Properties

Label 2112.2.h.a.1759.5
Level $2112$
Weight $2$
Character 2112.1759
Analytic conductor $16.864$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2112,2,Mod(1759,2112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2112.1759"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1759.5
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 2112.1759
Dual form 2112.2.h.a.1759.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.23607i q^{5} -3.80423 q^{7} +1.00000 q^{9} +(-3.23607 - 0.726543i) q^{11} -2.35114 q^{13} -1.23607i q^{15} +4.70228i q^{17} +6.15537i q^{19} +3.80423 q^{21} -3.23607i q^{23} +3.47214 q^{25} -1.00000 q^{27} +1.45309 q^{29} -4.47214i q^{31} +(3.23607 + 0.726543i) q^{33} -4.70228i q^{35} -2.47214i q^{37} +2.35114 q^{39} -7.60845i q^{41} -1.45309i q^{43} +1.23607i q^{45} -0.763932i q^{47} +7.47214 q^{49} -4.70228i q^{51} +1.23607i q^{53} +(0.898056 - 4.00000i) q^{55} -6.15537i q^{57} -4.00000 q^{59} -9.95959 q^{61} -3.80423 q^{63} -2.90617i q^{65} +8.00000 q^{67} +3.23607i q^{69} -13.7082i q^{71} -7.60845i q^{73} -3.47214 q^{75} +(12.3107 + 2.76393i) q^{77} +13.2088 q^{79} +1.00000 q^{81} +9.06154i q^{83} -5.81234 q^{85} -1.45309 q^{87} +9.41641 q^{89} +8.94427 q^{91} +4.47214i q^{93} -7.60845 q^{95} +3.52786 q^{97} +(-3.23607 - 0.726543i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} + 8 q^{9} - 8 q^{11} - 8 q^{25} - 8 q^{27} + 8 q^{33} + 24 q^{49} - 32 q^{59} + 64 q^{67} + 8 q^{75} + 8 q^{81} - 32 q^{89} + 64 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2112\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1409\) \(1729\) \(2047\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.23607i 0.552786i 0.961045 + 0.276393i \(0.0891392\pi\)
−0.961045 + 0.276393i \(0.910861\pi\)
\(6\) 0 0
\(7\) −3.80423 −1.43786 −0.718931 0.695081i \(-0.755368\pi\)
−0.718931 + 0.695081i \(0.755368\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.23607 0.726543i −0.975711 0.219061i
\(12\) 0 0
\(13\) −2.35114 −0.652089 −0.326045 0.945354i \(-0.605716\pi\)
−0.326045 + 0.945354i \(0.605716\pi\)
\(14\) 0 0
\(15\) 1.23607i 0.319151i
\(16\) 0 0
\(17\) 4.70228i 1.14047i 0.821481 + 0.570235i \(0.193148\pi\)
−0.821481 + 0.570235i \(0.806852\pi\)
\(18\) 0 0
\(19\) 6.15537i 1.41214i 0.708143 + 0.706069i \(0.249533\pi\)
−0.708143 + 0.706069i \(0.750467\pi\)
\(20\) 0 0
\(21\) 3.80423 0.830150
\(22\) 0 0
\(23\) 3.23607i 0.674767i −0.941367 0.337383i \(-0.890458\pi\)
0.941367 0.337383i \(-0.109542\pi\)
\(24\) 0 0
\(25\) 3.47214 0.694427
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 1.45309 0.269831 0.134916 0.990857i \(-0.456924\pi\)
0.134916 + 0.990857i \(0.456924\pi\)
\(30\) 0 0
\(31\) 4.47214i 0.803219i −0.915811 0.401610i \(-0.868451\pi\)
0.915811 0.401610i \(-0.131549\pi\)
\(32\) 0 0
\(33\) 3.23607 + 0.726543i 0.563327 + 0.126475i
\(34\) 0 0
\(35\) 4.70228i 0.794831i
\(36\) 0 0
\(37\) 2.47214i 0.406417i −0.979136 0.203208i \(-0.934863\pi\)
0.979136 0.203208i \(-0.0651369\pi\)
\(38\) 0 0
\(39\) 2.35114 0.376484
\(40\) 0 0
\(41\) 7.60845i 1.18824i −0.804376 0.594120i \(-0.797500\pi\)
0.804376 0.594120i \(-0.202500\pi\)
\(42\) 0 0
\(43\) 1.45309i 0.221593i −0.993843 0.110797i \(-0.964660\pi\)
0.993843 0.110797i \(-0.0353402\pi\)
\(44\) 0 0
\(45\) 1.23607i 0.184262i
\(46\) 0 0
\(47\) 0.763932i 0.111431i −0.998447 0.0557155i \(-0.982256\pi\)
0.998447 0.0557155i \(-0.0177440\pi\)
\(48\) 0 0
\(49\) 7.47214 1.06745
\(50\) 0 0
\(51\) 4.70228i 0.658451i
\(52\) 0 0
\(53\) 1.23607i 0.169787i 0.996390 + 0.0848935i \(0.0270550\pi\)
−0.996390 + 0.0848935i \(0.972945\pi\)
\(54\) 0 0
\(55\) 0.898056 4.00000i 0.121094 0.539360i
\(56\) 0 0
\(57\) 6.15537i 0.815298i
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −9.95959 −1.27520 −0.637598 0.770370i \(-0.720072\pi\)
−0.637598 + 0.770370i \(0.720072\pi\)
\(62\) 0 0
\(63\) −3.80423 −0.479287
\(64\) 0 0
\(65\) 2.90617i 0.360466i
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 3.23607i 0.389577i
\(70\) 0 0
\(71\) 13.7082i 1.62686i −0.581660 0.813432i \(-0.697596\pi\)
0.581660 0.813432i \(-0.302404\pi\)
\(72\) 0 0
\(73\) 7.60845i 0.890502i −0.895406 0.445251i \(-0.853114\pi\)
0.895406 0.445251i \(-0.146886\pi\)
\(74\) 0 0
\(75\) −3.47214 −0.400928
\(76\) 0 0
\(77\) 12.3107 + 2.76393i 1.40294 + 0.314979i
\(78\) 0 0
\(79\) 13.2088 1.48610 0.743052 0.669233i \(-0.233377\pi\)
0.743052 + 0.669233i \(0.233377\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 9.06154i 0.994633i 0.867569 + 0.497316i \(0.165681\pi\)
−0.867569 + 0.497316i \(0.834319\pi\)
\(84\) 0 0
\(85\) −5.81234 −0.630437
\(86\) 0 0
\(87\) −1.45309 −0.155787
\(88\) 0 0
\(89\) 9.41641 0.998137 0.499069 0.866562i \(-0.333676\pi\)
0.499069 + 0.866562i \(0.333676\pi\)
\(90\) 0 0
\(91\) 8.94427 0.937614
\(92\) 0 0
\(93\) 4.47214i 0.463739i
\(94\) 0 0
\(95\) −7.60845 −0.780611
\(96\) 0 0
\(97\) 3.52786 0.358200 0.179100 0.983831i \(-0.442681\pi\)
0.179100 + 0.983831i \(0.442681\pi\)
\(98\) 0 0
\(99\) −3.23607 0.726543i −0.325237 0.0730203i
\(100\) 0 0
\(101\) −6.15537 −0.612482 −0.306241 0.951954i \(-0.599071\pi\)
−0.306241 + 0.951954i \(0.599071\pi\)
\(102\) 0 0
\(103\) 9.41641i 0.927826i −0.885881 0.463913i \(-0.846445\pi\)
0.885881 0.463913i \(-0.153555\pi\)
\(104\) 0 0
\(105\) 4.70228i 0.458896i
\(106\) 0 0
\(107\) 13.7638i 1.33060i 0.746577 + 0.665299i \(0.231696\pi\)
−0.746577 + 0.665299i \(0.768304\pi\)
\(108\) 0 0
\(109\) 14.6619 1.40435 0.702176 0.712003i \(-0.252212\pi\)
0.702176 + 0.712003i \(0.252212\pi\)
\(110\) 0 0
\(111\) 2.47214i 0.234645i
\(112\) 0 0
\(113\) 9.41641 0.885821 0.442911 0.896566i \(-0.353946\pi\)
0.442911 + 0.896566i \(0.353946\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) −2.35114 −0.217363
\(118\) 0 0
\(119\) 17.8885i 1.63984i
\(120\) 0 0
\(121\) 9.94427 + 4.70228i 0.904025 + 0.427480i
\(122\) 0 0
\(123\) 7.60845i 0.686031i
\(124\) 0 0
\(125\) 10.4721i 0.936656i
\(126\) 0 0
\(127\) −13.2088 −1.17209 −0.586045 0.810278i \(-0.699316\pi\)
−0.586045 + 0.810278i \(0.699316\pi\)
\(128\) 0 0
\(129\) 1.45309i 0.127937i
\(130\) 0 0
\(131\) 21.3723i 1.86730i −0.358181 0.933652i \(-0.616603\pi\)
0.358181 0.933652i \(-0.383397\pi\)
\(132\) 0 0
\(133\) 23.4164i 2.03046i
\(134\) 0 0
\(135\) 1.23607i 0.106384i
\(136\) 0 0
\(137\) 7.52786 0.643149 0.321574 0.946884i \(-0.395788\pi\)
0.321574 + 0.946884i \(0.395788\pi\)
\(138\) 0 0
\(139\) 16.6700i 1.41393i −0.707249 0.706965i \(-0.750064\pi\)
0.707249 0.706965i \(-0.249936\pi\)
\(140\) 0 0
\(141\) 0.763932i 0.0643347i
\(142\) 0 0
\(143\) 7.60845 + 1.70820i 0.636251 + 0.142847i
\(144\) 0 0
\(145\) 1.79611i 0.149159i
\(146\) 0 0
\(147\) −7.47214 −0.616291
\(148\) 0 0
\(149\) 3.24920 0.266185 0.133092 0.991104i \(-0.457509\pi\)
0.133092 + 0.991104i \(0.457509\pi\)
\(150\) 0 0
\(151\) −2.00811 −0.163418 −0.0817090 0.996656i \(-0.526038\pi\)
−0.0817090 + 0.996656i \(0.526038\pi\)
\(152\) 0 0
\(153\) 4.70228i 0.380157i
\(154\) 0 0
\(155\) 5.52786 0.444009
\(156\) 0 0
\(157\) 8.00000i 0.638470i −0.947676 0.319235i \(-0.896574\pi\)
0.947676 0.319235i \(-0.103426\pi\)
\(158\) 0 0
\(159\) 1.23607i 0.0980266i
\(160\) 0 0
\(161\) 12.3107i 0.970222i
\(162\) 0 0
\(163\) 21.8885 1.71444 0.857222 0.514948i \(-0.172189\pi\)
0.857222 + 0.514948i \(0.172189\pi\)
\(164\) 0 0
\(165\) −0.898056 + 4.00000i −0.0699136 + 0.311400i
\(166\) 0 0
\(167\) −22.8254 −1.76628 −0.883140 0.469110i \(-0.844575\pi\)
−0.883140 + 0.469110i \(0.844575\pi\)
\(168\) 0 0
\(169\) −7.47214 −0.574780
\(170\) 0 0
\(171\) 6.15537i 0.470713i
\(172\) 0 0
\(173\) −23.1684 −1.76146 −0.880730 0.473619i \(-0.842947\pi\)
−0.880730 + 0.473619i \(0.842947\pi\)
\(174\) 0 0
\(175\) −13.2088 −0.998491
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 0 0
\(179\) −8.94427 −0.668526 −0.334263 0.942480i \(-0.608487\pi\)
−0.334263 + 0.942480i \(0.608487\pi\)
\(180\) 0 0
\(181\) 20.3607i 1.51340i −0.653764 0.756699i \(-0.726811\pi\)
0.653764 0.756699i \(-0.273189\pi\)
\(182\) 0 0
\(183\) 9.95959 0.736234
\(184\) 0 0
\(185\) 3.05573 0.224662
\(186\) 0 0
\(187\) 3.41641 15.2169i 0.249832 1.11277i
\(188\) 0 0
\(189\) 3.80423 0.276717
\(190\) 0 0
\(191\) 12.7639i 0.923566i 0.886993 + 0.461783i \(0.152790\pi\)
−0.886993 + 0.461783i \(0.847210\pi\)
\(192\) 0 0
\(193\) 17.0130i 1.22462i −0.790616 0.612312i \(-0.790240\pi\)
0.790616 0.612312i \(-0.209760\pi\)
\(194\) 0 0
\(195\) 2.90617i 0.208115i
\(196\) 0 0
\(197\) −0.343027 −0.0244397 −0.0122198 0.999925i \(-0.503890\pi\)
−0.0122198 + 0.999925i \(0.503890\pi\)
\(198\) 0 0
\(199\) 10.0000i 0.708881i −0.935079 0.354441i \(-0.884671\pi\)
0.935079 0.354441i \(-0.115329\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) −5.52786 −0.387980
\(204\) 0 0
\(205\) 9.40456 0.656843
\(206\) 0 0
\(207\) 3.23607i 0.224922i
\(208\) 0 0
\(209\) 4.47214 19.9192i 0.309344 1.37784i
\(210\) 0 0
\(211\) 0.343027i 0.0236149i 0.999930 + 0.0118075i \(0.00375852\pi\)
−0.999930 + 0.0118075i \(0.996241\pi\)
\(212\) 0 0
\(213\) 13.7082i 0.939271i
\(214\) 0 0
\(215\) 1.79611 0.122494
\(216\) 0 0
\(217\) 17.0130i 1.15492i
\(218\) 0 0
\(219\) 7.60845i 0.514132i
\(220\) 0 0
\(221\) 11.0557i 0.743689i
\(222\) 0 0
\(223\) 23.8885i 1.59970i 0.600203 + 0.799848i \(0.295086\pi\)
−0.600203 + 0.799848i \(0.704914\pi\)
\(224\) 0 0
\(225\) 3.47214 0.231476
\(226\) 0 0
\(227\) 23.1684i 1.53774i 0.639405 + 0.768870i \(0.279181\pi\)
−0.639405 + 0.768870i \(0.720819\pi\)
\(228\) 0 0
\(229\) 24.0000i 1.58596i −0.609245 0.792982i \(-0.708527\pi\)
0.609245 0.792982i \(-0.291473\pi\)
\(230\) 0 0
\(231\) −12.3107 2.76393i −0.809987 0.181853i
\(232\) 0 0
\(233\) 13.4208i 0.879225i 0.898187 + 0.439613i \(0.144884\pi\)
−0.898187 + 0.439613i \(0.855116\pi\)
\(234\) 0 0
\(235\) 0.944272 0.0615975
\(236\) 0 0
\(237\) −13.2088 −0.858003
\(238\) 0 0
\(239\) 22.8254 1.47645 0.738225 0.674555i \(-0.235664\pi\)
0.738225 + 0.674555i \(0.235664\pi\)
\(240\) 0 0
\(241\) 1.79611i 0.115698i −0.998325 0.0578489i \(-0.981576\pi\)
0.998325 0.0578489i \(-0.0184242\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 9.23607i 0.590071i
\(246\) 0 0
\(247\) 14.4721i 0.920840i
\(248\) 0 0
\(249\) 9.06154i 0.574252i
\(250\) 0 0
\(251\) −3.41641 −0.215642 −0.107821 0.994170i \(-0.534387\pi\)
−0.107821 + 0.994170i \(0.534387\pi\)
\(252\) 0 0
\(253\) −2.35114 + 10.4721i −0.147815 + 0.658378i
\(254\) 0 0
\(255\) 5.81234 0.363983
\(256\) 0 0
\(257\) −21.4164 −1.33592 −0.667959 0.744198i \(-0.732832\pi\)
−0.667959 + 0.744198i \(0.732832\pi\)
\(258\) 0 0
\(259\) 9.40456i 0.584371i
\(260\) 0 0
\(261\) 1.45309 0.0899437
\(262\) 0 0
\(263\) 17.0130 1.04907 0.524534 0.851390i \(-0.324240\pi\)
0.524534 + 0.851390i \(0.324240\pi\)
\(264\) 0 0
\(265\) −1.52786 −0.0938559
\(266\) 0 0
\(267\) −9.41641 −0.576275
\(268\) 0 0
\(269\) 22.1803i 1.35236i 0.736737 + 0.676180i \(0.236366\pi\)
−0.736737 + 0.676180i \(0.763634\pi\)
\(270\) 0 0
\(271\) 26.6296 1.61763 0.808816 0.588062i \(-0.200109\pi\)
0.808816 + 0.588062i \(0.200109\pi\)
\(272\) 0 0
\(273\) −8.94427 −0.541332
\(274\) 0 0
\(275\) −11.2361 2.52265i −0.677560 0.152122i
\(276\) 0 0
\(277\) 8.84953 0.531717 0.265859 0.964012i \(-0.414345\pi\)
0.265859 + 0.964012i \(0.414345\pi\)
\(278\) 0 0
\(279\) 4.47214i 0.267740i
\(280\) 0 0
\(281\) 4.70228i 0.280515i −0.990115 0.140257i \(-0.955207\pi\)
0.990115 0.140257i \(-0.0447930\pi\)
\(282\) 0 0
\(283\) 3.24920i 0.193145i −0.995326 0.0965724i \(-0.969212\pi\)
0.995326 0.0965724i \(-0.0307879\pi\)
\(284\) 0 0
\(285\) 7.60845 0.450686
\(286\) 0 0
\(287\) 28.9443i 1.70853i
\(288\) 0 0
\(289\) −5.11146 −0.300674
\(290\) 0 0
\(291\) −3.52786 −0.206807
\(292\) 0 0
\(293\) 16.6700 0.973871 0.486936 0.873438i \(-0.338115\pi\)
0.486936 + 0.873438i \(0.338115\pi\)
\(294\) 0 0
\(295\) 4.94427i 0.287867i
\(296\) 0 0
\(297\) 3.23607 + 0.726543i 0.187776 + 0.0421583i
\(298\) 0 0
\(299\) 7.60845i 0.440008i
\(300\) 0 0
\(301\) 5.52786i 0.318621i
\(302\) 0 0
\(303\) 6.15537 0.353617
\(304\) 0 0
\(305\) 12.3107i 0.704911i
\(306\) 0 0
\(307\) 16.6700i 0.951407i −0.879606 0.475703i \(-0.842194\pi\)
0.879606 0.475703i \(-0.157806\pi\)
\(308\) 0 0
\(309\) 9.41641i 0.535681i
\(310\) 0 0
\(311\) 4.18034i 0.237045i 0.992951 + 0.118523i \(0.0378158\pi\)
−0.992951 + 0.118523i \(0.962184\pi\)
\(312\) 0 0
\(313\) −2.94427 −0.166420 −0.0832100 0.996532i \(-0.526517\pi\)
−0.0832100 + 0.996532i \(0.526517\pi\)
\(314\) 0 0
\(315\) 4.70228i 0.264944i
\(316\) 0 0
\(317\) 14.1803i 0.796447i −0.917288 0.398224i \(-0.869627\pi\)
0.917288 0.398224i \(-0.130373\pi\)
\(318\) 0 0
\(319\) −4.70228 1.05573i −0.263277 0.0591094i
\(320\) 0 0
\(321\) 13.7638i 0.768221i
\(322\) 0 0
\(323\) −28.9443 −1.61050
\(324\) 0 0
\(325\) −8.16348 −0.452828
\(326\) 0 0
\(327\) −14.6619 −0.810804
\(328\) 0 0
\(329\) 2.90617i 0.160222i
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) 2.47214i 0.135472i
\(334\) 0 0
\(335\) 9.88854i 0.540269i
\(336\) 0 0
\(337\) 7.60845i 0.414459i 0.978292 + 0.207229i \(0.0664447\pi\)
−0.978292 + 0.207229i \(0.933555\pi\)
\(338\) 0 0
\(339\) −9.41641 −0.511429
\(340\) 0 0
\(341\) −3.24920 + 14.4721i −0.175954 + 0.783710i
\(342\) 0 0
\(343\) −1.79611 −0.0969809
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) 15.5599i 0.835301i −0.908608 0.417650i \(-0.862854\pi\)
0.908608 0.417650i \(-0.137146\pi\)
\(348\) 0 0
\(349\) −11.7557 −0.629268 −0.314634 0.949213i \(-0.601882\pi\)
−0.314634 + 0.949213i \(0.601882\pi\)
\(350\) 0 0
\(351\) 2.35114 0.125495
\(352\) 0 0
\(353\) −31.8885 −1.69726 −0.848628 0.528990i \(-0.822571\pi\)
−0.848628 + 0.528990i \(0.822571\pi\)
\(354\) 0 0
\(355\) 16.9443 0.899309
\(356\) 0 0
\(357\) 17.8885i 0.946762i
\(358\) 0 0
\(359\) −5.81234 −0.306764 −0.153382 0.988167i \(-0.549016\pi\)
−0.153382 + 0.988167i \(0.549016\pi\)
\(360\) 0 0
\(361\) −18.8885 −0.994134
\(362\) 0 0
\(363\) −9.94427 4.70228i −0.521939 0.246806i
\(364\) 0 0
\(365\) 9.40456 0.492257
\(366\) 0 0
\(367\) 26.9443i 1.40648i 0.710953 + 0.703240i \(0.248264\pi\)
−0.710953 + 0.703240i \(0.751736\pi\)
\(368\) 0 0
\(369\) 7.60845i 0.396080i
\(370\) 0 0
\(371\) 4.70228i 0.244130i
\(372\) 0 0
\(373\) −17.5680 −0.909639 −0.454819 0.890584i \(-0.650296\pi\)
−0.454819 + 0.890584i \(0.650296\pi\)
\(374\) 0 0
\(375\) 10.4721i 0.540779i
\(376\) 0 0
\(377\) −3.41641 −0.175954
\(378\) 0 0
\(379\) −13.8885 −0.713407 −0.356703 0.934218i \(-0.616099\pi\)
−0.356703 + 0.934218i \(0.616099\pi\)
\(380\) 0 0
\(381\) 13.2088 0.676707
\(382\) 0 0
\(383\) 12.1803i 0.622386i 0.950347 + 0.311193i \(0.100729\pi\)
−0.950347 + 0.311193i \(0.899271\pi\)
\(384\) 0 0
\(385\) −3.41641 + 15.2169i −0.174116 + 0.775525i
\(386\) 0 0
\(387\) 1.45309i 0.0738645i
\(388\) 0 0
\(389\) 35.7082i 1.81048i 0.424903 + 0.905239i \(0.360308\pi\)
−0.424903 + 0.905239i \(0.639692\pi\)
\(390\) 0 0
\(391\) 15.2169 0.769552
\(392\) 0 0
\(393\) 21.3723i 1.07809i
\(394\) 0 0
\(395\) 16.3270i 0.821499i
\(396\) 0 0
\(397\) 31.4164i 1.57674i −0.615199 0.788372i \(-0.710924\pi\)
0.615199 0.788372i \(-0.289076\pi\)
\(398\) 0 0
\(399\) 23.4164i 1.17229i
\(400\) 0 0
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 10.5146i 0.523771i
\(404\) 0 0
\(405\) 1.23607i 0.0614207i
\(406\) 0 0
\(407\) −1.79611 + 8.00000i −0.0890300 + 0.396545i
\(408\) 0 0
\(409\) 15.2169i 0.752427i −0.926533 0.376214i \(-0.877226\pi\)
0.926533 0.376214i \(-0.122774\pi\)
\(410\) 0 0
\(411\) −7.52786 −0.371322
\(412\) 0 0
\(413\) 15.2169 0.748775
\(414\) 0 0
\(415\) −11.2007 −0.549820
\(416\) 0 0
\(417\) 16.6700i 0.816333i
\(418\) 0 0
\(419\) 32.3607 1.58092 0.790461 0.612512i \(-0.209841\pi\)
0.790461 + 0.612512i \(0.209841\pi\)
\(420\) 0 0
\(421\) 15.4164i 0.751350i −0.926752 0.375675i \(-0.877411\pi\)
0.926752 0.375675i \(-0.122589\pi\)
\(422\) 0 0
\(423\) 0.763932i 0.0371436i
\(424\) 0 0
\(425\) 16.3270i 0.791974i
\(426\) 0 0
\(427\) 37.8885 1.83356
\(428\) 0 0
\(429\) −7.60845 1.70820i −0.367340 0.0824729i
\(430\) 0 0
\(431\) −26.4176 −1.27249 −0.636245 0.771487i \(-0.719513\pi\)
−0.636245 + 0.771487i \(0.719513\pi\)
\(432\) 0 0
\(433\) −23.8885 −1.14801 −0.574005 0.818852i \(-0.694611\pi\)
−0.574005 + 0.818852i \(0.694611\pi\)
\(434\) 0 0
\(435\) 1.79611i 0.0861170i
\(436\) 0 0
\(437\) 19.9192 0.952864
\(438\) 0 0
\(439\) −2.00811 −0.0958421 −0.0479210 0.998851i \(-0.515260\pi\)
−0.0479210 + 0.998851i \(0.515260\pi\)
\(440\) 0 0
\(441\) 7.47214 0.355816
\(442\) 0 0
\(443\) 1.52786 0.0725910 0.0362955 0.999341i \(-0.488444\pi\)
0.0362955 + 0.999341i \(0.488444\pi\)
\(444\) 0 0
\(445\) 11.6393i 0.551757i
\(446\) 0 0
\(447\) −3.24920 −0.153682
\(448\) 0 0
\(449\) −0.472136 −0.0222815 −0.0111407 0.999938i \(-0.503546\pi\)
−0.0111407 + 0.999938i \(0.503546\pi\)
\(450\) 0 0
\(451\) −5.52786 + 24.6215i −0.260297 + 1.15938i
\(452\) 0 0
\(453\) 2.00811 0.0943494
\(454\) 0 0
\(455\) 11.0557i 0.518301i
\(456\) 0 0
\(457\) 5.81234i 0.271890i 0.990716 + 0.135945i \(0.0434070\pi\)
−0.990716 + 0.135945i \(0.956593\pi\)
\(458\) 0 0
\(459\) 4.70228i 0.219484i
\(460\) 0 0
\(461\) −4.35926 −0.203031 −0.101515 0.994834i \(-0.532369\pi\)
−0.101515 + 0.994834i \(0.532369\pi\)
\(462\) 0 0
\(463\) 26.3607i 1.22508i 0.790438 + 0.612542i \(0.209853\pi\)
−0.790438 + 0.612542i \(0.790147\pi\)
\(464\) 0 0
\(465\) −5.52786 −0.256349
\(466\) 0 0
\(467\) −22.4721 −1.03989 −0.519943 0.854201i \(-0.674047\pi\)
−0.519943 + 0.854201i \(0.674047\pi\)
\(468\) 0 0
\(469\) −30.4338 −1.40530
\(470\) 0 0
\(471\) 8.00000i 0.368621i
\(472\) 0 0
\(473\) −1.05573 + 4.70228i −0.0485424 + 0.216211i
\(474\) 0 0
\(475\) 21.3723i 0.980627i
\(476\) 0 0
\(477\) 1.23607i 0.0565957i
\(478\) 0 0
\(479\) −1.79611 −0.0820664 −0.0410332 0.999158i \(-0.513065\pi\)
−0.0410332 + 0.999158i \(0.513065\pi\)
\(480\) 0 0
\(481\) 5.81234i 0.265020i
\(482\) 0 0
\(483\) 12.3107i 0.560158i
\(484\) 0 0
\(485\) 4.36068i 0.198008i
\(486\) 0 0
\(487\) 9.05573i 0.410354i 0.978725 + 0.205177i \(0.0657770\pi\)
−0.978725 + 0.205177i \(0.934223\pi\)
\(488\) 0 0
\(489\) −21.8885 −0.989834
\(490\) 0 0
\(491\) 16.6700i 0.752306i −0.926558 0.376153i \(-0.877247\pi\)
0.926558 0.376153i \(-0.122753\pi\)
\(492\) 0 0
\(493\) 6.83282i 0.307735i
\(494\) 0 0
\(495\) 0.898056 4.00000i 0.0403646 0.179787i
\(496\) 0 0
\(497\) 52.1491i 2.33921i
\(498\) 0 0
\(499\) −15.0557 −0.673987 −0.336993 0.941507i \(-0.609410\pi\)
−0.336993 + 0.941507i \(0.609410\pi\)
\(500\) 0 0
\(501\) 22.8254 1.01976
\(502\) 0 0
\(503\) 13.4208 0.598404 0.299202 0.954190i \(-0.403280\pi\)
0.299202 + 0.954190i \(0.403280\pi\)
\(504\) 0 0
\(505\) 7.60845i 0.338572i
\(506\) 0 0
\(507\) 7.47214 0.331849
\(508\) 0 0
\(509\) 27.7082i 1.22814i −0.789250 0.614072i \(-0.789530\pi\)
0.789250 0.614072i \(-0.210470\pi\)
\(510\) 0 0
\(511\) 28.9443i 1.28042i
\(512\) 0 0
\(513\) 6.15537i 0.271766i
\(514\) 0 0
\(515\) 11.6393 0.512890
\(516\) 0 0
\(517\) −0.555029 + 2.47214i −0.0244102 + 0.108724i
\(518\) 0 0
\(519\) 23.1684 1.01698
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) 7.26543i 0.317695i −0.987303 0.158847i \(-0.949222\pi\)
0.987303 0.158847i \(-0.0507778\pi\)
\(524\) 0 0
\(525\) 13.2088 0.576479
\(526\) 0 0
\(527\) 21.0292 0.916048
\(528\) 0 0
\(529\) 12.5279 0.544690
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 17.8885i 0.774839i
\(534\) 0 0
\(535\) −17.0130 −0.735537
\(536\) 0 0
\(537\) 8.94427 0.385974
\(538\) 0 0
\(539\) −24.1803 5.42882i −1.04152 0.233836i
\(540\) 0 0
\(541\) −19.3642 −0.832530 −0.416265 0.909243i \(-0.636661\pi\)
−0.416265 + 0.909243i \(0.636661\pi\)
\(542\) 0 0
\(543\) 20.3607i 0.873760i
\(544\) 0 0
\(545\) 18.1231i 0.776307i
\(546\) 0 0
\(547\) 30.0908i 1.28659i −0.765619 0.643294i \(-0.777567\pi\)
0.765619 0.643294i \(-0.222433\pi\)
\(548\) 0 0
\(549\) −9.95959 −0.425065
\(550\) 0 0
\(551\) 8.94427i 0.381039i
\(552\) 0 0
\(553\) −50.2492 −2.13681
\(554\) 0 0
\(555\) −3.05573 −0.129708
\(556\) 0 0
\(557\) −38.3853 −1.62644 −0.813218 0.581959i \(-0.802287\pi\)
−0.813218 + 0.581959i \(0.802287\pi\)
\(558\) 0 0
\(559\) 3.41641i 0.144499i
\(560\) 0 0
\(561\) −3.41641 + 15.2169i −0.144241 + 0.642458i
\(562\) 0 0
\(563\) 26.0746i 1.09891i −0.835523 0.549456i \(-0.814835\pi\)
0.835523 0.549456i \(-0.185165\pi\)
\(564\) 0 0
\(565\) 11.6393i 0.489670i
\(566\) 0 0
\(567\) −3.80423 −0.159762
\(568\) 0 0
\(569\) 40.9484i 1.71665i −0.513108 0.858324i \(-0.671506\pi\)
0.513108 0.858324i \(-0.328494\pi\)
\(570\) 0 0
\(571\) 38.3853i 1.60637i 0.595727 + 0.803187i \(0.296864\pi\)
−0.595727 + 0.803187i \(0.703136\pi\)
\(572\) 0 0
\(573\) 12.7639i 0.533221i
\(574\) 0 0
\(575\) 11.2361i 0.468576i
\(576\) 0 0
\(577\) −12.4721 −0.519222 −0.259611 0.965713i \(-0.583594\pi\)
−0.259611 + 0.965713i \(0.583594\pi\)
\(578\) 0 0
\(579\) 17.0130i 0.707037i
\(580\) 0 0
\(581\) 34.4721i 1.43015i
\(582\) 0 0
\(583\) 0.898056 4.00000i 0.0371937 0.165663i
\(584\) 0 0
\(585\) 2.90617i 0.120155i
\(586\) 0 0
\(587\) −23.0557 −0.951612 −0.475806 0.879550i \(-0.657844\pi\)
−0.475806 + 0.879550i \(0.657844\pi\)
\(588\) 0 0
\(589\) 27.5276 1.13426
\(590\) 0 0
\(591\) 0.343027 0.0141102
\(592\) 0 0
\(593\) 44.5407i 1.82907i −0.404512 0.914533i \(-0.632559\pi\)
0.404512 0.914533i \(-0.367441\pi\)
\(594\) 0 0
\(595\) 22.1115 0.906481
\(596\) 0 0
\(597\) 10.0000i 0.409273i
\(598\) 0 0
\(599\) 40.1803i 1.64172i −0.571126 0.820862i \(-0.693493\pi\)
0.571126 0.820862i \(-0.306507\pi\)
\(600\) 0 0
\(601\) 17.0130i 0.693975i −0.937870 0.346988i \(-0.887205\pi\)
0.937870 0.346988i \(-0.112795\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) −5.81234 + 12.2918i −0.236305 + 0.499733i
\(606\) 0 0
\(607\) 26.6296 1.08086 0.540431 0.841389i \(-0.318261\pi\)
0.540431 + 0.841389i \(0.318261\pi\)
\(608\) 0 0
\(609\) 5.52786 0.224000
\(610\) 0 0
\(611\) 1.79611i 0.0726629i
\(612\) 0 0
\(613\) 29.8788 1.20679 0.603396 0.797441i \(-0.293814\pi\)
0.603396 + 0.797441i \(0.293814\pi\)
\(614\) 0 0
\(615\) −9.40456 −0.379229
\(616\) 0 0
\(617\) −32.4721 −1.30728 −0.653639 0.756806i \(-0.726759\pi\)
−0.653639 + 0.756806i \(0.726759\pi\)
\(618\) 0 0
\(619\) 17.8885 0.719001 0.359501 0.933145i \(-0.382947\pi\)
0.359501 + 0.933145i \(0.382947\pi\)
\(620\) 0 0
\(621\) 3.23607i 0.129859i
\(622\) 0 0
\(623\) −35.8221 −1.43518
\(624\) 0 0
\(625\) 4.41641 0.176656
\(626\) 0 0
\(627\) −4.47214 + 19.9192i −0.178600 + 0.795496i
\(628\) 0 0
\(629\) 11.6247 0.463506
\(630\) 0 0
\(631\) 10.3607i 0.412452i 0.978504 + 0.206226i \(0.0661182\pi\)
−0.978504 + 0.206226i \(0.933882\pi\)
\(632\) 0 0
\(633\) 0.343027i 0.0136341i
\(634\) 0 0
\(635\) 16.3270i 0.647916i
\(636\) 0 0
\(637\) −17.5680 −0.696071
\(638\) 0 0
\(639\) 13.7082i 0.542288i
\(640\) 0 0
\(641\) 10.0000 0.394976 0.197488 0.980305i \(-0.436722\pi\)
0.197488 + 0.980305i \(0.436722\pi\)
\(642\) 0 0
\(643\) −33.8885 −1.33643 −0.668217 0.743967i \(-0.732942\pi\)
−0.668217 + 0.743967i \(0.732942\pi\)
\(644\) 0 0
\(645\) −1.79611 −0.0707218
\(646\) 0 0
\(647\) 11.5967i 0.455915i 0.973671 + 0.227958i \(0.0732048\pi\)
−0.973671 + 0.227958i \(0.926795\pi\)
\(648\) 0 0
\(649\) 12.9443 + 2.90617i 0.508107 + 0.114077i
\(650\) 0 0
\(651\) 17.0130i 0.666793i
\(652\) 0 0
\(653\) 11.1246i 0.435340i −0.976022 0.217670i \(-0.930154\pi\)
0.976022 0.217670i \(-0.0698456\pi\)
\(654\) 0 0
\(655\) 26.4176 1.03222
\(656\) 0 0
\(657\) 7.60845i 0.296834i
\(658\) 0 0
\(659\) 41.9775i 1.63521i 0.575778 + 0.817606i \(0.304699\pi\)
−0.575778 + 0.817606i \(0.695301\pi\)
\(660\) 0 0
\(661\) 46.8328i 1.82159i −0.412864 0.910793i \(-0.635472\pi\)
0.412864 0.910793i \(-0.364528\pi\)
\(662\) 0 0
\(663\) 11.0557i 0.429369i
\(664\) 0 0
\(665\) 28.9443 1.12241
\(666\) 0 0
\(667\) 4.70228i 0.182073i
\(668\) 0 0
\(669\) 23.8885i 0.923584i
\(670\) 0 0
\(671\) 32.2299 + 7.23607i 1.24422 + 0.279345i
\(672\) 0 0
\(673\) 18.8091i 0.725039i −0.931976 0.362519i \(-0.881917\pi\)
0.931976 0.362519i \(-0.118083\pi\)
\(674\) 0 0
\(675\) −3.47214 −0.133643
\(676\) 0 0
\(677\) −24.9645 −0.959463 −0.479732 0.877415i \(-0.659266\pi\)
−0.479732 + 0.877415i \(0.659266\pi\)
\(678\) 0 0
\(679\) −13.4208 −0.515043
\(680\) 0 0
\(681\) 23.1684i 0.887814i
\(682\) 0 0
\(683\) 12.5836 0.481498 0.240749 0.970587i \(-0.422607\pi\)
0.240749 + 0.970587i \(0.422607\pi\)
\(684\) 0 0
\(685\) 9.30495i 0.355524i
\(686\) 0 0
\(687\) 24.0000i 0.915657i
\(688\) 0 0
\(689\) 2.90617i 0.110716i
\(690\) 0 0
\(691\) 35.7771 1.36102 0.680512 0.732737i \(-0.261757\pi\)
0.680512 + 0.732737i \(0.261757\pi\)
\(692\) 0 0
\(693\) 12.3107 + 2.76393i 0.467646 + 0.104993i
\(694\) 0 0
\(695\) 20.6052 0.781601
\(696\) 0 0
\(697\) 35.7771 1.35515
\(698\) 0 0
\(699\) 13.4208i 0.507621i
\(700\) 0 0
\(701\) 35.4791 1.34003 0.670014 0.742349i \(-0.266288\pi\)
0.670014 + 0.742349i \(0.266288\pi\)
\(702\) 0 0
\(703\) 15.2169 0.573916
\(704\) 0 0
\(705\) −0.944272 −0.0355633
\(706\) 0 0
\(707\) 23.4164 0.880665
\(708\) 0 0
\(709\) 17.8885i 0.671818i −0.941894 0.335909i \(-0.890956\pi\)
0.941894 0.335909i \(-0.109044\pi\)
\(710\) 0 0
\(711\) 13.2088 0.495368
\(712\) 0 0
\(713\) −14.4721 −0.541986
\(714\) 0 0
\(715\) −2.11146 + 9.40456i −0.0789640 + 0.351711i
\(716\) 0 0
\(717\) −22.8254 −0.852429
\(718\) 0 0
\(719\) 5.70820i 0.212880i −0.994319 0.106440i \(-0.966055\pi\)
0.994319 0.106440i \(-0.0339452\pi\)
\(720\) 0 0
\(721\) 35.8221i 1.33409i
\(722\) 0 0
\(723\) 1.79611i 0.0667981i
\(724\) 0 0
\(725\) 5.04531 0.187378
\(726\) 0 0
\(727\) 24.8328i 0.920998i −0.887660 0.460499i \(-0.847670\pi\)
0.887660 0.460499i \(-0.152330\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 6.83282 0.252721
\(732\) 0 0
\(733\) 11.0697 0.408867 0.204433 0.978880i \(-0.434465\pi\)
0.204433 + 0.978880i \(0.434465\pi\)
\(734\) 0 0
\(735\) 9.23607i 0.340677i
\(736\) 0 0
\(737\) −25.8885 5.81234i −0.953617 0.214100i
\(738\) 0 0
\(739\) 52.4921i 1.93095i −0.260488 0.965477i \(-0.583883\pi\)
0.260488 0.965477i \(-0.416117\pi\)
\(740\) 0 0
\(741\) 14.4721i 0.531647i
\(742\) 0 0
\(743\) −9.40456 −0.345020 −0.172510 0.985008i \(-0.555188\pi\)
−0.172510 + 0.985008i \(0.555188\pi\)
\(744\) 0 0
\(745\) 4.01623i 0.147143i
\(746\) 0 0
\(747\) 9.06154i 0.331544i
\(748\) 0 0
\(749\) 52.3607i 1.91322i
\(750\) 0 0
\(751\) 1.41641i 0.0516855i −0.999666 0.0258427i \(-0.991773\pi\)
0.999666 0.0258427i \(-0.00822691\pi\)
\(752\) 0 0
\(753\) 3.41641 0.124501
\(754\) 0 0
\(755\) 2.48217i 0.0903353i
\(756\) 0 0
\(757\) 37.5279i 1.36397i −0.731365 0.681987i \(-0.761116\pi\)
0.731365 0.681987i \(-0.238884\pi\)
\(758\) 0 0
\(759\) 2.35114 10.4721i 0.0853410 0.380114i
\(760\) 0 0
\(761\) 10.5146i 0.381155i −0.981672 0.190577i \(-0.938964\pi\)
0.981672 0.190577i \(-0.0610360\pi\)
\(762\) 0 0
\(763\) −55.7771 −2.01927
\(764\) 0 0
\(765\) −5.81234 −0.210146
\(766\) 0 0
\(767\) 9.40456 0.339579
\(768\) 0 0
\(769\) 41.6345i 1.50138i 0.660656 + 0.750689i \(0.270278\pi\)
−0.660656 + 0.750689i \(0.729722\pi\)
\(770\) 0 0
\(771\) 21.4164 0.771293
\(772\) 0 0
\(773\) 30.1803i 1.08551i 0.839891 + 0.542756i \(0.182619\pi\)
−0.839891 + 0.542756i \(0.817381\pi\)
\(774\) 0 0
\(775\) 15.5279i 0.557777i
\(776\) 0 0
\(777\) 9.40456i 0.337387i
\(778\) 0 0
\(779\) 46.8328 1.67796
\(780\) 0 0
\(781\) −9.95959 + 44.3607i −0.356382 + 1.58735i
\(782\) 0 0
\(783\) −1.45309 −0.0519290
\(784\) 0 0
\(785\) 9.88854 0.352937
\(786\) 0 0
\(787\) 29.6668i 1.05751i −0.848776 0.528753i \(-0.822660\pi\)
0.848776 0.528753i \(-0.177340\pi\)
\(788\) 0 0
\(789\) −17.0130 −0.605679
\(790\) 0 0
\(791\) −35.8221 −1.27369
\(792\) 0 0
\(793\) 23.4164 0.831541
\(794\) 0 0
\(795\) 1.52786 0.0541878
\(796\) 0 0
\(797\) 7.34752i 0.260263i 0.991497 + 0.130131i \(0.0415399\pi\)
−0.991497 + 0.130131i \(0.958460\pi\)
\(798\) 0 0
\(799\) 3.59222 0.127084
\(800\) 0 0
\(801\) 9.41641 0.332712
\(802\) 0 0
\(803\) −5.52786 + 24.6215i −0.195074 + 0.868873i
\(804\) 0 0
\(805\) −15.2169 −0.536325
\(806\) 0 0
\(807\) 22.1803i 0.780785i
\(808\) 0 0
\(809\) 13.4208i 0.471850i −0.971771 0.235925i \(-0.924188\pi\)
0.971771 0.235925i \(-0.0758120\pi\)
\(810\) 0 0
\(811\) 7.95148i 0.279214i 0.990207 + 0.139607i \(0.0445840\pi\)
−0.990207 + 0.139607i \(0.955416\pi\)
\(812\) 0 0
\(813\) −26.6296 −0.933940
\(814\) 0 0
\(815\) 27.0557i 0.947721i
\(816\) 0 0
\(817\) 8.94427 0.312920
\(818\) 0 0
\(819\) 8.94427 0.312538
\(820\) 0 0
\(821\) −11.9677 −0.417676 −0.208838 0.977950i \(-0.566968\pi\)
−0.208838 + 0.977950i \(0.566968\pi\)
\(822\) 0 0
\(823\) 14.0000i 0.488009i 0.969774 + 0.244005i \(0.0784612\pi\)
−0.969774 + 0.244005i \(0.921539\pi\)
\(824\) 0 0
\(825\) 11.2361 + 2.52265i 0.391190 + 0.0878276i
\(826\) 0 0
\(827\) 43.0876i 1.49830i 0.662399 + 0.749151i \(0.269538\pi\)
−0.662399 + 0.749151i \(0.730462\pi\)
\(828\) 0 0
\(829\) 46.8328i 1.62657i 0.581865 + 0.813285i \(0.302323\pi\)
−0.581865 + 0.813285i \(0.697677\pi\)
\(830\) 0 0
\(831\) −8.84953 −0.306987
\(832\) 0 0
\(833\) 35.1361i 1.21739i
\(834\) 0 0
\(835\) 28.2137i 0.976375i
\(836\) 0 0
\(837\) 4.47214i 0.154580i
\(838\) 0 0
\(839\) 45.1246i 1.55787i −0.627102 0.778937i \(-0.715759\pi\)
0.627102 0.778937i \(-0.284241\pi\)
\(840\) 0 0
\(841\) −26.8885 −0.927191
\(842\) 0 0
\(843\) 4.70228i 0.161955i
\(844\) 0 0
\(845\) 9.23607i 0.317730i
\(846\) 0 0
\(847\) −37.8303 17.8885i −1.29986 0.614658i
\(848\) 0 0
\(849\) 3.24920i 0.111512i
\(850\) 0 0
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) 28.0827 0.961532 0.480766 0.876849i \(-0.340359\pi\)
0.480766 + 0.876849i \(0.340359\pi\)
\(854\) 0 0
\(855\) −7.60845 −0.260204
\(856\) 0 0
\(857\) 35.8221i 1.22366i 0.790989 + 0.611831i \(0.209567\pi\)
−0.790989 + 0.611831i \(0.790433\pi\)
\(858\) 0 0
\(859\) 2.11146 0.0720420 0.0360210 0.999351i \(-0.488532\pi\)
0.0360210 + 0.999351i \(0.488532\pi\)
\(860\) 0 0
\(861\) 28.9443i 0.986418i
\(862\) 0 0
\(863\) 8.76393i 0.298328i −0.988812 0.149164i \(-0.952342\pi\)
0.988812 0.149164i \(-0.0476582\pi\)
\(864\) 0 0
\(865\) 28.6377i 0.973711i
\(866\) 0 0
\(867\) 5.11146 0.173594
\(868\) 0 0
\(869\) −42.7445 9.59675i −1.45001 0.325547i
\(870\) 0 0
\(871\) −18.8091 −0.637323
\(872\) 0 0
\(873\) 3.52786 0.119400
\(874\) 0 0
\(875\) 39.8384i 1.34678i
\(876\) 0 0
\(877\) 54.5002 1.84034 0.920171 0.391516i \(-0.128049\pi\)
0.920171 + 0.391516i \(0.128049\pi\)
\(878\) 0 0
\(879\) −16.6700 −0.562265
\(880\) 0 0
\(881\) −28.8328 −0.971402 −0.485701 0.874125i \(-0.661436\pi\)
−0.485701 + 0.874125i \(0.661436\pi\)
\(882\) 0 0
\(883\) −12.9443 −0.435609 −0.217805 0.975992i \(-0.569890\pi\)
−0.217805 + 0.975992i \(0.569890\pi\)
\(884\) 0 0
\(885\) 4.94427i 0.166200i
\(886\) 0 0
\(887\) −5.81234 −0.195159 −0.0975796 0.995228i \(-0.531110\pi\)
−0.0975796 + 0.995228i \(0.531110\pi\)
\(888\) 0 0
\(889\) 50.2492 1.68530
\(890\) 0 0
\(891\) −3.23607 0.726543i −0.108412 0.0243401i
\(892\) 0 0
\(893\) 4.70228 0.157356
\(894\) 0 0
\(895\) 11.0557i 0.369552i
\(896\) 0 0
\(897\) 7.60845i 0.254039i
\(898\) 0 0
\(899\) 6.49839i 0.216734i
\(900\) 0 0
\(901\) −5.81234 −0.193637
\(902\) 0 0
\(903\) 5.52786i 0.183956i
\(904\) 0 0
\(905\) 25.1672 0.836586
\(906\) 0 0
\(907\) −20.9443 −0.695443 −0.347722 0.937598i \(-0.613045\pi\)
−0.347722 + 0.937598i \(0.613045\pi\)
\(908\) 0 0
\(909\) −6.15537 −0.204161
\(910\) 0 0
\(911\) 9.34752i 0.309697i −0.987938 0.154849i \(-0.950511\pi\)
0.987938 0.154849i \(-0.0494890\pi\)
\(912\) 0 0
\(913\) 6.58359 29.3238i 0.217885 0.970474i
\(914\) 0 0
\(915\) 12.3107i 0.406980i
\(916\) 0 0
\(917\) 81.3050i 2.68493i
\(918\) 0 0
\(919\) −32.4419 −1.07016 −0.535080 0.844801i \(-0.679719\pi\)
−0.535080 + 0.844801i \(0.679719\pi\)
\(920\) 0 0
\(921\) 16.6700i 0.549295i
\(922\) 0 0
\(923\) 32.2299i 1.06086i
\(924\) 0 0
\(925\) 8.58359i 0.282227i
\(926\) 0 0
\(927\) 9.41641i 0.309275i
\(928\) 0 0
\(929\) 51.3050 1.68326 0.841630 0.540054i \(-0.181596\pi\)
0.841630 + 0.540054i \(0.181596\pi\)
\(930\) 0 0
\(931\) 45.9937i 1.50738i
\(932\) 0 0
\(933\) 4.18034i 0.136858i
\(934\) 0 0
\(935\) 18.8091 + 4.22291i 0.615124 + 0.138104i
\(936\) 0 0
\(937\) 3.59222i 0.117353i −0.998277 0.0586764i \(-0.981312\pi\)
0.998277 0.0586764i \(-0.0186880\pi\)
\(938\) 0 0
\(939\) 2.94427 0.0960827
\(940\) 0 0
\(941\) 12.6538 0.412501 0.206250 0.978499i \(-0.433874\pi\)
0.206250 + 0.978499i \(0.433874\pi\)
\(942\) 0 0
\(943\) −24.6215 −0.801785
\(944\) 0 0
\(945\) 4.70228i 0.152965i
\(946\) 0 0
\(947\) 39.0557 1.26914 0.634570 0.772865i \(-0.281177\pi\)
0.634570 + 0.772865i \(0.281177\pi\)
\(948\) 0 0
\(949\) 17.8885i 0.580687i
\(950\) 0 0
\(951\) 14.1803i 0.459829i
\(952\) 0 0
\(953\) 35.8221i 1.16039i 0.814477 + 0.580197i \(0.197024\pi\)
−0.814477 + 0.580197i \(0.802976\pi\)
\(954\) 0 0
\(955\) −15.7771 −0.510535
\(956\) 0 0
\(957\) 4.70228 + 1.05573i 0.152003 + 0.0341268i
\(958\) 0 0
\(959\) −28.6377 −0.924759
\(960\) 0 0
\(961\) 11.0000 0.354839
\(962\) 0 0
\(963\) 13.7638i 0.443533i
\(964\) 0 0
\(965\) 21.0292 0.676955
\(966\) 0 0
\(967\) 15.0049 0.482525 0.241263 0.970460i \(-0.422439\pi\)
0.241263 + 0.970460i \(0.422439\pi\)
\(968\) 0 0
\(969\) 28.9443 0.929824
\(970\) 0 0
\(971\) −29.3050 −0.940441 −0.470220 0.882549i \(-0.655826\pi\)
−0.470220 + 0.882549i \(0.655826\pi\)
\(972\) 0 0
\(973\) 63.4164i 2.03304i
\(974\) 0 0
\(975\) 8.16348 0.261441
\(976\) 0 0
\(977\) 42.7214 1.36678 0.683389 0.730055i \(-0.260505\pi\)
0.683389 + 0.730055i \(0.260505\pi\)
\(978\) 0 0
\(979\) −30.4721 6.84142i −0.973894 0.218653i
\(980\) 0 0
\(981\) 14.6619 0.468118
\(982\) 0 0
\(983\) 30.0689i 0.959048i 0.877529 + 0.479524i \(0.159191\pi\)
−0.877529 + 0.479524i \(0.840809\pi\)
\(984\) 0 0
\(985\) 0.424005i 0.0135099i
\(986\) 0 0
\(987\) 2.90617i 0.0925044i
\(988\) 0 0
\(989\) −4.70228 −0.149524
\(990\) 0 0
\(991\) 51.3050i 1.62976i −0.579633 0.814878i \(-0.696804\pi\)
0.579633 0.814878i \(-0.303196\pi\)
\(992\) 0 0
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) 12.3607 0.391860
\(996\) 0 0
\(997\) 31.6749 1.00315 0.501577 0.865113i \(-0.332753\pi\)
0.501577 + 0.865113i \(0.332753\pi\)
\(998\) 0 0
\(999\) 2.47214i 0.0782149i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2112.2.h.a.1759.5 yes 8
4.3 odd 2 2112.2.h.b.1759.6 yes 8
8.3 odd 2 inner 2112.2.h.a.1759.4 yes 8
8.5 even 2 2112.2.h.b.1759.3 yes 8
11.10 odd 2 inner 2112.2.h.a.1759.6 yes 8
44.43 even 2 2112.2.h.b.1759.5 yes 8
88.21 odd 2 2112.2.h.b.1759.4 yes 8
88.43 even 2 inner 2112.2.h.a.1759.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2112.2.h.a.1759.3 8 88.43 even 2 inner
2112.2.h.a.1759.4 yes 8 8.3 odd 2 inner
2112.2.h.a.1759.5 yes 8 1.1 even 1 trivial
2112.2.h.a.1759.6 yes 8 11.10 odd 2 inner
2112.2.h.b.1759.3 yes 8 8.5 even 2
2112.2.h.b.1759.4 yes 8 88.21 odd 2
2112.2.h.b.1759.5 yes 8 44.43 even 2
2112.2.h.b.1759.6 yes 8 4.3 odd 2