Properties

Label 2112.2.h.d.1759.5
Level $2112$
Weight $2$
Character 2112.1759
Analytic conductor $16.864$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2112,2,Mod(1759,2112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2112.1759"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} + 20 x^{13} - 49 x^{12} + 56 x^{11} + 174 x^{10} - 572 x^{9} + 120 x^{8} + \cdots + 433 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{27} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1759.5
Root \(-1.76521 + 0.136903i\) of defining polynomial
Character \(\chi\) \(=\) 2112.1759
Dual form 2112.2.h.d.1759.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.66719i q^{5} -3.05522 q^{7} +1.00000 q^{9} +(-3.27743 - 0.508401i) q^{11} +6.95805 q^{13} -1.66719i q^{15} -1.66625i q^{17} +4.44420i q^{19} -3.05522 q^{21} -7.13129i q^{23} +2.22047 q^{25} +1.00000 q^{27} -6.68078 q^{29} -3.22047i q^{31} +(-3.27743 - 0.508401i) q^{33} +5.09364i q^{35} -8.01896i q^{37} +6.95805 q^{39} +11.2330i q^{41} -7.77669i q^{43} -1.66719i q^{45} -8.22205i q^{47} +2.33438 q^{49} -1.66625i q^{51} -7.44252i q^{53} +(-0.847602 + 5.46410i) q^{55} +4.44420i q^{57} -11.0421 q^{59} -11.0349 q^{61} -3.05522 q^{63} -11.6004i q^{65} -3.88924 q^{67} -7.13129i q^{69} -0.887662i q^{71} -16.6940i q^{73} +2.22047 q^{75} +(10.0133 + 1.55328i) q^{77} -5.08883 q^{79} +1.00000 q^{81} -13.9161i q^{83} -2.77795 q^{85} -6.68078 q^{87} -4.92820 q^{89} -21.2584 q^{91} -3.22047i q^{93} +7.40933 q^{95} +12.4441 q^{97} +(-3.27743 - 0.508401i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 16 q^{9} - 8 q^{11} - 16 q^{25} + 16 q^{27} - 8 q^{33} - 80 q^{59} + 64 q^{67} - 16 q^{75} + 16 q^{81} + 32 q^{89} - 16 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2112\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1409\) \(1729\) \(2047\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.66719i 0.745591i −0.927914 0.372796i \(-0.878399\pi\)
0.927914 0.372796i \(-0.121601\pi\)
\(6\) 0 0
\(7\) −3.05522 −1.15477 −0.577383 0.816474i \(-0.695926\pi\)
−0.577383 + 0.816474i \(0.695926\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.27743 0.508401i −0.988181 0.153289i
\(12\) 0 0
\(13\) 6.95805 1.92981 0.964907 0.262590i \(-0.0845767\pi\)
0.964907 + 0.262590i \(0.0845767\pi\)
\(14\) 0 0
\(15\) 1.66719i 0.430467i
\(16\) 0 0
\(17\) 1.66625i 0.404124i −0.979373 0.202062i \(-0.935236\pi\)
0.979373 0.202062i \(-0.0647643\pi\)
\(18\) 0 0
\(19\) 4.44420i 1.01957i 0.860302 + 0.509785i \(0.170275\pi\)
−0.860302 + 0.509785i \(0.829725\pi\)
\(20\) 0 0
\(21\) −3.05522 −0.666704
\(22\) 0 0
\(23\) 7.13129i 1.48698i −0.668748 0.743489i \(-0.733170\pi\)
0.668748 0.743489i \(-0.266830\pi\)
\(24\) 0 0
\(25\) 2.22047 0.444094
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.68078 −1.24059 −0.620295 0.784369i \(-0.712987\pi\)
−0.620295 + 0.784369i \(0.712987\pi\)
\(30\) 0 0
\(31\) 3.22047i 0.578413i −0.957267 0.289207i \(-0.906609\pi\)
0.957267 0.289207i \(-0.0933915\pi\)
\(32\) 0 0
\(33\) −3.27743 0.508401i −0.570527 0.0885012i
\(34\) 0 0
\(35\) 5.09364i 0.860983i
\(36\) 0 0
\(37\) 8.01896i 1.31831i −0.752008 0.659154i \(-0.770914\pi\)
0.752008 0.659154i \(-0.229086\pi\)
\(38\) 0 0
\(39\) 6.95805 1.11418
\(40\) 0 0
\(41\) 11.2330i 1.75431i 0.480210 + 0.877154i \(0.340560\pi\)
−0.480210 + 0.877154i \(0.659440\pi\)
\(42\) 0 0
\(43\) 7.77669i 1.18593i −0.805227 0.592967i \(-0.797956\pi\)
0.805227 0.592967i \(-0.202044\pi\)
\(44\) 0 0
\(45\) 1.66719i 0.248530i
\(46\) 0 0
\(47\) 8.22205i 1.19931i −0.800259 0.599654i \(-0.795305\pi\)
0.800259 0.599654i \(-0.204695\pi\)
\(48\) 0 0
\(49\) 2.33438 0.333484
\(50\) 0 0
\(51\) 1.66625i 0.233321i
\(52\) 0 0
\(53\) 7.44252i 1.02231i −0.859489 0.511154i \(-0.829218\pi\)
0.859489 0.511154i \(-0.170782\pi\)
\(54\) 0 0
\(55\) −0.847602 + 5.46410i −0.114291 + 0.736779i
\(56\) 0 0
\(57\) 4.44420i 0.588649i
\(58\) 0 0
\(59\) −11.0421 −1.43756 −0.718781 0.695237i \(-0.755299\pi\)
−0.718781 + 0.695237i \(0.755299\pi\)
\(60\) 0 0
\(61\) −11.0349 −1.41287 −0.706436 0.707777i \(-0.749698\pi\)
−0.706436 + 0.707777i \(0.749698\pi\)
\(62\) 0 0
\(63\) −3.05522 −0.384922
\(64\) 0 0
\(65\) 11.6004i 1.43885i
\(66\) 0 0
\(67\) −3.88924 −0.475146 −0.237573 0.971370i \(-0.576352\pi\)
−0.237573 + 0.971370i \(0.576352\pi\)
\(68\) 0 0
\(69\) 7.13129i 0.858507i
\(70\) 0 0
\(71\) 0.887662i 0.105346i −0.998612 0.0526730i \(-0.983226\pi\)
0.998612 0.0526730i \(-0.0167741\pi\)
\(72\) 0 0
\(73\) 16.6940i 1.95389i −0.213490 0.976945i \(-0.568483\pi\)
0.213490 0.976945i \(-0.431517\pi\)
\(74\) 0 0
\(75\) 2.22047 0.256398
\(76\) 0 0
\(77\) 10.0133 + 1.55328i 1.14112 + 0.177012i
\(78\) 0 0
\(79\) −5.08883 −0.572538 −0.286269 0.958149i \(-0.592415\pi\)
−0.286269 + 0.958149i \(0.592415\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 13.9161i 1.52749i −0.645518 0.763745i \(-0.723359\pi\)
0.645518 0.763745i \(-0.276641\pi\)
\(84\) 0 0
\(85\) −2.77795 −0.301311
\(86\) 0 0
\(87\) −6.68078 −0.716254
\(88\) 0 0
\(89\) −4.92820 −0.522388 −0.261194 0.965286i \(-0.584116\pi\)
−0.261194 + 0.965286i \(0.584116\pi\)
\(90\) 0 0
\(91\) −21.2584 −2.22848
\(92\) 0 0
\(93\) 3.22047i 0.333947i
\(94\) 0 0
\(95\) 7.40933 0.760182
\(96\) 0 0
\(97\) 12.4441 1.26351 0.631753 0.775170i \(-0.282336\pi\)
0.631753 + 0.775170i \(0.282336\pi\)
\(98\) 0 0
\(99\) −3.27743 0.508401i −0.329394 0.0510962i
\(100\) 0 0
\(101\) −0.570332 −0.0567502 −0.0283751 0.999597i \(-0.509033\pi\)
−0.0283751 + 0.999597i \(0.509033\pi\)
\(102\) 0 0
\(103\) 12.8174i 1.26294i 0.775400 + 0.631470i \(0.217548\pi\)
−0.775400 + 0.631470i \(0.782452\pi\)
\(104\) 0 0
\(105\) 5.09364i 0.497089i
\(106\) 0 0
\(107\) 15.6772i 1.51558i 0.652501 + 0.757788i \(0.273720\pi\)
−0.652501 + 0.757788i \(0.726280\pi\)
\(108\) 0 0
\(109\) −1.59195 −0.152481 −0.0762407 0.997089i \(-0.524292\pi\)
−0.0762407 + 0.997089i \(0.524292\pi\)
\(110\) 0 0
\(111\) 8.01896i 0.761126i
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) −11.8892 −1.10868
\(116\) 0 0
\(117\) 6.95805 0.643272
\(118\) 0 0
\(119\) 5.09075i 0.466669i
\(120\) 0 0
\(121\) 10.4831 + 3.33249i 0.953005 + 0.302954i
\(122\) 0 0
\(123\) 11.2330i 1.01285i
\(124\) 0 0
\(125\) 12.0379i 1.07670i
\(126\) 0 0
\(127\) 14.3832 1.27630 0.638150 0.769912i \(-0.279700\pi\)
0.638150 + 0.769912i \(0.279700\pi\)
\(128\) 0 0
\(129\) 7.77669i 0.684699i
\(130\) 0 0
\(131\) 2.77795i 0.242711i 0.992609 + 0.121355i \(0.0387241\pi\)
−0.992609 + 0.121355i \(0.961276\pi\)
\(132\) 0 0
\(133\) 13.5780i 1.17736i
\(134\) 0 0
\(135\) 1.66719i 0.143489i
\(136\) 0 0
\(137\) 0.440939 0.0376720 0.0188360 0.999823i \(-0.494004\pi\)
0.0188360 + 0.999823i \(0.494004\pi\)
\(138\) 0 0
\(139\) 4.44420i 0.376952i 0.982078 + 0.188476i \(0.0603548\pi\)
−0.982078 + 0.188476i \(0.939645\pi\)
\(140\) 0 0
\(141\) 8.22205i 0.692421i
\(142\) 0 0
\(143\) −22.8045 3.53748i −1.90701 0.295819i
\(144\) 0 0
\(145\) 11.1381i 0.924972i
\(146\) 0 0
\(147\) 2.33438 0.192537
\(148\) 0 0
\(149\) −4.98557 −0.408434 −0.204217 0.978926i \(-0.565465\pi\)
−0.204217 + 0.978926i \(0.565465\pi\)
\(150\) 0 0
\(151\) 16.4168 1.33598 0.667989 0.744171i \(-0.267155\pi\)
0.667989 + 0.744171i \(0.267155\pi\)
\(152\) 0 0
\(153\) 1.66625i 0.134708i
\(154\) 0 0
\(155\) −5.36914 −0.431260
\(156\) 0 0
\(157\) 12.6224i 1.00738i 0.863884 + 0.503690i \(0.168025\pi\)
−0.863884 + 0.503690i \(0.831975\pi\)
\(158\) 0 0
\(159\) 7.44252i 0.590230i
\(160\) 0 0
\(161\) 21.7877i 1.71711i
\(162\) 0 0
\(163\) 2.44094 0.191189 0.0955946 0.995420i \(-0.469525\pi\)
0.0955946 + 0.995420i \(0.469525\pi\)
\(164\) 0 0
\(165\) −0.847602 + 5.46410i −0.0659857 + 0.425380i
\(166\) 0 0
\(167\) 4.81156 0.372329 0.186165 0.982519i \(-0.440394\pi\)
0.186165 + 0.982519i \(0.440394\pi\)
\(168\) 0 0
\(169\) 35.4144 2.72419
\(170\) 0 0
\(171\) 4.44420i 0.339856i
\(172\) 0 0
\(173\) −5.54011 −0.421207 −0.210603 0.977572i \(-0.567543\pi\)
−0.210603 + 0.977572i \(0.567543\pi\)
\(174\) 0 0
\(175\) −6.78403 −0.512824
\(176\) 0 0
\(177\) −11.0421 −0.829976
\(178\) 0 0
\(179\) −5.10971 −0.381918 −0.190959 0.981598i \(-0.561160\pi\)
−0.190959 + 0.981598i \(0.561160\pi\)
\(180\) 0 0
\(181\) 11.5938i 0.861762i 0.902409 + 0.430881i \(0.141797\pi\)
−0.902409 + 0.430881i \(0.858203\pi\)
\(182\) 0 0
\(183\) −11.0349 −0.815722
\(184\) 0 0
\(185\) −13.3691 −0.982919
\(186\) 0 0
\(187\) −0.847121 + 5.46100i −0.0619476 + 0.399348i
\(188\) 0 0
\(189\) −3.05522 −0.222235
\(190\) 0 0
\(191\) 8.40040i 0.607831i −0.952699 0.303916i \(-0.901706\pi\)
0.952699 0.303916i \(-0.0982941\pi\)
\(192\) 0 0
\(193\) 7.80565i 0.561863i 0.959728 + 0.280931i \(0.0906434\pi\)
−0.959728 + 0.280931i \(0.909357\pi\)
\(194\) 0 0
\(195\) 11.6004i 0.830722i
\(196\) 0 0
\(197\) 12.7912 0.911337 0.455668 0.890150i \(-0.349400\pi\)
0.455668 + 0.890150i \(0.349400\pi\)
\(198\) 0 0
\(199\) 8.73636i 0.619304i 0.950850 + 0.309652i \(0.100213\pi\)
−0.950850 + 0.309652i \(0.899787\pi\)
\(200\) 0 0
\(201\) −3.88924 −0.274326
\(202\) 0 0
\(203\) 20.4113 1.43259
\(204\) 0 0
\(205\) 18.7276 1.30800
\(206\) 0 0
\(207\) 7.13129i 0.495659i
\(208\) 0 0
\(209\) 2.25943 14.5655i 0.156288 1.00752i
\(210\) 0 0
\(211\) 6.47780i 0.445950i 0.974824 + 0.222975i \(0.0715769\pi\)
−0.974824 + 0.222975i \(0.928423\pi\)
\(212\) 0 0
\(213\) 0.887662i 0.0608216i
\(214\) 0 0
\(215\) −12.9652 −0.884222
\(216\) 0 0
\(217\) 9.83925i 0.667932i
\(218\) 0 0
\(219\) 16.6940i 1.12808i
\(220\) 0 0
\(221\) 11.5938i 0.779885i
\(222\) 0 0
\(223\) 14.5549i 0.974665i −0.873216 0.487333i \(-0.837970\pi\)
0.873216 0.487333i \(-0.162030\pi\)
\(224\) 0 0
\(225\) 2.22047 0.148031
\(226\) 0 0
\(227\) 9.90520i 0.657431i −0.944429 0.328716i \(-0.893384\pi\)
0.944429 0.328716i \(-0.106616\pi\)
\(228\) 0 0
\(229\) 0.197307i 0.0130384i −0.999979 0.00651921i \(-0.997925\pi\)
0.999979 0.00651921i \(-0.00207514\pi\)
\(230\) 0 0
\(231\) 10.0133 + 1.55328i 0.658825 + 0.102198i
\(232\) 0 0
\(233\) 28.8200i 1.88806i −0.329855 0.944032i \(-0.607000\pi\)
0.329855 0.944032i \(-0.393000\pi\)
\(234\) 0 0
\(235\) −13.7077 −0.894194
\(236\) 0 0
\(237\) −5.08883 −0.330555
\(238\) 0 0
\(239\) 16.3556 1.05796 0.528979 0.848635i \(-0.322575\pi\)
0.528979 + 0.848635i \(0.322575\pi\)
\(240\) 0 0
\(241\) 14.6604i 0.944362i −0.881502 0.472181i \(-0.843467\pi\)
0.881502 0.472181i \(-0.156533\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 3.89187i 0.248642i
\(246\) 0 0
\(247\) 30.9229i 1.96758i
\(248\) 0 0
\(249\) 13.9161i 0.881897i
\(250\) 0 0
\(251\) 26.4789 1.67133 0.835665 0.549239i \(-0.185082\pi\)
0.835665 + 0.549239i \(0.185082\pi\)
\(252\) 0 0
\(253\) −3.62555 + 23.3723i −0.227937 + 1.46940i
\(254\) 0 0
\(255\) −2.77795 −0.173962
\(256\) 0 0
\(257\) 23.8564 1.48812 0.744061 0.668112i \(-0.232897\pi\)
0.744061 + 0.668112i \(0.232897\pi\)
\(258\) 0 0
\(259\) 24.4997i 1.52234i
\(260\) 0 0
\(261\) −6.68078 −0.413530
\(262\) 0 0
\(263\) −0.744350 −0.0458986 −0.0229493 0.999737i \(-0.507306\pi\)
−0.0229493 + 0.999737i \(0.507306\pi\)
\(264\) 0 0
\(265\) −12.4081 −0.762224
\(266\) 0 0
\(267\) −4.92820 −0.301601
\(268\) 0 0
\(269\) 5.74828i 0.350479i 0.984526 + 0.175239i \(0.0560699\pi\)
−0.984526 + 0.175239i \(0.943930\pi\)
\(270\) 0 0
\(271\) −17.5259 −1.06462 −0.532310 0.846550i \(-0.678676\pi\)
−0.532310 + 0.846550i \(0.678676\pi\)
\(272\) 0 0
\(273\) −21.2584 −1.28662
\(274\) 0 0
\(275\) −7.27743 1.12889i −0.438845 0.0680745i
\(276\) 0 0
\(277\) −8.59534 −0.516444 −0.258222 0.966086i \(-0.583137\pi\)
−0.258222 + 0.966086i \(0.583137\pi\)
\(278\) 0 0
\(279\) 3.22047i 0.192804i
\(280\) 0 0
\(281\) 11.8535i 0.707123i −0.935411 0.353561i \(-0.884971\pi\)
0.935411 0.353561i \(-0.115029\pi\)
\(282\) 0 0
\(283\) 23.5778i 1.40155i −0.713380 0.700777i \(-0.752837\pi\)
0.713380 0.700777i \(-0.247163\pi\)
\(284\) 0 0
\(285\) 7.40933 0.438891
\(286\) 0 0
\(287\) 34.3195i 2.02581i
\(288\) 0 0
\(289\) 14.2236 0.836684
\(290\) 0 0
\(291\) 12.4441 0.729486
\(292\) 0 0
\(293\) −21.1514 −1.23568 −0.617839 0.786304i \(-0.711992\pi\)
−0.617839 + 0.786304i \(0.711992\pi\)
\(294\) 0 0
\(295\) 18.4093i 1.07183i
\(296\) 0 0
\(297\) −3.27743 0.508401i −0.190176 0.0295004i
\(298\) 0 0
\(299\) 49.6199i 2.86959i
\(300\) 0 0
\(301\) 23.7595i 1.36948i
\(302\) 0 0
\(303\) −0.570332 −0.0327647
\(304\) 0 0
\(305\) 18.3973i 1.05343i
\(306\) 0 0
\(307\) 14.4417i 0.824230i 0.911132 + 0.412115i \(0.135210\pi\)
−0.911132 + 0.412115i \(0.864790\pi\)
\(308\) 0 0
\(309\) 12.8174i 0.729159i
\(310\) 0 0
\(311\) 16.4194i 0.931056i 0.885033 + 0.465528i \(0.154136\pi\)
−0.885033 + 0.465528i \(0.845864\pi\)
\(312\) 0 0
\(313\) −6.24910 −0.353220 −0.176610 0.984281i \(-0.556513\pi\)
−0.176610 + 0.984281i \(0.556513\pi\)
\(314\) 0 0
\(315\) 5.09364i 0.286994i
\(316\) 0 0
\(317\) 16.5143i 0.927536i −0.885957 0.463768i \(-0.846497\pi\)
0.885957 0.463768i \(-0.153503\pi\)
\(318\) 0 0
\(319\) 21.8958 + 3.39651i 1.22593 + 0.190168i
\(320\) 0 0
\(321\) 15.6772i 0.875018i
\(322\) 0 0
\(323\) 7.40513 0.412032
\(324\) 0 0
\(325\) 15.4501 0.857019
\(326\) 0 0
\(327\) −1.59195 −0.0880351
\(328\) 0 0
\(329\) 25.1202i 1.38492i
\(330\) 0 0
\(331\) 14.9282 0.820528 0.410264 0.911967i \(-0.365437\pi\)
0.410264 + 0.911967i \(0.365437\pi\)
\(332\) 0 0
\(333\) 8.01896i 0.439436i
\(334\) 0 0
\(335\) 6.48411i 0.354265i
\(336\) 0 0
\(337\) 13.1717i 0.717511i 0.933432 + 0.358755i \(0.116799\pi\)
−0.933432 + 0.358755i \(0.883201\pi\)
\(338\) 0 0
\(339\) 2.00000 0.108625
\(340\) 0 0
\(341\) −1.63729 + 10.5549i −0.0886642 + 0.571577i
\(342\) 0 0
\(343\) 14.2545 0.769670
\(344\) 0 0
\(345\) −11.8892 −0.640095
\(346\) 0 0
\(347\) 26.1370i 1.40311i 0.712617 + 0.701553i \(0.247510\pi\)
−0.712617 + 0.701553i \(0.752490\pi\)
\(348\) 0 0
\(349\) −2.14649 −0.114899 −0.0574495 0.998348i \(-0.518297\pi\)
−0.0574495 + 0.998348i \(0.518297\pi\)
\(350\) 0 0
\(351\) 6.95805 0.371393
\(352\) 0 0
\(353\) −32.1221 −1.70969 −0.854845 0.518884i \(-0.826348\pi\)
−0.854845 + 0.518884i \(0.826348\pi\)
\(354\) 0 0
\(355\) −1.47990 −0.0785451
\(356\) 0 0
\(357\) 5.09075i 0.269431i
\(358\) 0 0
\(359\) 17.5870 0.928206 0.464103 0.885781i \(-0.346377\pi\)
0.464103 + 0.885781i \(0.346377\pi\)
\(360\) 0 0
\(361\) −0.750904 −0.0395213
\(362\) 0 0
\(363\) 10.4831 + 3.33249i 0.550218 + 0.174910i
\(364\) 0 0
\(365\) −27.8322 −1.45680
\(366\) 0 0
\(367\) 23.3395i 1.21831i 0.793051 + 0.609155i \(0.208491\pi\)
−0.793051 + 0.609155i \(0.791509\pi\)
\(368\) 0 0
\(369\) 11.2330i 0.584769i
\(370\) 0 0
\(371\) 22.7385i 1.18053i
\(372\) 0 0
\(373\) −6.21370 −0.321733 −0.160867 0.986976i \(-0.551429\pi\)
−0.160867 + 0.986976i \(0.551429\pi\)
\(374\) 0 0
\(375\) 12.0379i 0.621635i
\(376\) 0 0
\(377\) −46.4852 −2.39411
\(378\) 0 0
\(379\) −7.74057 −0.397606 −0.198803 0.980039i \(-0.563705\pi\)
−0.198803 + 0.980039i \(0.563705\pi\)
\(380\) 0 0
\(381\) 14.3832 0.736872
\(382\) 0 0
\(383\) 24.9877i 1.27681i −0.769700 0.638406i \(-0.779594\pi\)
0.769700 0.638406i \(-0.220406\pi\)
\(384\) 0 0
\(385\) 2.58961 16.6940i 0.131979 0.850807i
\(386\) 0 0
\(387\) 7.77669i 0.395311i
\(388\) 0 0
\(389\) 4.85483i 0.246150i −0.992397 0.123075i \(-0.960724\pi\)
0.992397 0.123075i \(-0.0392755\pi\)
\(390\) 0 0
\(391\) −11.8825 −0.600923
\(392\) 0 0
\(393\) 2.77795i 0.140129i
\(394\) 0 0
\(395\) 8.48405i 0.426879i
\(396\) 0 0
\(397\) 24.0569i 1.20738i 0.797219 + 0.603690i \(0.206303\pi\)
−0.797219 + 0.603690i \(0.793697\pi\)
\(398\) 0 0
\(399\) 13.5780i 0.679751i
\(400\) 0 0
\(401\) 4.08424 0.203957 0.101979 0.994787i \(-0.467483\pi\)
0.101979 + 0.994787i \(0.467483\pi\)
\(402\) 0 0
\(403\) 22.4082i 1.11623i
\(404\) 0 0
\(405\) 1.66719i 0.0828435i
\(406\) 0 0
\(407\) −4.07684 + 26.2815i −0.202082 + 1.30273i
\(408\) 0 0
\(409\) 10.2452i 0.506593i −0.967389 0.253296i \(-0.918485\pi\)
0.967389 0.253296i \(-0.0815148\pi\)
\(410\) 0 0
\(411\) 0.440939 0.0217499
\(412\) 0 0
\(413\) 33.7361 1.66005
\(414\) 0 0
\(415\) −23.2008 −1.13888
\(416\) 0 0
\(417\) 4.44420i 0.217633i
\(418\) 0 0
\(419\) 18.1815 0.888225 0.444112 0.895971i \(-0.353519\pi\)
0.444112 + 0.895971i \(0.353519\pi\)
\(420\) 0 0
\(421\) 12.9250i 0.629928i −0.949104 0.314964i \(-0.898007\pi\)
0.949104 0.314964i \(-0.101993\pi\)
\(422\) 0 0
\(423\) 8.22205i 0.399770i
\(424\) 0 0
\(425\) 3.69985i 0.179469i
\(426\) 0 0
\(427\) 33.7140 1.63154
\(428\) 0 0
\(429\) −22.8045 3.53748i −1.10101 0.170791i
\(430\) 0 0
\(431\) 0.554539 0.0267112 0.0133556 0.999911i \(-0.495749\pi\)
0.0133556 + 0.999911i \(0.495749\pi\)
\(432\) 0 0
\(433\) −5.36722 −0.257932 −0.128966 0.991649i \(-0.541166\pi\)
−0.128966 + 0.991649i \(0.541166\pi\)
\(434\) 0 0
\(435\) 11.1381i 0.534033i
\(436\) 0 0
\(437\) 31.6929 1.51608
\(438\) 0 0
\(439\) −7.68660 −0.366862 −0.183431 0.983033i \(-0.558720\pi\)
−0.183431 + 0.983033i \(0.558720\pi\)
\(440\) 0 0
\(441\) 2.33438 0.111161
\(442\) 0 0
\(443\) 27.0800 1.28661 0.643306 0.765610i \(-0.277563\pi\)
0.643306 + 0.765610i \(0.277563\pi\)
\(444\) 0 0
\(445\) 8.21626i 0.389488i
\(446\) 0 0
\(447\) −4.98557 −0.235810
\(448\) 0 0
\(449\) −27.8943 −1.31641 −0.658207 0.752837i \(-0.728685\pi\)
−0.658207 + 0.752837i \(0.728685\pi\)
\(450\) 0 0
\(451\) 5.71089 36.8155i 0.268915 1.73357i
\(452\) 0 0
\(453\) 16.4168 0.771327
\(454\) 0 0
\(455\) 35.4418i 1.66154i
\(456\) 0 0
\(457\) 15.5534i 0.727557i 0.931486 + 0.363778i \(0.118513\pi\)
−0.931486 + 0.363778i \(0.881487\pi\)
\(458\) 0 0
\(459\) 1.66625i 0.0777737i
\(460\) 0 0
\(461\) 10.4192 0.485271 0.242636 0.970117i \(-0.421988\pi\)
0.242636 + 0.970117i \(0.421988\pi\)
\(462\) 0 0
\(463\) 8.45443i 0.392911i −0.980513 0.196455i \(-0.937057\pi\)
0.980513 0.196455i \(-0.0629431\pi\)
\(464\) 0 0
\(465\) −5.36914 −0.248988
\(466\) 0 0
\(467\) 15.0800 0.697821 0.348910 0.937156i \(-0.386552\pi\)
0.348910 + 0.937156i \(0.386552\pi\)
\(468\) 0 0
\(469\) 11.8825 0.548682
\(470\) 0 0
\(471\) 12.6224i 0.581612i
\(472\) 0 0
\(473\) −3.95367 + 25.4875i −0.181790 + 1.17192i
\(474\) 0 0
\(475\) 9.86821i 0.452784i
\(476\) 0 0
\(477\) 7.44252i 0.340769i
\(478\) 0 0
\(479\) −21.7217 −0.992492 −0.496246 0.868182i \(-0.665289\pi\)
−0.496246 + 0.868182i \(0.665289\pi\)
\(480\) 0 0
\(481\) 55.7963i 2.54409i
\(482\) 0 0
\(483\) 21.7877i 0.991374i
\(484\) 0 0
\(485\) 20.7467i 0.942059i
\(486\) 0 0
\(487\) 13.2236i 0.599220i 0.954062 + 0.299610i \(0.0968565\pi\)
−0.954062 + 0.299610i \(0.903144\pi\)
\(488\) 0 0
\(489\) 2.44094 0.110383
\(490\) 0 0
\(491\) 15.4295i 0.696324i 0.937434 + 0.348162i \(0.113194\pi\)
−0.937434 + 0.348162i \(0.886806\pi\)
\(492\) 0 0
\(493\) 11.1318i 0.501352i
\(494\) 0 0
\(495\) −0.847602 + 5.46410i −0.0380969 + 0.245593i
\(496\) 0 0
\(497\) 2.71200i 0.121650i
\(498\) 0 0
\(499\) −29.5970 −1.32494 −0.662471 0.749087i \(-0.730492\pi\)
−0.662471 + 0.749087i \(0.730492\pi\)
\(500\) 0 0
\(501\) 4.81156 0.214964
\(502\) 0 0
\(503\) 4.62174 0.206073 0.103037 0.994678i \(-0.467144\pi\)
0.103037 + 0.994678i \(0.467144\pi\)
\(504\) 0 0
\(505\) 0.950853i 0.0423124i
\(506\) 0 0
\(507\) 35.4144 1.57281
\(508\) 0 0
\(509\) 20.8548i 0.924374i 0.886782 + 0.462187i \(0.152935\pi\)
−0.886782 + 0.462187i \(0.847065\pi\)
\(510\) 0 0
\(511\) 51.0040i 2.25629i
\(512\) 0 0
\(513\) 4.44420i 0.196216i
\(514\) 0 0
\(515\) 21.3691 0.941637
\(516\) 0 0
\(517\) −4.18009 + 26.9472i −0.183840 + 1.18513i
\(518\) 0 0
\(519\) −5.54011 −0.243184
\(520\) 0 0
\(521\) 19.8564 0.869925 0.434962 0.900449i \(-0.356762\pi\)
0.434962 + 0.900449i \(0.356762\pi\)
\(522\) 0 0
\(523\) 13.3905i 0.585526i −0.956185 0.292763i \(-0.905425\pi\)
0.956185 0.292763i \(-0.0945747\pi\)
\(524\) 0 0
\(525\) −6.78403 −0.296079
\(526\) 0 0
\(527\) −5.36609 −0.233751
\(528\) 0 0
\(529\) −27.8554 −1.21110
\(530\) 0 0
\(531\) −11.0421 −0.479187
\(532\) 0 0
\(533\) 78.1601i 3.38549i
\(534\) 0 0
\(535\) 26.1370 1.13000
\(536\) 0 0
\(537\) −5.10971 −0.220500
\(538\) 0 0
\(539\) −7.65078 1.18680i −0.329542 0.0511192i
\(540\) 0 0
\(541\) 3.96395 0.170424 0.0852118 0.996363i \(-0.472843\pi\)
0.0852118 + 0.996363i \(0.472843\pi\)
\(542\) 0 0
\(543\) 11.5938i 0.497538i
\(544\) 0 0
\(545\) 2.65409i 0.113689i
\(546\) 0 0
\(547\) 5.74309i 0.245557i −0.992434 0.122778i \(-0.960820\pi\)
0.992434 0.122778i \(-0.0391804\pi\)
\(548\) 0 0
\(549\) −11.0349 −0.470958
\(550\) 0 0
\(551\) 29.6907i 1.26487i
\(552\) 0 0
\(553\) 15.5475 0.661147
\(554\) 0 0
\(555\) −13.3691 −0.567488
\(556\) 0 0
\(557\) −24.1095 −1.02155 −0.510777 0.859713i \(-0.670642\pi\)
−0.510777 + 0.859713i \(0.670642\pi\)
\(558\) 0 0
\(559\) 54.1106i 2.28863i
\(560\) 0 0
\(561\) −0.847121 + 5.46100i −0.0357655 + 0.230564i
\(562\) 0 0
\(563\) 14.3468i 0.604644i 0.953206 + 0.302322i \(0.0977618\pi\)
−0.953206 + 0.302322i \(0.902238\pi\)
\(564\) 0 0
\(565\) 3.33438i 0.140279i
\(566\) 0 0
\(567\) −3.05522 −0.128307
\(568\) 0 0
\(569\) 5.18855i 0.217515i −0.994068 0.108758i \(-0.965313\pi\)
0.994068 0.108758i \(-0.0346872\pi\)
\(570\) 0 0
\(571\) 5.74309i 0.240341i −0.992753 0.120170i \(-0.961656\pi\)
0.992753 0.120170i \(-0.0383441\pi\)
\(572\) 0 0
\(573\) 8.40040i 0.350932i
\(574\) 0 0
\(575\) 15.8348i 0.660358i
\(576\) 0 0
\(577\) 18.8638 0.785309 0.392654 0.919686i \(-0.371557\pi\)
0.392654 + 0.919686i \(0.371557\pi\)
\(578\) 0 0
\(579\) 7.80565i 0.324392i
\(580\) 0 0
\(581\) 42.5168i 1.76389i
\(582\) 0 0
\(583\) −3.78378 + 24.3923i −0.156708 + 1.01023i
\(584\) 0 0
\(585\) 11.6004i 0.479618i
\(586\) 0 0
\(587\) −21.2552 −0.877297 −0.438649 0.898659i \(-0.644543\pi\)
−0.438649 + 0.898659i \(0.644543\pi\)
\(588\) 0 0
\(589\) 14.3124 0.589732
\(590\) 0 0
\(591\) 12.7912 0.526161
\(592\) 0 0
\(593\) 14.8696i 0.610620i 0.952253 + 0.305310i \(0.0987601\pi\)
−0.952253 + 0.305310i \(0.901240\pi\)
\(594\) 0 0
\(595\) 8.48726 0.347944
\(596\) 0 0
\(597\) 8.73636i 0.357555i
\(598\) 0 0
\(599\) 25.2155i 1.03028i 0.857106 + 0.515139i \(0.172260\pi\)
−0.857106 + 0.515139i \(0.827740\pi\)
\(600\) 0 0
\(601\) 17.4288i 0.710934i 0.934689 + 0.355467i \(0.115678\pi\)
−0.934689 + 0.355467i \(0.884322\pi\)
\(602\) 0 0
\(603\) −3.88924 −0.158382
\(604\) 0 0
\(605\) 5.55591 17.4773i 0.225880 0.710552i
\(606\) 0 0
\(607\) 3.64135 0.147798 0.0738989 0.997266i \(-0.476456\pi\)
0.0738989 + 0.997266i \(0.476456\pi\)
\(608\) 0 0
\(609\) 20.4113 0.827106
\(610\) 0 0
\(611\) 57.2094i 2.31444i
\(612\) 0 0
\(613\) −15.1021 −0.609968 −0.304984 0.952357i \(-0.598651\pi\)
−0.304984 + 0.952357i \(0.598651\pi\)
\(614\) 0 0
\(615\) 18.7276 0.755172
\(616\) 0 0
\(617\) 38.1415 1.53552 0.767759 0.640738i \(-0.221372\pi\)
0.767759 + 0.640738i \(0.221372\pi\)
\(618\) 0 0
\(619\) 15.1741 0.609900 0.304950 0.952368i \(-0.401360\pi\)
0.304950 + 0.952368i \(0.401360\pi\)
\(620\) 0 0
\(621\) 7.13129i 0.286169i
\(622\) 0 0
\(623\) 15.0568 0.603236
\(624\) 0 0
\(625\) −8.96717 −0.358687
\(626\) 0 0
\(627\) 2.25943 14.5655i 0.0902331 0.581692i
\(628\) 0 0
\(629\) −13.3616 −0.532760
\(630\) 0 0
\(631\) 33.3426i 1.32735i 0.748022 + 0.663674i \(0.231004\pi\)
−0.748022 + 0.663674i \(0.768996\pi\)
\(632\) 0 0
\(633\) 6.47780i 0.257469i
\(634\) 0 0
\(635\) 23.9795i 0.951598i
\(636\) 0 0
\(637\) 16.2428 0.643562
\(638\) 0 0
\(639\) 0.887662i 0.0351154i
\(640\) 0 0
\(641\) −0.921895 −0.0364126 −0.0182063 0.999834i \(-0.505796\pi\)
−0.0182063 + 0.999834i \(0.505796\pi\)
\(642\) 0 0
\(643\) 8.14867 0.321352 0.160676 0.987007i \(-0.448633\pi\)
0.160676 + 0.987007i \(0.448633\pi\)
\(644\) 0 0
\(645\) −12.9652 −0.510506
\(646\) 0 0
\(647\) 10.1406i 0.398667i −0.979932 0.199334i \(-0.936122\pi\)
0.979932 0.199334i \(-0.0638778\pi\)
\(648\) 0 0
\(649\) 36.1897 + 5.61382i 1.42057 + 0.220362i
\(650\) 0 0
\(651\) 9.83925i 0.385631i
\(652\) 0 0
\(653\) 27.8487i 1.08980i 0.838500 + 0.544902i \(0.183433\pi\)
−0.838500 + 0.544902i \(0.816567\pi\)
\(654\) 0 0
\(655\) 4.63138 0.180963
\(656\) 0 0
\(657\) 16.6940i 0.651297i
\(658\) 0 0
\(659\) 17.6529i 0.687661i 0.939032 + 0.343830i \(0.111725\pi\)
−0.939032 + 0.343830i \(0.888275\pi\)
\(660\) 0 0
\(661\) 6.76604i 0.263168i −0.991305 0.131584i \(-0.957994\pi\)
0.991305 0.131584i \(-0.0420064\pi\)
\(662\) 0 0
\(663\) 11.5938i 0.450267i
\(664\) 0 0
\(665\) −22.6372 −0.877832
\(666\) 0 0
\(667\) 47.6426i 1.84473i
\(668\) 0 0
\(669\) 14.5549i 0.562723i
\(670\) 0 0
\(671\) 36.1660 + 5.61014i 1.39617 + 0.216577i
\(672\) 0 0
\(673\) 19.8104i 0.763635i 0.924238 + 0.381817i \(0.124702\pi\)
−0.924238 + 0.381817i \(0.875298\pi\)
\(674\) 0 0
\(675\) 2.22047 0.0854659
\(676\) 0 0
\(677\) −16.5297 −0.635287 −0.317643 0.948210i \(-0.602891\pi\)
−0.317643 + 0.948210i \(0.602891\pi\)
\(678\) 0 0
\(679\) −38.0195 −1.45905
\(680\) 0 0
\(681\) 9.90520i 0.379568i
\(682\) 0 0
\(683\) 6.76604 0.258895 0.129448 0.991586i \(-0.458680\pi\)
0.129448 + 0.991586i \(0.458680\pi\)
\(684\) 0 0
\(685\) 0.735130i 0.0280879i
\(686\) 0 0
\(687\) 0.197307i 0.00752773i
\(688\) 0 0
\(689\) 51.7854i 1.97287i
\(690\) 0 0
\(691\) 16.5980 0.631419 0.315709 0.948856i \(-0.397758\pi\)
0.315709 + 0.948856i \(0.397758\pi\)
\(692\) 0 0
\(693\) 10.0133 + 1.55328i 0.380373 + 0.0590041i
\(694\) 0 0
\(695\) 7.40933 0.281052
\(696\) 0 0
\(697\) 18.7170 0.708958
\(698\) 0 0
\(699\) 28.8200i 1.09007i
\(700\) 0 0
\(701\) −2.94233 −0.111130 −0.0555652 0.998455i \(-0.517696\pi\)
−0.0555652 + 0.998455i \(0.517696\pi\)
\(702\) 0 0
\(703\) 35.6378 1.34411
\(704\) 0 0
\(705\) −13.7077 −0.516263
\(706\) 0 0
\(707\) 1.74249 0.0655331
\(708\) 0 0
\(709\) 35.4292i 1.33057i −0.746589 0.665285i \(-0.768310\pi\)
0.746589 0.665285i \(-0.231690\pi\)
\(710\) 0 0
\(711\) −5.08883 −0.190846
\(712\) 0 0
\(713\) −22.9661 −0.860088
\(714\) 0 0
\(715\) −5.89765 + 38.0195i −0.220560 + 1.42185i
\(716\) 0 0
\(717\) 16.3556 0.610813
\(718\) 0 0
\(719\) 11.8815i 0.443106i −0.975148 0.221553i \(-0.928887\pi\)
0.975148 0.221553i \(-0.0711126\pi\)
\(720\) 0 0
\(721\) 39.1601i 1.45840i
\(722\) 0 0
\(723\) 14.6604i 0.545228i
\(724\) 0 0
\(725\) −14.8345 −0.550938
\(726\) 0 0
\(727\) 16.2761i 0.603646i −0.953364 0.301823i \(-0.902405\pi\)
0.953364 0.301823i \(-0.0975952\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.9579 −0.479265
\(732\) 0 0
\(733\) −41.6450 −1.53819 −0.769097 0.639132i \(-0.779294\pi\)
−0.769097 + 0.639132i \(0.779294\pi\)
\(734\) 0 0
\(735\) 3.89187i 0.143554i
\(736\) 0 0
\(737\) 12.7467 + 1.97729i 0.469531 + 0.0728345i
\(738\) 0 0
\(739\) 9.26539i 0.340833i 0.985372 + 0.170416i \(0.0545113\pi\)
−0.985372 + 0.170416i \(0.945489\pi\)
\(740\) 0 0
\(741\) 30.9229i 1.13598i
\(742\) 0 0
\(743\) 29.9977 1.10051 0.550254 0.834997i \(-0.314531\pi\)
0.550254 + 0.834997i \(0.314531\pi\)
\(744\) 0 0
\(745\) 8.31191i 0.304525i
\(746\) 0 0
\(747\) 13.9161i 0.509163i
\(748\) 0 0
\(749\) 47.8975i 1.75014i
\(750\) 0 0
\(751\) 9.66141i 0.352550i −0.984341 0.176275i \(-0.943595\pi\)
0.984341 0.176275i \(-0.0564048\pi\)
\(752\) 0 0
\(753\) 26.4789 0.964943
\(754\) 0 0
\(755\) 27.3699i 0.996094i
\(756\) 0 0
\(757\) 6.71194i 0.243950i −0.992533 0.121975i \(-0.961077\pi\)
0.992533 0.121975i \(-0.0389227\pi\)
\(758\) 0 0
\(759\) −3.62555 + 23.3723i −0.131599 + 0.848361i
\(760\) 0 0
\(761\) 5.73345i 0.207837i 0.994586 + 0.103919i \(0.0331382\pi\)
−0.994586 + 0.103919i \(0.966862\pi\)
\(762\) 0 0
\(763\) 4.86377 0.176080
\(764\) 0 0
\(765\) −2.77795 −0.100437
\(766\) 0 0
\(767\) −76.8316 −2.77423
\(768\) 0 0
\(769\) 47.3138i 1.70618i 0.521764 + 0.853090i \(0.325274\pi\)
−0.521764 + 0.853090i \(0.674726\pi\)
\(770\) 0 0
\(771\) 23.8564 0.859167
\(772\) 0 0
\(773\) 11.6047i 0.417391i 0.977981 + 0.208696i \(0.0669218\pi\)
−0.977981 + 0.208696i \(0.933078\pi\)
\(774\) 0 0
\(775\) 7.15095i 0.256870i
\(776\) 0 0
\(777\) 24.4997i 0.878922i
\(778\) 0 0
\(779\) −49.9219 −1.78864
\(780\) 0 0
\(781\) −0.451288 + 2.90925i −0.0161484 + 0.104101i
\(782\) 0 0
\(783\) −6.68078 −0.238751
\(784\) 0 0
\(785\) 21.0440 0.751094
\(786\) 0 0
\(787\) 21.2965i 0.759137i −0.925164 0.379569i \(-0.876072\pi\)
0.925164 0.379569i \(-0.123928\pi\)
\(788\) 0 0
\(789\) −0.744350 −0.0264996
\(790\) 0 0
\(791\) −6.11045 −0.217262
\(792\) 0 0
\(793\) −76.7813 −2.72658
\(794\) 0 0
\(795\) −12.4081 −0.440070
\(796\) 0 0
\(797\) 7.40460i 0.262285i −0.991364 0.131142i \(-0.958136\pi\)
0.991364 0.131142i \(-0.0418645\pi\)
\(798\) 0 0
\(799\) −13.7000 −0.484670
\(800\) 0 0
\(801\) −4.92820 −0.174129
\(802\) 0 0
\(803\) −8.48726 + 54.7135i −0.299509 + 1.93080i
\(804\) 0 0
\(805\) 36.3243 1.28026
\(806\) 0 0
\(807\) 5.74828i 0.202349i
\(808\) 0 0
\(809\) 31.5883i 1.11059i −0.831654 0.555294i \(-0.812606\pi\)
0.831654 0.555294i \(-0.187394\pi\)
\(810\) 0 0
\(811\) 7.09989i 0.249311i 0.992200 + 0.124655i \(0.0397826\pi\)
−0.992200 + 0.124655i \(0.960217\pi\)
\(812\) 0 0
\(813\) −17.5259 −0.614659
\(814\) 0 0
\(815\) 4.06952i 0.142549i
\(816\) 0 0
\(817\) 34.5612 1.20914
\(818\) 0 0
\(819\) −21.2584 −0.742828
\(820\) 0 0
\(821\) 53.5211 1.86790 0.933950 0.357405i \(-0.116338\pi\)
0.933950 + 0.357405i \(0.116338\pi\)
\(822\) 0 0
\(823\) 40.4555i 1.41019i −0.709113 0.705095i \(-0.750904\pi\)
0.709113 0.705095i \(-0.249096\pi\)
\(824\) 0 0
\(825\) −7.27743 1.12889i −0.253367 0.0393028i
\(826\) 0 0
\(827\) 31.3449i 1.08997i −0.838447 0.544984i \(-0.816536\pi\)
0.838447 0.544984i \(-0.183464\pi\)
\(828\) 0 0
\(829\) 42.8977i 1.48990i 0.667121 + 0.744949i \(0.267526\pi\)
−0.667121 + 0.744949i \(0.732474\pi\)
\(830\) 0 0
\(831\) −8.59534 −0.298169
\(832\) 0 0
\(833\) 3.88966i 0.134769i
\(834\) 0 0
\(835\) 8.02179i 0.277605i
\(836\) 0 0
\(837\) 3.22047i 0.111316i
\(838\) 0 0
\(839\) 15.5375i 0.536413i 0.963361 + 0.268207i \(0.0864310\pi\)
−0.963361 + 0.268207i \(0.913569\pi\)
\(840\) 0 0
\(841\) 15.6328 0.539061
\(842\) 0 0
\(843\) 11.8535i 0.408257i
\(844\) 0 0
\(845\) 59.0426i 2.03113i
\(846\) 0 0
\(847\) −32.0281 10.1815i −1.10050 0.349841i
\(848\) 0 0
\(849\) 23.5778i 0.809188i
\(850\) 0 0
\(851\) −57.1855 −1.96029
\(852\) 0 0
\(853\) −18.7730 −0.642775 −0.321387 0.946948i \(-0.604149\pi\)
−0.321387 + 0.946948i \(0.604149\pi\)
\(854\) 0 0
\(855\) 7.40933 0.253394
\(856\) 0 0
\(857\) 11.9098i 0.406833i 0.979092 + 0.203416i \(0.0652045\pi\)
−0.979092 + 0.203416i \(0.934796\pi\)
\(858\) 0 0
\(859\) −14.6751 −0.500707 −0.250354 0.968154i \(-0.580547\pi\)
−0.250354 + 0.968154i \(0.580547\pi\)
\(860\) 0 0
\(861\) 34.3195i 1.16960i
\(862\) 0 0
\(863\) 3.35282i 0.114131i 0.998370 + 0.0570656i \(0.0181744\pi\)
−0.998370 + 0.0570656i \(0.981826\pi\)
\(864\) 0 0
\(865\) 9.23643i 0.314048i
\(866\) 0 0
\(867\) 14.2236 0.483060
\(868\) 0 0
\(869\) 16.6783 + 2.58716i 0.565771 + 0.0877635i
\(870\) 0 0
\(871\) −27.0615 −0.916944
\(872\) 0 0
\(873\) 12.4441 0.421169
\(874\) 0 0
\(875\) 36.7785i 1.24334i
\(876\) 0 0
\(877\) 32.2928 1.09045 0.545225 0.838290i \(-0.316444\pi\)
0.545225 + 0.838290i \(0.316444\pi\)
\(878\) 0 0
\(879\) −21.1514 −0.713419
\(880\) 0 0
\(881\) −40.4195 −1.36177 −0.680884 0.732392i \(-0.738404\pi\)
−0.680884 + 0.732392i \(0.738404\pi\)
\(882\) 0 0
\(883\) 24.4801 0.823820 0.411910 0.911224i \(-0.364862\pi\)
0.411910 + 0.911224i \(0.364862\pi\)
\(884\) 0 0
\(885\) 18.4093i 0.618823i
\(886\) 0 0
\(887\) −25.5509 −0.857914 −0.428957 0.903325i \(-0.641119\pi\)
−0.428957 + 0.903325i \(0.641119\pi\)
\(888\) 0 0
\(889\) −43.9438 −1.47383
\(890\) 0 0
\(891\) −3.27743 0.508401i −0.109798 0.0170321i
\(892\) 0 0
\(893\) 36.5404 1.22278
\(894\) 0 0
\(895\) 8.51887i 0.284754i
\(896\) 0 0
\(897\) 49.6199i 1.65676i
\(898\) 0 0
\(899\) 21.5152i 0.717573i
\(900\) 0 0
\(901\) −12.4011 −0.413139
\(902\) 0 0
\(903\) 23.7595i 0.790667i
\(904\) 0 0
\(905\) 19.3291 0.642522
\(906\) 0 0
\(907\) −29.1611 −0.968279 −0.484139 0.874991i \(-0.660867\pi\)
−0.484139 + 0.874991i \(0.660867\pi\)
\(908\) 0 0
\(909\) −0.570332 −0.0189167
\(910\) 0 0
\(911\) 10.1757i 0.337137i 0.985690 + 0.168568i \(0.0539144\pi\)
−0.985690 + 0.168568i \(0.946086\pi\)
\(912\) 0 0
\(913\) −7.07495 + 45.6090i −0.234147 + 1.50944i
\(914\) 0 0
\(915\) 18.3973i 0.608195i
\(916\) 0 0
\(917\) 8.48726i 0.280274i
\(918\) 0 0
\(919\) 9.72021 0.320640 0.160320 0.987065i \(-0.448747\pi\)
0.160320 + 0.987065i \(0.448747\pi\)
\(920\) 0 0
\(921\) 14.4417i 0.475869i
\(922\) 0 0
\(923\) 6.17639i 0.203298i
\(924\) 0 0
\(925\) 17.8058i 0.585453i
\(926\) 0 0
\(927\) 12.8174i 0.420980i
\(928\) 0 0
\(929\) 41.3670 1.35721 0.678604 0.734504i \(-0.262585\pi\)
0.678604 + 0.734504i \(0.262585\pi\)
\(930\) 0 0
\(931\) 10.3745i 0.340010i
\(932\) 0 0
\(933\) 16.4194i 0.537546i
\(934\) 0 0
\(935\) 9.10454 + 1.41231i 0.297750 + 0.0461876i
\(936\) 0 0
\(937\) 2.71040i 0.0885449i −0.999019 0.0442725i \(-0.985903\pi\)
0.999019 0.0442725i \(-0.0140970\pi\)
\(938\) 0 0
\(939\) −6.24910 −0.203932
\(940\) 0 0
\(941\) −44.3619 −1.44616 −0.723078 0.690767i \(-0.757273\pi\)
−0.723078 + 0.690767i \(0.757273\pi\)
\(942\) 0 0
\(943\) 80.1062 2.60862
\(944\) 0 0
\(945\) 5.09364i 0.165696i
\(946\) 0 0
\(947\) −37.0504 −1.20397 −0.601987 0.798506i \(-0.705624\pi\)
−0.601987 + 0.798506i \(0.705624\pi\)
\(948\) 0 0
\(949\) 116.158i 3.77065i
\(950\) 0 0
\(951\) 16.5143i 0.535513i
\(952\) 0 0
\(953\) 11.9098i 0.385798i 0.981219 + 0.192899i \(0.0617889\pi\)
−0.981219 + 0.192899i \(0.938211\pi\)
\(954\) 0 0
\(955\) −14.0051 −0.453194
\(956\) 0 0
\(957\) 21.8958 + 3.39651i 0.707789 + 0.109794i
\(958\) 0 0
\(959\) −1.34717 −0.0435023
\(960\) 0 0
\(961\) 20.6286 0.665438
\(962\) 0 0
\(963\) 15.6772i 0.505192i
\(964\) 0 0
\(965\) 13.0135 0.418920
\(966\) 0 0
\(967\) 53.2956 1.71387 0.856935 0.515424i \(-0.172366\pi\)
0.856935 + 0.515424i \(0.172366\pi\)
\(968\) 0 0
\(969\) 7.40513 0.237887
\(970\) 0 0
\(971\) 40.7086 1.30640 0.653201 0.757185i \(-0.273426\pi\)
0.653201 + 0.757185i \(0.273426\pi\)
\(972\) 0 0
\(973\) 13.5780i 0.435291i
\(974\) 0 0
\(975\) 15.4501 0.494800
\(976\) 0 0
\(977\) −33.9027 −1.08464 −0.542322 0.840171i \(-0.682455\pi\)
−0.542322 + 0.840171i \(0.682455\pi\)
\(978\) 0 0
\(979\) 16.1518 + 2.50550i 0.516215 + 0.0800762i
\(980\) 0 0
\(981\) −1.59195 −0.0508271
\(982\) 0 0
\(983\) 26.3684i 0.841022i 0.907288 + 0.420511i \(0.138149\pi\)
−0.907288 + 0.420511i \(0.861851\pi\)
\(984\) 0 0
\(985\) 21.3254i 0.679485i
\(986\) 0 0
\(987\) 25.1202i 0.799584i
\(988\) 0 0
\(989\) −55.4579 −1.76346
\(990\) 0 0
\(991\) 26.0893i 0.828754i −0.910105 0.414377i \(-0.863999\pi\)
0.910105 0.414377i \(-0.136001\pi\)
\(992\) 0 0
\(993\) 14.9282 0.473732
\(994\) 0 0
\(995\) 14.5652 0.461748
\(996\) 0 0
\(997\) −36.5498 −1.15754 −0.578772 0.815490i \(-0.696468\pi\)
−0.578772 + 0.815490i \(0.696468\pi\)
\(998\) 0 0
\(999\) 8.01896i 0.253709i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2112.2.h.d.1759.5 yes 16
4.3 odd 2 2112.2.h.c.1759.6 yes 16
8.3 odd 2 inner 2112.2.h.d.1759.12 yes 16
8.5 even 2 2112.2.h.c.1759.11 yes 16
11.10 odd 2 inner 2112.2.h.d.1759.6 yes 16
44.43 even 2 2112.2.h.c.1759.5 16
88.21 odd 2 2112.2.h.c.1759.12 yes 16
88.43 even 2 inner 2112.2.h.d.1759.11 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2112.2.h.c.1759.5 16 44.43 even 2
2112.2.h.c.1759.6 yes 16 4.3 odd 2
2112.2.h.c.1759.11 yes 16 8.5 even 2
2112.2.h.c.1759.12 yes 16 88.21 odd 2
2112.2.h.d.1759.5 yes 16 1.1 even 1 trivial
2112.2.h.d.1759.6 yes 16 11.10 odd 2 inner
2112.2.h.d.1759.11 yes 16 88.43 even 2 inner
2112.2.h.d.1759.12 yes 16 8.3 odd 2 inner