Properties

Label 2112.2.f.d
Level $2112$
Weight $2$
Character orbit 2112.f
Analytic conductor $16.864$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2112,2,Mod(1057,2112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2112.1057"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0, 0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(33)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + \beta_{2} q^{5} + \beta_{3} q^{7} - q^{9} + \beta_1 q^{11} - \beta_{2} q^{13} + \beta_{3} q^{15} + 8 \beta_1 q^{19} - \beta_{2} q^{21} + 3 \beta_{3} q^{23} - q^{25} + \beta_1 q^{27}+ \cdots - \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 4 q^{25} + 4 q^{33} + 24 q^{41} - 4 q^{49} + 32 q^{57} + 24 q^{65} + 8 q^{73} + 4 q^{81} + 72 q^{89} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 3\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 3\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{3} + 3\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2112\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1409\) \(1729\) \(2047\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1057.1
−1.22474 1.22474i
1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 + 1.22474i
0 1.00000i 0 2.44949i 0 −2.44949 0 −1.00000 0
1057.2 0 1.00000i 0 2.44949i 0 2.44949 0 −1.00000 0
1057.3 0 1.00000i 0 2.44949i 0 2.44949 0 −1.00000 0
1057.4 0 1.00000i 0 2.44949i 0 −2.44949 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2112.2.f.d 4
3.b odd 2 1 6336.2.f.c 4
4.b odd 2 1 inner 2112.2.f.d 4
8.b even 2 1 inner 2112.2.f.d 4
8.d odd 2 1 inner 2112.2.f.d 4
12.b even 2 1 6336.2.f.c 4
16.e even 4 1 8448.2.a.be 2
16.e even 4 1 8448.2.a.by 2
16.f odd 4 1 8448.2.a.be 2
16.f odd 4 1 8448.2.a.by 2
24.f even 2 1 6336.2.f.c 4
24.h odd 2 1 6336.2.f.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2112.2.f.d 4 1.a even 1 1 trivial
2112.2.f.d 4 4.b odd 2 1 inner
2112.2.f.d 4 8.b even 2 1 inner
2112.2.f.d 4 8.d odd 2 1 inner
6336.2.f.c 4 3.b odd 2 1
6336.2.f.c 4 12.b even 2 1
6336.2.f.c 4 24.f even 2 1
6336.2.f.c 4 24.h odd 2 1
8448.2.a.be 2 16.e even 4 1
8448.2.a.be 2 16.f odd 4 1
8448.2.a.by 2 16.e even 4 1
8448.2.a.by 2 16.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2112, [\chi])\):

\( T_{5}^{2} + 6 \) Copy content Toggle raw display
\( T_{7}^{2} - 6 \) Copy content Toggle raw display
\( T_{19}^{2} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 96)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T - 6)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$73$ \( (T - 2)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 150)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( (T - 18)^{4} \) Copy content Toggle raw display
$97$ \( (T + 8)^{4} \) Copy content Toggle raw display
show more
show less