Properties

Label 2112.2.f.g.1057.8
Level $2112$
Weight $2$
Character 2112.1057
Analytic conductor $16.864$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2112,2,Mod(1057,2112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2112.1057"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,-24,0,0,0, 0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(33)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1057.8
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2112.1057
Dual form 2112.2.f.g.1057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +2.82843i q^{5} -1.00000 q^{9} -1.00000i q^{11} +0.635674i q^{13} -2.82843 q^{15} +2.89898 q^{17} +4.89898i q^{19} -0.635674 q^{23} -3.00000 q^{25} -1.00000i q^{27} +6.29253i q^{29} -2.19275 q^{31} +1.00000 q^{33} +6.92820i q^{37} -0.635674 q^{39} -1.10102 q^{41} +0.898979i q^{43} -2.82843i q^{45} -6.29253 q^{47} -7.00000 q^{49} +2.89898i q^{51} +4.09978i q^{53} +2.82843 q^{55} -4.89898 q^{57} -13.7980i q^{59} +11.9494i q^{61} -1.79796 q^{65} -5.79796i q^{67} -0.635674i q^{69} +5.02118 q^{71} -11.7980 q^{73} -3.00000i q^{75} -6.92820 q^{79} +1.00000 q^{81} -9.79796i q^{83} +8.19955i q^{85} -6.29253 q^{87} +3.79796 q^{89} -2.19275i q^{93} -13.8564 q^{95} -6.00000 q^{97} +1.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 16 q^{17} - 24 q^{25} + 8 q^{33} - 48 q^{41} - 56 q^{49} + 64 q^{65} - 16 q^{73} + 8 q^{81} - 48 q^{89} - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2112\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1409\) \(1729\) \(2047\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.82843i 1.26491i 0.774597 + 0.632456i \(0.217953\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 1.00000i − 0.301511i
\(12\) 0 0
\(13\) 0.635674i 0.176304i 0.996107 + 0.0881522i \(0.0280962\pi\)
−0.996107 + 0.0881522i \(0.971904\pi\)
\(14\) 0 0
\(15\) −2.82843 −0.730297
\(16\) 0 0
\(17\) 2.89898 0.703106 0.351553 0.936168i \(-0.385654\pi\)
0.351553 + 0.936168i \(0.385654\pi\)
\(18\) 0 0
\(19\) 4.89898i 1.12390i 0.827170 + 0.561951i \(0.189949\pi\)
−0.827170 + 0.561951i \(0.810051\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.635674 −0.132547 −0.0662736 0.997801i \(-0.521111\pi\)
−0.0662736 + 0.997801i \(0.521111\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 6.29253i 1.16849i 0.811576 + 0.584247i \(0.198610\pi\)
−0.811576 + 0.584247i \(0.801390\pi\)
\(30\) 0 0
\(31\) −2.19275 −0.393830 −0.196915 0.980421i \(-0.563092\pi\)
−0.196915 + 0.980421i \(0.563092\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.92820i 1.13899i 0.821995 + 0.569495i \(0.192861\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) −0.635674 −0.101789
\(40\) 0 0
\(41\) −1.10102 −0.171951 −0.0859753 0.996297i \(-0.527401\pi\)
−0.0859753 + 0.996297i \(0.527401\pi\)
\(42\) 0 0
\(43\) 0.898979i 0.137093i 0.997648 + 0.0685465i \(0.0218362\pi\)
−0.997648 + 0.0685465i \(0.978164\pi\)
\(44\) 0 0
\(45\) − 2.82843i − 0.421637i
\(46\) 0 0
\(47\) −6.29253 −0.917860 −0.458930 0.888473i \(-0.651767\pi\)
−0.458930 + 0.888473i \(0.651767\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 2.89898i 0.405938i
\(52\) 0 0
\(53\) 4.09978i 0.563148i 0.959540 + 0.281574i \(0.0908564\pi\)
−0.959540 + 0.281574i \(0.909144\pi\)
\(54\) 0 0
\(55\) 2.82843 0.381385
\(56\) 0 0
\(57\) −4.89898 −0.648886
\(58\) 0 0
\(59\) − 13.7980i − 1.79634i −0.439647 0.898171i \(-0.644896\pi\)
0.439647 0.898171i \(-0.355104\pi\)
\(60\) 0 0
\(61\) 11.9494i 1.52996i 0.644053 + 0.764981i \(0.277252\pi\)
−0.644053 + 0.764981i \(0.722748\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.79796 −0.223009
\(66\) 0 0
\(67\) − 5.79796i − 0.708333i −0.935182 0.354167i \(-0.884765\pi\)
0.935182 0.354167i \(-0.115235\pi\)
\(68\) 0 0
\(69\) − 0.635674i − 0.0765262i
\(70\) 0 0
\(71\) 5.02118 0.595904 0.297952 0.954581i \(-0.403696\pi\)
0.297952 + 0.954581i \(0.403696\pi\)
\(72\) 0 0
\(73\) −11.7980 −1.38085 −0.690423 0.723406i \(-0.742576\pi\)
−0.690423 + 0.723406i \(0.742576\pi\)
\(74\) 0 0
\(75\) − 3.00000i − 0.346410i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.92820 −0.779484 −0.389742 0.920924i \(-0.627436\pi\)
−0.389742 + 0.920924i \(0.627436\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 9.79796i − 1.07547i −0.843115 0.537733i \(-0.819281\pi\)
0.843115 0.537733i \(-0.180719\pi\)
\(84\) 0 0
\(85\) 8.19955i 0.889366i
\(86\) 0 0
\(87\) −6.29253 −0.674630
\(88\) 0 0
\(89\) 3.79796 0.402583 0.201291 0.979531i \(-0.435486\pi\)
0.201291 + 0.979531i \(0.435486\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 2.19275i − 0.227378i
\(94\) 0 0
\(95\) −13.8564 −1.42164
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 1.00000i 0.100504i
\(100\) 0 0
\(101\) − 11.9494i − 1.18901i −0.804093 0.594504i \(-0.797348\pi\)
0.804093 0.594504i \(-0.202652\pi\)
\(102\) 0 0
\(103\) 2.19275 0.216058 0.108029 0.994148i \(-0.465546\pi\)
0.108029 + 0.994148i \(0.465546\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 8.00000i − 0.773389i −0.922208 0.386695i \(-0.873617\pi\)
0.922208 0.386695i \(-0.126383\pi\)
\(108\) 0 0
\(109\) − 5.02118i − 0.480942i −0.970656 0.240471i \(-0.922698\pi\)
0.970656 0.240471i \(-0.0773019\pi\)
\(110\) 0 0
\(111\) −6.92820 −0.657596
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) − 1.79796i − 0.167661i
\(116\) 0 0
\(117\) − 0.635674i − 0.0587681i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) − 1.10102i − 0.0992757i
\(124\) 0 0
\(125\) 5.65685i 0.505964i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −0.898979 −0.0791507
\(130\) 0 0
\(131\) 5.79796i 0.506570i 0.967392 + 0.253285i \(0.0815110\pi\)
−0.967392 + 0.253285i \(0.918489\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.82843 0.243432
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) − 7.10102i − 0.602301i −0.953577 0.301150i \(-0.902629\pi\)
0.953577 0.301150i \(-0.0973706\pi\)
\(140\) 0 0
\(141\) − 6.29253i − 0.529927i
\(142\) 0 0
\(143\) 0.635674 0.0531578
\(144\) 0 0
\(145\) −17.7980 −1.47804
\(146\) 0 0
\(147\) − 7.00000i − 0.577350i
\(148\) 0 0
\(149\) − 6.29253i − 0.515504i −0.966211 0.257752i \(-0.917018\pi\)
0.966211 0.257752i \(-0.0829818\pi\)
\(150\) 0 0
\(151\) 6.92820 0.563809 0.281905 0.959442i \(-0.409034\pi\)
0.281905 + 0.959442i \(0.409034\pi\)
\(152\) 0 0
\(153\) −2.89898 −0.234369
\(154\) 0 0
\(155\) − 6.20204i − 0.498160i
\(156\) 0 0
\(157\) 5.65685i 0.451466i 0.974189 + 0.225733i \(0.0724777\pi\)
−0.974189 + 0.225733i \(0.927522\pi\)
\(158\) 0 0
\(159\) −4.09978 −0.325133
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 21.7980i 1.70735i 0.520808 + 0.853674i \(0.325631\pi\)
−0.520808 + 0.853674i \(0.674369\pi\)
\(164\) 0 0
\(165\) 2.82843i 0.220193i
\(166\) 0 0
\(167\) −23.8988 −1.84934 −0.924671 0.380767i \(-0.875660\pi\)
−0.924671 + 0.380767i \(0.875660\pi\)
\(168\) 0 0
\(169\) 12.5959 0.968917
\(170\) 0 0
\(171\) − 4.89898i − 0.374634i
\(172\) 0 0
\(173\) 18.8776i 1.43524i 0.696437 + 0.717618i \(0.254768\pi\)
−0.696437 + 0.717618i \(0.745232\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.7980 1.03712
\(178\) 0 0
\(179\) 4.00000i 0.298974i 0.988764 + 0.149487i \(0.0477622\pi\)
−0.988764 + 0.149487i \(0.952238\pi\)
\(180\) 0 0
\(181\) 23.8988i 1.77638i 0.459475 + 0.888191i \(0.348038\pi\)
−0.459475 + 0.888191i \(0.651962\pi\)
\(182\) 0 0
\(183\) −11.9494 −0.883324
\(184\) 0 0
\(185\) −19.5959 −1.44072
\(186\) 0 0
\(187\) − 2.89898i − 0.211994i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.90702 −0.137987 −0.0689937 0.997617i \(-0.521979\pi\)
−0.0689937 + 0.997617i \(0.521979\pi\)
\(192\) 0 0
\(193\) 17.5959 1.26658 0.633291 0.773914i \(-0.281704\pi\)
0.633291 + 0.773914i \(0.281704\pi\)
\(194\) 0 0
\(195\) − 1.79796i − 0.128755i
\(196\) 0 0
\(197\) − 14.4921i − 1.03252i −0.856433 0.516259i \(-0.827324\pi\)
0.856433 0.516259i \(-0.172676\pi\)
\(198\) 0 0
\(199\) −3.46410 −0.245564 −0.122782 0.992434i \(-0.539182\pi\)
−0.122782 + 0.992434i \(0.539182\pi\)
\(200\) 0 0
\(201\) 5.79796 0.408956
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 3.11416i − 0.217502i
\(206\) 0 0
\(207\) 0.635674 0.0441824
\(208\) 0 0
\(209\) 4.89898 0.338869
\(210\) 0 0
\(211\) 14.6969i 1.01178i 0.862598 + 0.505889i \(0.168836\pi\)
−0.862598 + 0.505889i \(0.831164\pi\)
\(212\) 0 0
\(213\) 5.02118i 0.344046i
\(214\) 0 0
\(215\) −2.54270 −0.173411
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 11.7980i − 0.797232i
\(220\) 0 0
\(221\) 1.84281i 0.123961i
\(222\) 0 0
\(223\) 24.2487 1.62381 0.811907 0.583787i \(-0.198430\pi\)
0.811907 + 0.583787i \(0.198430\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 0 0
\(227\) 13.7980i 0.915803i 0.889003 + 0.457901i \(0.151399\pi\)
−0.889003 + 0.457901i \(0.848601\pi\)
\(228\) 0 0
\(229\) 15.1278i 0.999670i 0.866121 + 0.499835i \(0.166606\pi\)
−0.866121 + 0.499835i \(0.833394\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.10102 0.0721303 0.0360651 0.999349i \(-0.488518\pi\)
0.0360651 + 0.999349i \(0.488518\pi\)
\(234\) 0 0
\(235\) − 17.7980i − 1.16101i
\(236\) 0 0
\(237\) − 6.92820i − 0.450035i
\(238\) 0 0
\(239\) −12.5851 −0.814060 −0.407030 0.913415i \(-0.633436\pi\)
−0.407030 + 0.913415i \(0.633436\pi\)
\(240\) 0 0
\(241\) 7.79796 0.502311 0.251155 0.967947i \(-0.419189\pi\)
0.251155 + 0.967947i \(0.419189\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) − 19.7990i − 1.26491i
\(246\) 0 0
\(247\) −3.11416 −0.198149
\(248\) 0 0
\(249\) 9.79796 0.620920
\(250\) 0 0
\(251\) 21.7980i 1.37587i 0.725770 + 0.687937i \(0.241484\pi\)
−0.725770 + 0.687937i \(0.758516\pi\)
\(252\) 0 0
\(253\) 0.635674i 0.0399645i
\(254\) 0 0
\(255\) −8.19955 −0.513476
\(256\) 0 0
\(257\) 23.7980 1.48448 0.742238 0.670136i \(-0.233764\pi\)
0.742238 + 0.670136i \(0.233764\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 6.29253i − 0.389498i
\(262\) 0 0
\(263\) −11.3137 −0.697633 −0.348817 0.937191i \(-0.613416\pi\)
−0.348817 + 0.937191i \(0.613416\pi\)
\(264\) 0 0
\(265\) −11.5959 −0.712332
\(266\) 0 0
\(267\) 3.79796i 0.232431i
\(268\) 0 0
\(269\) − 12.8708i − 0.784746i −0.919806 0.392373i \(-0.871654\pi\)
0.919806 0.392373i \(-0.128346\pi\)
\(270\) 0 0
\(271\) 6.92820 0.420858 0.210429 0.977609i \(-0.432514\pi\)
0.210429 + 0.977609i \(0.432514\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.00000i 0.180907i
\(276\) 0 0
\(277\) 17.6062i 1.05786i 0.848667 + 0.528928i \(0.177406\pi\)
−0.848667 + 0.528928i \(0.822594\pi\)
\(278\) 0 0
\(279\) 2.19275 0.131277
\(280\) 0 0
\(281\) 1.10102 0.0656814 0.0328407 0.999461i \(-0.489545\pi\)
0.0328407 + 0.999461i \(0.489545\pi\)
\(282\) 0 0
\(283\) 11.1010i 0.659887i 0.944001 + 0.329944i \(0.107030\pi\)
−0.944001 + 0.329944i \(0.892970\pi\)
\(284\) 0 0
\(285\) − 13.8564i − 0.820783i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.59592 −0.505642
\(290\) 0 0
\(291\) − 6.00000i − 0.351726i
\(292\) 0 0
\(293\) − 10.6780i − 0.623817i −0.950112 0.311909i \(-0.899032\pi\)
0.950112 0.311909i \(-0.100968\pi\)
\(294\) 0 0
\(295\) 39.0265 2.27221
\(296\) 0 0
\(297\) −1.00000 −0.0580259
\(298\) 0 0
\(299\) − 0.404082i − 0.0233687i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 11.9494 0.686474
\(304\) 0 0
\(305\) −33.7980 −1.93527
\(306\) 0 0
\(307\) 26.6969i 1.52367i 0.647768 + 0.761837i \(0.275702\pi\)
−0.647768 + 0.761837i \(0.724298\pi\)
\(308\) 0 0
\(309\) 2.19275i 0.124741i
\(310\) 0 0
\(311\) 6.29253 0.356817 0.178408 0.983957i \(-0.442905\pi\)
0.178408 + 0.983957i \(0.442905\pi\)
\(312\) 0 0
\(313\) 17.5959 0.994580 0.497290 0.867584i \(-0.334328\pi\)
0.497290 + 0.867584i \(0.334328\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.82843i 0.158860i 0.996840 + 0.0794301i \(0.0253101\pi\)
−0.996840 + 0.0794301i \(0.974690\pi\)
\(318\) 0 0
\(319\) 6.29253 0.352314
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 14.2020i 0.790223i
\(324\) 0 0
\(325\) − 1.90702i − 0.105783i
\(326\) 0 0
\(327\) 5.02118 0.277672
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 33.3939i − 1.83549i −0.397166 0.917747i \(-0.630006\pi\)
0.397166 0.917747i \(-0.369994\pi\)
\(332\) 0 0
\(333\) − 6.92820i − 0.379663i
\(334\) 0 0
\(335\) 16.3991 0.895979
\(336\) 0 0
\(337\) −31.7980 −1.73215 −0.866073 0.499918i \(-0.833363\pi\)
−0.866073 + 0.499918i \(0.833363\pi\)
\(338\) 0 0
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) 2.19275i 0.118744i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.79796 0.0967989
\(346\) 0 0
\(347\) − 25.7980i − 1.38491i −0.721463 0.692453i \(-0.756530\pi\)
0.721463 0.692453i \(-0.243470\pi\)
\(348\) 0 0
\(349\) 30.1913i 1.61610i 0.589112 + 0.808051i \(0.299478\pi\)
−0.589112 + 0.808051i \(0.700522\pi\)
\(350\) 0 0
\(351\) 0.635674 0.0339298
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 14.2020i 0.753766i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.3137 −0.597115 −0.298557 0.954392i \(-0.596505\pi\)
−0.298557 + 0.954392i \(0.596505\pi\)
\(360\) 0 0
\(361\) −5.00000 −0.263158
\(362\) 0 0
\(363\) − 1.00000i − 0.0524864i
\(364\) 0 0
\(365\) − 33.3697i − 1.74665i
\(366\) 0 0
\(367\) 26.0915 1.36197 0.680983 0.732299i \(-0.261553\pi\)
0.680983 + 0.732299i \(0.261553\pi\)
\(368\) 0 0
\(369\) 1.10102 0.0573168
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 21.4203i − 1.10910i −0.832150 0.554550i \(-0.812890\pi\)
0.832150 0.554550i \(-0.187110\pi\)
\(374\) 0 0
\(375\) −5.65685 −0.292119
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 25.3939i 1.30440i 0.758049 + 0.652198i \(0.226153\pi\)
−0.758049 + 0.652198i \(0.773847\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.7340 1.67263 0.836314 0.548250i \(-0.184706\pi\)
0.836314 + 0.548250i \(0.184706\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 0.898979i − 0.0456977i
\(388\) 0 0
\(389\) 2.82843i 0.143407i 0.997426 + 0.0717035i \(0.0228435\pi\)
−0.997426 + 0.0717035i \(0.977156\pi\)
\(390\) 0 0
\(391\) −1.84281 −0.0931948
\(392\) 0 0
\(393\) −5.79796 −0.292468
\(394\) 0 0
\(395\) − 19.5959i − 0.985978i
\(396\) 0 0
\(397\) − 16.9706i − 0.851728i −0.904787 0.425864i \(-0.859970\pi\)
0.904787 0.425864i \(-0.140030\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.20204 0.209840 0.104920 0.994481i \(-0.466541\pi\)
0.104920 + 0.994481i \(0.466541\pi\)
\(402\) 0 0
\(403\) − 1.39388i − 0.0694340i
\(404\) 0 0
\(405\) 2.82843i 0.140546i
\(406\) 0 0
\(407\) 6.92820 0.343418
\(408\) 0 0
\(409\) 8.20204 0.405565 0.202782 0.979224i \(-0.435002\pi\)
0.202782 + 0.979224i \(0.435002\pi\)
\(410\) 0 0
\(411\) − 2.00000i − 0.0986527i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 27.7128 1.36037
\(416\) 0 0
\(417\) 7.10102 0.347738
\(418\) 0 0
\(419\) 21.7980i 1.06490i 0.846461 + 0.532450i \(0.178729\pi\)
−0.846461 + 0.532450i \(0.821271\pi\)
\(420\) 0 0
\(421\) − 25.1701i − 1.22672i −0.789805 0.613358i \(-0.789818\pi\)
0.789805 0.613358i \(-0.210182\pi\)
\(422\) 0 0
\(423\) 6.29253 0.305953
\(424\) 0 0
\(425\) −8.69694 −0.421863
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.635674i 0.0306907i
\(430\) 0 0
\(431\) 12.5851 0.606201 0.303100 0.952959i \(-0.401978\pi\)
0.303100 + 0.952959i \(0.401978\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) − 17.7980i − 0.853347i
\(436\) 0 0
\(437\) − 3.11416i − 0.148970i
\(438\) 0 0
\(439\) −13.8564 −0.661330 −0.330665 0.943748i \(-0.607273\pi\)
−0.330665 + 0.943748i \(0.607273\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) 4.00000i 0.190046i 0.995475 + 0.0950229i \(0.0302924\pi\)
−0.995475 + 0.0950229i \(0.969708\pi\)
\(444\) 0 0
\(445\) 10.7423i 0.509231i
\(446\) 0 0
\(447\) 6.29253 0.297626
\(448\) 0 0
\(449\) 11.7980 0.556780 0.278390 0.960468i \(-0.410199\pi\)
0.278390 + 0.960468i \(0.410199\pi\)
\(450\) 0 0
\(451\) 1.10102i 0.0518450i
\(452\) 0 0
\(453\) 6.92820i 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.7980 1.30033 0.650167 0.759791i \(-0.274699\pi\)
0.650167 + 0.759791i \(0.274699\pi\)
\(458\) 0 0
\(459\) − 2.89898i − 0.135313i
\(460\) 0 0
\(461\) − 40.9335i − 1.90647i −0.302238 0.953233i \(-0.597734\pi\)
0.302238 0.953233i \(-0.402266\pi\)
\(462\) 0 0
\(463\) 31.7484 1.47547 0.737736 0.675089i \(-0.235895\pi\)
0.737736 + 0.675089i \(0.235895\pi\)
\(464\) 0 0
\(465\) 6.20204 0.287613
\(466\) 0 0
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −5.65685 −0.260654
\(472\) 0 0
\(473\) 0.898979 0.0413351
\(474\) 0 0
\(475\) − 14.6969i − 0.674342i
\(476\) 0 0
\(477\) − 4.09978i − 0.187716i
\(478\) 0 0
\(479\) −15.1278 −0.691205 −0.345602 0.938381i \(-0.612325\pi\)
−0.345602 + 0.938381i \(0.612325\pi\)
\(480\) 0 0
\(481\) −4.40408 −0.200809
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 16.9706i − 0.770594i
\(486\) 0 0
\(487\) 17.3205 0.784867 0.392434 0.919780i \(-0.371633\pi\)
0.392434 + 0.919780i \(0.371633\pi\)
\(488\) 0 0
\(489\) −21.7980 −0.985738
\(490\) 0 0
\(491\) − 24.0000i − 1.08310i −0.840667 0.541552i \(-0.817837\pi\)
0.840667 0.541552i \(-0.182163\pi\)
\(492\) 0 0
\(493\) 18.2419i 0.821574i
\(494\) 0 0
\(495\) −2.82843 −0.127128
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) 0 0
\(501\) − 23.8988i − 1.06772i
\(502\) 0 0
\(503\) 27.7128 1.23565 0.617827 0.786314i \(-0.288013\pi\)
0.617827 + 0.786314i \(0.288013\pi\)
\(504\) 0 0
\(505\) 33.7980 1.50399
\(506\) 0 0
\(507\) 12.5959i 0.559404i
\(508\) 0 0
\(509\) 18.5276i 0.821223i 0.911810 + 0.410612i \(0.134685\pi\)
−0.911810 + 0.410612i \(0.865315\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.89898 0.216295
\(514\) 0 0
\(515\) 6.20204i 0.273295i
\(516\) 0 0
\(517\) 6.29253i 0.276745i
\(518\) 0 0
\(519\) −18.8776 −0.828634
\(520\) 0 0
\(521\) 0.202041 0.00885158 0.00442579 0.999990i \(-0.498591\pi\)
0.00442579 + 0.999990i \(0.498591\pi\)
\(522\) 0 0
\(523\) 28.4949i 1.24599i 0.782224 + 0.622997i \(0.214085\pi\)
−0.782224 + 0.622997i \(0.785915\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.35674 −0.276904
\(528\) 0 0
\(529\) −22.5959 −0.982431
\(530\) 0 0
\(531\) 13.7980i 0.598780i
\(532\) 0 0
\(533\) − 0.699891i − 0.0303156i
\(534\) 0 0
\(535\) 22.6274 0.978269
\(536\) 0 0
\(537\) −4.00000 −0.172613
\(538\) 0 0
\(539\) 7.00000i 0.301511i
\(540\) 0 0
\(541\) − 41.5050i − 1.78444i −0.451602 0.892220i \(-0.649147\pi\)
0.451602 0.892220i \(-0.350853\pi\)
\(542\) 0 0
\(543\) −23.8988 −1.02559
\(544\) 0 0
\(545\) 14.2020 0.608349
\(546\) 0 0
\(547\) 30.6969i 1.31251i 0.754541 + 0.656253i \(0.227860\pi\)
−0.754541 + 0.656253i \(0.772140\pi\)
\(548\) 0 0
\(549\) − 11.9494i − 0.509987i
\(550\) 0 0
\(551\) −30.8270 −1.31327
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) − 19.5959i − 0.831800i
\(556\) 0 0
\(557\) 37.1195i 1.57280i 0.617715 + 0.786402i \(0.288058\pi\)
−0.617715 + 0.786402i \(0.711942\pi\)
\(558\) 0 0
\(559\) −0.571458 −0.0241701
\(560\) 0 0
\(561\) 2.89898 0.122395
\(562\) 0 0
\(563\) 12.0000i 0.505740i 0.967500 + 0.252870i \(0.0813744\pi\)
−0.967500 + 0.252870i \(0.918626\pi\)
\(564\) 0 0
\(565\) 16.9706i 0.713957i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.69694 0.364595 0.182297 0.983243i \(-0.441647\pi\)
0.182297 + 0.983243i \(0.441647\pi\)
\(570\) 0 0
\(571\) 10.6969i 0.447653i 0.974629 + 0.223826i \(0.0718549\pi\)
−0.974629 + 0.223826i \(0.928145\pi\)
\(572\) 0 0
\(573\) − 1.90702i − 0.0796670i
\(574\) 0 0
\(575\) 1.90702 0.0795284
\(576\) 0 0
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) 0 0
\(579\) 17.5959i 0.731261i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.09978 0.169795
\(584\) 0 0
\(585\) 1.79796 0.0743365
\(586\) 0 0
\(587\) − 2.20204i − 0.0908880i −0.998967 0.0454440i \(-0.985530\pi\)
0.998967 0.0454440i \(-0.0144703\pi\)
\(588\) 0 0
\(589\) − 10.7423i − 0.442627i
\(590\) 0 0
\(591\) 14.4921 0.596125
\(592\) 0 0
\(593\) 22.8990 0.940348 0.470174 0.882574i \(-0.344191\pi\)
0.470174 + 0.882574i \(0.344191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 3.46410i − 0.141776i
\(598\) 0 0
\(599\) 24.5344 1.00245 0.501225 0.865317i \(-0.332883\pi\)
0.501225 + 0.865317i \(0.332883\pi\)
\(600\) 0 0
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) 5.79796i 0.236111i
\(604\) 0 0
\(605\) − 2.82843i − 0.114992i
\(606\) 0 0
\(607\) −36.4838 −1.48083 −0.740416 0.672149i \(-0.765372\pi\)
−0.740416 + 0.672149i \(0.765372\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 4.00000i − 0.161823i
\(612\) 0 0
\(613\) − 9.40669i − 0.379932i −0.981791 0.189966i \(-0.939162\pi\)
0.981791 0.189966i \(-0.0608378\pi\)
\(614\) 0 0
\(615\) 3.11416 0.125575
\(616\) 0 0
\(617\) 41.1918 1.65832 0.829160 0.559011i \(-0.188819\pi\)
0.829160 + 0.559011i \(0.188819\pi\)
\(618\) 0 0
\(619\) − 20.0000i − 0.803868i −0.915669 0.401934i \(-0.868338\pi\)
0.915669 0.401934i \(-0.131662\pi\)
\(620\) 0 0
\(621\) 0.635674i 0.0255087i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 4.89898i 0.195646i
\(628\) 0 0
\(629\) 20.0847i 0.800830i
\(630\) 0 0
\(631\) −43.0621 −1.71427 −0.857137 0.515088i \(-0.827759\pi\)
−0.857137 + 0.515088i \(0.827759\pi\)
\(632\) 0 0
\(633\) −14.6969 −0.584151
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 4.44972i − 0.176304i
\(638\) 0 0
\(639\) −5.02118 −0.198635
\(640\) 0 0
\(641\) 33.5959 1.32696 0.663479 0.748194i \(-0.269079\pi\)
0.663479 + 0.748194i \(0.269079\pi\)
\(642\) 0 0
\(643\) 15.5959i 0.615043i 0.951541 + 0.307521i \(0.0994996\pi\)
−0.951541 + 0.307521i \(0.900500\pi\)
\(644\) 0 0
\(645\) − 2.54270i − 0.100119i
\(646\) 0 0
\(647\) 29.6198 1.16448 0.582238 0.813018i \(-0.302177\pi\)
0.582238 + 0.813018i \(0.302177\pi\)
\(648\) 0 0
\(649\) −13.7980 −0.541617
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 34.9267i − 1.36679i −0.730049 0.683395i \(-0.760503\pi\)
0.730049 0.683395i \(-0.239497\pi\)
\(654\) 0 0
\(655\) −16.3991 −0.640766
\(656\) 0 0
\(657\) 11.7980 0.460282
\(658\) 0 0
\(659\) − 37.3939i − 1.45666i −0.685227 0.728329i \(-0.740297\pi\)
0.685227 0.728329i \(-0.259703\pi\)
\(660\) 0 0
\(661\) − 44.6834i − 1.73798i −0.494828 0.868991i \(-0.664769\pi\)
0.494828 0.868991i \(-0.335231\pi\)
\(662\) 0 0
\(663\) −1.84281 −0.0715687
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 4.00000i − 0.154881i
\(668\) 0 0
\(669\) 24.2487i 0.937509i
\(670\) 0 0
\(671\) 11.9494 0.461301
\(672\) 0 0
\(673\) 9.59592 0.369895 0.184948 0.982748i \(-0.440788\pi\)
0.184948 + 0.982748i \(0.440788\pi\)
\(674\) 0 0
\(675\) 3.00000i 0.115470i
\(676\) 0 0
\(677\) − 24.5344i − 0.942935i −0.881883 0.471468i \(-0.843724\pi\)
0.881883 0.471468i \(-0.156276\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −13.7980 −0.528739
\(682\) 0 0
\(683\) − 18.2020i − 0.696482i −0.937405 0.348241i \(-0.886779\pi\)
0.937405 0.348241i \(-0.113221\pi\)
\(684\) 0 0
\(685\) − 5.65685i − 0.216137i
\(686\) 0 0
\(687\) −15.1278 −0.577160
\(688\) 0 0
\(689\) −2.60612 −0.0992854
\(690\) 0 0
\(691\) 20.0000i 0.760836i 0.924815 + 0.380418i \(0.124220\pi\)
−0.924815 + 0.380418i \(0.875780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.0847 0.761857
\(696\) 0 0
\(697\) −3.19184 −0.120899
\(698\) 0 0
\(699\) 1.10102i 0.0416444i
\(700\) 0 0
\(701\) 40.9335i 1.54604i 0.634382 + 0.773019i \(0.281254\pi\)
−0.634382 + 0.773019i \(0.718746\pi\)
\(702\) 0 0
\(703\) −33.9411 −1.28011
\(704\) 0 0
\(705\) 17.7980 0.670310
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 37.7552i 1.41793i 0.705246 + 0.708963i \(0.250837\pi\)
−0.705246 + 0.708963i \(0.749163\pi\)
\(710\) 0 0
\(711\) 6.92820 0.259828
\(712\) 0 0
\(713\) 1.39388 0.0522011
\(714\) 0 0
\(715\) 1.79796i 0.0672399i
\(716\) 0 0
\(717\) − 12.5851i − 0.469998i
\(718\) 0 0
\(719\) −16.3349 −0.609189 −0.304594 0.952482i \(-0.598521\pi\)
−0.304594 + 0.952482i \(0.598521\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 7.79796i 0.290009i
\(724\) 0 0
\(725\) − 18.8776i − 0.701096i
\(726\) 0 0
\(727\) 14.7778 0.548079 0.274039 0.961718i \(-0.411640\pi\)
0.274039 + 0.961718i \(0.411640\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 2.60612i 0.0963909i
\(732\) 0 0
\(733\) 15.0635i 0.556385i 0.960525 + 0.278192i \(0.0897352\pi\)
−0.960525 + 0.278192i \(0.910265\pi\)
\(734\) 0 0
\(735\) 19.7990 0.730297
\(736\) 0 0
\(737\) −5.79796 −0.213571
\(738\) 0 0
\(739\) − 46.6969i − 1.71777i −0.512165 0.858887i \(-0.671156\pi\)
0.512165 0.858887i \(-0.328844\pi\)
\(740\) 0 0
\(741\) − 3.11416i − 0.114401i
\(742\) 0 0
\(743\) −26.4415 −0.970043 −0.485022 0.874502i \(-0.661188\pi\)
−0.485022 + 0.874502i \(0.661188\pi\)
\(744\) 0 0
\(745\) 17.7980 0.652067
\(746\) 0 0
\(747\) 9.79796i 0.358489i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.57826 0.240044 0.120022 0.992771i \(-0.461703\pi\)
0.120022 + 0.992771i \(0.461703\pi\)
\(752\) 0 0
\(753\) −21.7980 −0.794362
\(754\) 0 0
\(755\) 19.5959i 0.713168i
\(756\) 0 0
\(757\) 16.3991i 0.596036i 0.954560 + 0.298018i \(0.0963255\pi\)
−0.954560 + 0.298018i \(0.903675\pi\)
\(758\) 0 0
\(759\) −0.635674 −0.0230735
\(760\) 0 0
\(761\) 48.6969 1.76526 0.882631 0.470066i \(-0.155770\pi\)
0.882631 + 0.470066i \(0.155770\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) − 8.19955i − 0.296455i
\(766\) 0 0
\(767\) 8.77101 0.316703
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 23.7980i 0.857063i
\(772\) 0 0
\(773\) 51.8973i 1.86662i 0.359076 + 0.933308i \(0.383092\pi\)
−0.359076 + 0.933308i \(0.616908\pi\)
\(774\) 0 0
\(775\) 6.57826 0.236298
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 5.39388i − 0.193256i
\(780\) 0 0
\(781\) − 5.02118i − 0.179672i
\(782\) 0 0
\(783\) 6.29253 0.224877
\(784\) 0 0
\(785\) −16.0000 −0.571064
\(786\) 0 0
\(787\) 22.2929i 0.794655i 0.917677 + 0.397327i \(0.130062\pi\)
−0.917677 + 0.397327i \(0.869938\pi\)
\(788\) 0 0
\(789\) − 11.3137i − 0.402779i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.59592 −0.269739
\(794\) 0 0
\(795\) − 11.5959i − 0.411265i
\(796\) 0 0
\(797\) − 50.6260i − 1.79326i −0.442777 0.896632i \(-0.646007\pi\)
0.442777 0.896632i \(-0.353993\pi\)
\(798\) 0 0
\(799\) −18.2419 −0.645352
\(800\) 0 0
\(801\) −3.79796 −0.134194
\(802\) 0 0
\(803\) 11.7980i 0.416341i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.8708 0.453073
\(808\) 0 0
\(809\) −54.4949 −1.91594 −0.957969 0.286871i \(-0.907385\pi\)
−0.957969 + 0.286871i \(0.907385\pi\)
\(810\) 0 0
\(811\) 26.6969i 0.937456i 0.883342 + 0.468728i \(0.155288\pi\)
−0.883342 + 0.468728i \(0.844712\pi\)
\(812\) 0 0
\(813\) 6.92820i 0.242983i
\(814\) 0 0
\(815\) −61.6539 −2.15964
\(816\) 0 0
\(817\) −4.40408 −0.154079
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.5344i 0.856258i 0.903718 + 0.428129i \(0.140827\pi\)
−0.903718 + 0.428129i \(0.859173\pi\)
\(822\) 0 0
\(823\) 21.7060 0.756624 0.378312 0.925678i \(-0.376505\pi\)
0.378312 + 0.925678i \(0.376505\pi\)
\(824\) 0 0
\(825\) −3.00000 −0.104447
\(826\) 0 0
\(827\) − 27.1918i − 0.945553i −0.881182 0.472776i \(-0.843252\pi\)
0.881182 0.472776i \(-0.156748\pi\)
\(828\) 0 0
\(829\) − 20.0847i − 0.697571i −0.937203 0.348786i \(-0.886594\pi\)
0.937203 0.348786i \(-0.113406\pi\)
\(830\) 0 0
\(831\) −17.6062 −0.610754
\(832\) 0 0
\(833\) −20.2929 −0.703106
\(834\) 0 0
\(835\) − 67.5959i − 2.33925i
\(836\) 0 0
\(837\) 2.19275i 0.0757926i
\(838\) 0 0
\(839\) −4.44972 −0.153621 −0.0768107 0.997046i \(-0.524474\pi\)
−0.0768107 + 0.997046i \(0.524474\pi\)
\(840\) 0 0
\(841\) −10.5959 −0.365376
\(842\) 0 0
\(843\) 1.10102i 0.0379212i
\(844\) 0 0
\(845\) 35.6266i 1.22559i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −11.1010 −0.380986
\(850\) 0 0
\(851\) − 4.40408i − 0.150970i
\(852\) 0 0
\(853\) − 28.9199i − 0.990200i −0.868836 0.495100i \(-0.835131\pi\)
0.868836 0.495100i \(-0.164869\pi\)
\(854\) 0 0
\(855\) 13.8564 0.473879
\(856\) 0 0
\(857\) −2.89898 −0.0990273 −0.0495136 0.998773i \(-0.515767\pi\)
−0.0495136 + 0.998773i \(0.515767\pi\)
\(858\) 0 0
\(859\) − 21.7980i − 0.743737i −0.928285 0.371868i \(-0.878717\pi\)
0.928285 0.371868i \(-0.121283\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47.8617 1.62923 0.814616 0.580000i \(-0.196947\pi\)
0.814616 + 0.580000i \(0.196947\pi\)
\(864\) 0 0
\(865\) −53.3939 −1.81545
\(866\) 0 0
\(867\) − 8.59592i − 0.291933i
\(868\) 0 0
\(869\) 6.92820i 0.235023i
\(870\) 0 0
\(871\) 3.68561 0.124882
\(872\) 0 0
\(873\) 6.00000 0.203069
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.3055i 1.12465i 0.826918 + 0.562323i \(0.190092\pi\)
−0.826918 + 0.562323i \(0.809908\pi\)
\(878\) 0 0
\(879\) 10.6780 0.360161
\(880\) 0 0
\(881\) −23.7980 −0.801774 −0.400887 0.916128i \(-0.631298\pi\)
−0.400887 + 0.916128i \(0.631298\pi\)
\(882\) 0 0
\(883\) 10.2020i 0.343326i 0.985156 + 0.171663i \(0.0549140\pi\)
−0.985156 + 0.171663i \(0.945086\pi\)
\(884\) 0 0
\(885\) 39.0265i 1.31186i
\(886\) 0 0
\(887\) −28.9842 −0.973193 −0.486596 0.873627i \(-0.661762\pi\)
−0.486596 + 0.873627i \(0.661762\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 1.00000i − 0.0335013i
\(892\) 0 0
\(893\) − 30.8270i − 1.03159i
\(894\) 0 0
\(895\) −11.3137 −0.378176
\(896\) 0 0
\(897\) 0.404082 0.0134919
\(898\) 0 0
\(899\) − 13.7980i − 0.460188i
\(900\) 0 0
\(901\) 11.8852i 0.395952i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −67.5959 −2.24696
\(906\) 0 0
\(907\) − 4.00000i − 0.132818i −0.997792 0.0664089i \(-0.978846\pi\)
0.997792 0.0664089i \(-0.0211542\pi\)
\(908\) 0 0
\(909\) 11.9494i 0.396336i
\(910\) 0 0
\(911\) 4.44972 0.147426 0.0737129 0.997280i \(-0.476515\pi\)
0.0737129 + 0.997280i \(0.476515\pi\)
\(912\) 0 0
\(913\) −9.79796 −0.324265
\(914\) 0 0
\(915\) − 33.7980i − 1.11733i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −52.8829 −1.74445 −0.872223 0.489108i \(-0.837323\pi\)
−0.872223 + 0.489108i \(0.837323\pi\)
\(920\) 0 0
\(921\) −26.6969 −0.879694
\(922\) 0 0
\(923\) 3.19184i 0.105061i
\(924\) 0 0
\(925\) − 20.7846i − 0.683394i
\(926\) 0 0
\(927\) −2.19275 −0.0720194
\(928\) 0 0
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) − 34.2929i − 1.12390i
\(932\) 0 0
\(933\) 6.29253i 0.206008i
\(934\) 0 0
\(935\) 8.19955 0.268154
\(936\) 0 0
\(937\) 33.5959 1.09753 0.548765 0.835976i \(-0.315098\pi\)
0.548765 + 0.835976i \(0.315098\pi\)
\(938\) 0 0
\(939\) 17.5959i 0.574221i
\(940\) 0 0
\(941\) 10.6780i 0.348094i 0.984737 + 0.174047i \(0.0556845\pi\)
−0.984737 + 0.174047i \(0.944316\pi\)
\(942\) 0 0
\(943\) 0.699891 0.0227916
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 7.59592i − 0.246834i −0.992355 0.123417i \(-0.960615\pi\)
0.992355 0.123417i \(-0.0393853\pi\)
\(948\) 0 0
\(949\) − 7.49966i − 0.243449i
\(950\) 0 0
\(951\) −2.82843 −0.0917180
\(952\) 0 0
\(953\) 36.2929 1.17564 0.587820 0.808991i \(-0.299986\pi\)
0.587820 + 0.808991i \(0.299986\pi\)
\(954\) 0 0
\(955\) − 5.39388i − 0.174542i
\(956\) 0 0
\(957\) 6.29253i 0.203409i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −26.1918 −0.844898
\(962\) 0 0
\(963\) 8.00000i 0.257796i
\(964\) 0 0
\(965\) 49.7688i 1.60211i
\(966\) 0 0
\(967\) −16.3991 −0.527360 −0.263680 0.964610i \(-0.584936\pi\)
−0.263680 + 0.964610i \(0.584936\pi\)
\(968\) 0 0
\(969\) −14.2020 −0.456235
\(970\) 0 0
\(971\) 7.59592i 0.243765i 0.992545 + 0.121882i \(0.0388930\pi\)
−0.992545 + 0.121882i \(0.961107\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.90702 0.0610736
\(976\) 0 0
\(977\) −11.7980 −0.377450 −0.188725 0.982030i \(-0.560436\pi\)
−0.188725 + 0.982030i \(0.560436\pi\)
\(978\) 0 0
\(979\) − 3.79796i − 0.121383i
\(980\) 0 0
\(981\) 5.02118i 0.160314i
\(982\) 0 0
\(983\) 34.0053 1.08460 0.542301 0.840184i \(-0.317553\pi\)
0.542301 + 0.840184i \(0.317553\pi\)
\(984\) 0 0
\(985\) 40.9898 1.30604
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 0.571458i − 0.0181713i
\(990\) 0 0
\(991\) −46.3047 −1.47092 −0.735458 0.677570i \(-0.763033\pi\)
−0.735458 + 0.677570i \(0.763033\pi\)
\(992\) 0 0
\(993\) 33.3939 1.05972
\(994\) 0 0
\(995\) − 9.79796i − 0.310616i
\(996\) 0 0
\(997\) − 52.8187i − 1.67279i −0.548131 0.836393i \(-0.684660\pi\)
0.548131 0.836393i \(-0.315340\pi\)
\(998\) 0 0
\(999\) 6.92820 0.219199
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2112.2.f.g.1057.8 yes 8
3.2 odd 2 6336.2.f.l.3169.4 8
4.3 odd 2 inner 2112.2.f.g.1057.4 yes 8
8.3 odd 2 inner 2112.2.f.g.1057.5 yes 8
8.5 even 2 inner 2112.2.f.g.1057.1 8
12.11 even 2 6336.2.f.l.3169.2 8
16.3 odd 4 8448.2.a.ct.1.3 4
16.5 even 4 8448.2.a.ct.1.2 4
16.11 odd 4 8448.2.a.cm.1.2 4
16.13 even 4 8448.2.a.cm.1.3 4
24.5 odd 2 6336.2.f.l.3169.5 8
24.11 even 2 6336.2.f.l.3169.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2112.2.f.g.1057.1 8 8.5 even 2 inner
2112.2.f.g.1057.4 yes 8 4.3 odd 2 inner
2112.2.f.g.1057.5 yes 8 8.3 odd 2 inner
2112.2.f.g.1057.8 yes 8 1.1 even 1 trivial
6336.2.f.l.3169.2 8 12.11 even 2
6336.2.f.l.3169.4 8 3.2 odd 2
6336.2.f.l.3169.5 8 24.5 odd 2
6336.2.f.l.3169.7 8 24.11 even 2
8448.2.a.cm.1.2 4 16.11 odd 4
8448.2.a.cm.1.3 4 16.13 even 4
8448.2.a.ct.1.2 4 16.5 even 4
8448.2.a.ct.1.3 4 16.3 odd 4