i 0.292404i
\(974\) 0 0
\(975\) 3.46410 + 4.89898i 0.110940 + 0.156893i
\(976\) 0 0
\(977\) 17.2563i 0.552078i 0.961146 + 0.276039i \(0.0890218\pi\)
−0.961146 + 0.276039i \(0.910978\pi\)
\(978\) 0 0
\(979\) −13.8564 −0.442853
\(980\) 0 0
\(981\) 1.79796 + 0.635674i 0.0574044 + 0.0202955i
\(982\) 0 0
\(983\) −32.7340 −1.04405 −0.522026 0.852930i \(-0.674824\pi\)
−0.522026 + 0.852930i \(0.674824\pi\)
\(984\) 0 0
\(985\) −36.4949 −1.16282
\(986\) 0 0
\(987\) −12.5851 17.7980i −0.400587 0.566515i
\(988\) 0 0
\(989\) 12.8990 0.410164
\(990\) 0 0
\(991\) 5.10102i 0.162039i −0.996713 0.0810196i \(-0.974182\pi\)
0.996713 0.0810196i \(-0.0258176\pi\)
\(992\) 0 0
\(993\) 43.5959 30.8270i 1.38347 0.978264i
\(994\) 0 0
\(995\) 29.7980i 0.944659i
\(996\) 0 0
\(997\) 11.3779i 0.360342i 0.983635 + 0.180171i \(0.0576652\pi\)
−0.983635 + 0.180171i \(0.942335\pi\)
\(998\) 0 0
\(999\) −10.9638 + 3.10102i −0.346878 + 0.0981119i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2112.2.k.j.287.3 yes 8
3.2 odd 2 2112.2.k.i.287.1 8
4.3 odd 2 inner 2112.2.k.j.287.6 yes 8
8.3 odd 2 2112.2.k.i.287.4 yes 8
8.5 even 2 2112.2.k.i.287.5 yes 8
12.11 even 2 2112.2.k.i.287.8 yes 8
24.5 odd 2 inner 2112.2.k.j.287.7 yes 8
24.11 even 2 inner 2112.2.k.j.287.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2112.2.k.i.287.1 8 3.2 odd 2
2112.2.k.i.287.4 yes 8 8.3 odd 2
2112.2.k.i.287.5 yes 8 8.5 even 2
2112.2.k.i.287.8 yes 8 12.11 even 2
2112.2.k.j.287.2 yes 8 24.11 even 2 inner
2112.2.k.j.287.3 yes 8 1.1 even 1 trivial
2112.2.k.j.287.6 yes 8 4.3 odd 2 inner
2112.2.k.j.287.7 yes 8 24.5 odd 2 inner