Properties

Label 2106.2.a.s.1.3
Level $2106$
Weight $2$
Character 2106.1
Self dual yes
Analytic conductor $16.816$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2106,2,Mod(1,2106)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2106.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2106, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,-2,0,0,-4,0,2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.8164946657\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.456850\) of defining polynomial
Character \(\chi\) \(=\) 2106.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -0.397613 q^{5} +2.64575 q^{7} -1.00000 q^{8} +0.397613 q^{10} -4.98019 q^{11} +1.00000 q^{13} -2.64575 q^{14} +1.00000 q^{16} +2.37780 q^{17} -0.784036 q^{19} -0.397613 q^{20} +4.98019 q^{22} -6.89389 q^{23} -4.84190 q^{25} -1.00000 q^{26} +2.64575 q^{28} +2.62594 q^{29} -2.11847 q^{31} -1.00000 q^{32} -2.37780 q^{34} -1.05199 q^{35} +0.708497 q^{37} +0.784036 q^{38} +0.397613 q^{40} +5.80759 q^{41} -6.66888 q^{43} -4.98019 q^{44} +6.89389 q^{46} -10.2515 q^{47} +4.84190 q^{50} +1.00000 q^{52} -2.78404 q^{53} +1.98019 q^{55} -2.64575 q^{56} -2.62594 q^{58} -9.53059 q^{59} -4.86171 q^{61} +2.11847 q^{62} +1.00000 q^{64} -0.397613 q^{65} +14.6293 q^{67} +2.37780 q^{68} +1.05199 q^{70} +15.3382 q^{71} +8.62925 q^{73} -0.708497 q^{74} -0.784036 q^{76} -13.1763 q^{77} -13.7036 q^{79} -0.397613 q^{80} -5.80759 q^{82} -5.77542 q^{83} -0.945446 q^{85} +6.66888 q^{86} +4.98019 q^{88} -4.51609 q^{89} +2.64575 q^{91} -6.89389 q^{92} +10.2515 q^{94} +0.311743 q^{95} -14.4910 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 2 q^{5} - 4 q^{8} + 2 q^{10} - 2 q^{11} + 4 q^{13} + 4 q^{16} - 8 q^{17} - 6 q^{19} - 2 q^{20} + 2 q^{22} - 6 q^{23} + 12 q^{25} - 4 q^{26} - 18 q^{29} - 4 q^{31} - 4 q^{32} + 8 q^{34}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.397613 −0.177818 −0.0889090 0.996040i \(-0.528338\pi\)
−0.0889090 + 0.996040i \(0.528338\pi\)
\(6\) 0 0
\(7\) 2.64575 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.397613 0.125736
\(11\) −4.98019 −1.50158 −0.750792 0.660539i \(-0.770328\pi\)
−0.750792 + 0.660539i \(0.770328\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) −2.64575 −0.707107
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.37780 0.576702 0.288351 0.957525i \(-0.406893\pi\)
0.288351 + 0.957525i \(0.406893\pi\)
\(18\) 0 0
\(19\) −0.784036 −0.179870 −0.0899352 0.995948i \(-0.528666\pi\)
−0.0899352 + 0.995948i \(0.528666\pi\)
\(20\) −0.397613 −0.0889090
\(21\) 0 0
\(22\) 4.98019 1.06178
\(23\) −6.89389 −1.43748 −0.718738 0.695281i \(-0.755280\pi\)
−0.718738 + 0.695281i \(0.755280\pi\)
\(24\) 0 0
\(25\) −4.84190 −0.968381
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 2.64575 0.500000
\(29\) 2.62594 0.487625 0.243812 0.969822i \(-0.421602\pi\)
0.243812 + 0.969822i \(0.421602\pi\)
\(30\) 0 0
\(31\) −2.11847 −0.380489 −0.190245 0.981737i \(-0.560928\pi\)
−0.190245 + 0.981737i \(0.560928\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −2.37780 −0.407790
\(35\) −1.05199 −0.177818
\(36\) 0 0
\(37\) 0.708497 0.116476 0.0582381 0.998303i \(-0.481452\pi\)
0.0582381 + 0.998303i \(0.481452\pi\)
\(38\) 0.784036 0.127188
\(39\) 0 0
\(40\) 0.397613 0.0628682
\(41\) 5.80759 0.906993 0.453497 0.891258i \(-0.350176\pi\)
0.453497 + 0.891258i \(0.350176\pi\)
\(42\) 0 0
\(43\) −6.66888 −1.01699 −0.508497 0.861064i \(-0.669799\pi\)
−0.508497 + 0.861064i \(0.669799\pi\)
\(44\) −4.98019 −0.750792
\(45\) 0 0
\(46\) 6.89389 1.01645
\(47\) −10.2515 −1.49533 −0.747664 0.664077i \(-0.768825\pi\)
−0.747664 + 0.664077i \(0.768825\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 4.84190 0.684749
\(51\) 0 0
\(52\) 1.00000 0.138675
\(53\) −2.78404 −0.382417 −0.191208 0.981549i \(-0.561241\pi\)
−0.191208 + 0.981549i \(0.561241\pi\)
\(54\) 0 0
\(55\) 1.98019 0.267009
\(56\) −2.64575 −0.353553
\(57\) 0 0
\(58\) −2.62594 −0.344803
\(59\) −9.53059 −1.24078 −0.620389 0.784295i \(-0.713025\pi\)
−0.620389 + 0.784295i \(0.713025\pi\)
\(60\) 0 0
\(61\) −4.86171 −0.622479 −0.311239 0.950332i \(-0.600744\pi\)
−0.311239 + 0.950332i \(0.600744\pi\)
\(62\) 2.11847 0.269046
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.397613 −0.0493178
\(66\) 0 0
\(67\) 14.6293 1.78725 0.893624 0.448817i \(-0.148154\pi\)
0.893624 + 0.448817i \(0.148154\pi\)
\(68\) 2.37780 0.288351
\(69\) 0 0
\(70\) 1.05199 0.125736
\(71\) 15.3382 1.82031 0.910154 0.414271i \(-0.135963\pi\)
0.910154 + 0.414271i \(0.135963\pi\)
\(72\) 0 0
\(73\) 8.62925 1.00998 0.504989 0.863126i \(-0.331497\pi\)
0.504989 + 0.863126i \(0.331497\pi\)
\(74\) −0.708497 −0.0823611
\(75\) 0 0
\(76\) −0.784036 −0.0899352
\(77\) −13.1763 −1.50158
\(78\) 0 0
\(79\) −13.7036 −1.54178 −0.770889 0.636970i \(-0.780188\pi\)
−0.770889 + 0.636970i \(0.780188\pi\)
\(80\) −0.397613 −0.0444545
\(81\) 0 0
\(82\) −5.80759 −0.641341
\(83\) −5.77542 −0.633934 −0.316967 0.948437i \(-0.602664\pi\)
−0.316967 + 0.948437i \(0.602664\pi\)
\(84\) 0 0
\(85\) −0.945446 −0.102548
\(86\) 6.66888 0.719123
\(87\) 0 0
\(88\) 4.98019 0.530890
\(89\) −4.51609 −0.478704 −0.239352 0.970933i \(-0.576935\pi\)
−0.239352 + 0.970933i \(0.576935\pi\)
\(90\) 0 0
\(91\) 2.64575 0.277350
\(92\) −6.89389 −0.718738
\(93\) 0 0
\(94\) 10.2515 1.05736
\(95\) 0.311743 0.0319842
\(96\) 0 0
\(97\) −14.4910 −1.47133 −0.735667 0.677343i \(-0.763131\pi\)
−0.735667 + 0.677343i \(0.763131\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.84190 −0.484190
\(101\) 5.29482 0.526854 0.263427 0.964679i \(-0.415147\pi\)
0.263427 + 0.964679i \(0.415147\pi\)
\(102\) 0 0
\(103\) 7.33775 0.723010 0.361505 0.932370i \(-0.382263\pi\)
0.361505 + 0.932370i \(0.382263\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 2.78404 0.270410
\(107\) −1.84721 −0.178577 −0.0892884 0.996006i \(-0.528459\pi\)
−0.0892884 + 0.996006i \(0.528459\pi\)
\(108\) 0 0
\(109\) 6.64906 0.636865 0.318432 0.947946i \(-0.396844\pi\)
0.318432 + 0.947946i \(0.396844\pi\)
\(110\) −1.98019 −0.188804
\(111\) 0 0
\(112\) 2.64575 0.250000
\(113\) −13.9373 −1.31111 −0.655553 0.755149i \(-0.727565\pi\)
−0.655553 + 0.755149i \(0.727565\pi\)
\(114\) 0 0
\(115\) 2.74110 0.255609
\(116\) 2.62594 0.243812
\(117\) 0 0
\(118\) 9.53059 0.877362
\(119\) 6.29107 0.576702
\(120\) 0 0
\(121\) 13.8023 1.25475
\(122\) 4.86171 0.440159
\(123\) 0 0
\(124\) −2.11847 −0.190245
\(125\) 3.91327 0.350014
\(126\) 0 0
\(127\) −7.10080 −0.630094 −0.315047 0.949076i \(-0.602020\pi\)
−0.315047 + 0.949076i \(0.602020\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0.397613 0.0348730
\(131\) −4.25933 −0.372139 −0.186070 0.982537i \(-0.559575\pi\)
−0.186070 + 0.982537i \(0.559575\pi\)
\(132\) 0 0
\(133\) −2.07437 −0.179870
\(134\) −14.6293 −1.26377
\(135\) 0 0
\(136\) −2.37780 −0.203895
\(137\) −2.45003 −0.209320 −0.104660 0.994508i \(-0.533375\pi\)
−0.104660 + 0.994508i \(0.533375\pi\)
\(138\) 0 0
\(139\) 1.23909 0.105098 0.0525490 0.998618i \(-0.483265\pi\)
0.0525490 + 0.998618i \(0.483265\pi\)
\(140\) −1.05199 −0.0889090
\(141\) 0 0
\(142\) −15.3382 −1.28715
\(143\) −4.98019 −0.416464
\(144\) 0 0
\(145\) −1.04411 −0.0867085
\(146\) −8.62925 −0.714162
\(147\) 0 0
\(148\) 0.708497 0.0582381
\(149\) −13.8221 −1.13235 −0.566175 0.824285i \(-0.691577\pi\)
−0.566175 + 0.824285i \(0.691577\pi\)
\(150\) 0 0
\(151\) 4.72460 0.384483 0.192241 0.981348i \(-0.438424\pi\)
0.192241 + 0.981348i \(0.438424\pi\)
\(152\) 0.784036 0.0635938
\(153\) 0 0
\(154\) 13.1763 1.06178
\(155\) 0.842333 0.0676578
\(156\) 0 0
\(157\) −21.6817 −1.73039 −0.865193 0.501439i \(-0.832804\pi\)
−0.865193 + 0.501439i \(0.832804\pi\)
\(158\) 13.7036 1.09020
\(159\) 0 0
\(160\) 0.397613 0.0314341
\(161\) −18.2395 −1.43748
\(162\) 0 0
\(163\) −22.6293 −1.77246 −0.886230 0.463246i \(-0.846685\pi\)
−0.886230 + 0.463246i \(0.846685\pi\)
\(164\) 5.80759 0.453497
\(165\) 0 0
\(166\) 5.77542 0.448259
\(167\) 1.41742 0.109684 0.0548418 0.998495i \(-0.482535\pi\)
0.0548418 + 0.998495i \(0.482535\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0.945446 0.0725124
\(171\) 0 0
\(172\) −6.66888 −0.508497
\(173\) 15.1908 1.15494 0.577469 0.816412i \(-0.304040\pi\)
0.577469 + 0.816412i \(0.304040\pi\)
\(174\) 0 0
\(175\) −12.8105 −0.968381
\(176\) −4.98019 −0.375396
\(177\) 0 0
\(178\) 4.51609 0.338495
\(179\) −6.92820 −0.517838 −0.258919 0.965899i \(-0.583366\pi\)
−0.258919 + 0.965899i \(0.583366\pi\)
\(180\) 0 0
\(181\) −23.0590 −1.71397 −0.856983 0.515346i \(-0.827664\pi\)
−0.856983 + 0.515346i \(0.827664\pi\)
\(182\) −2.64575 −0.196116
\(183\) 0 0
\(184\) 6.89389 0.508224
\(185\) −0.281708 −0.0207116
\(186\) 0 0
\(187\) −11.8419 −0.865966
\(188\) −10.2515 −0.747664
\(189\) 0 0
\(190\) −0.311743 −0.0226162
\(191\) −7.01407 −0.507521 −0.253760 0.967267i \(-0.581667\pi\)
−0.253760 + 0.967267i \(0.581667\pi\)
\(192\) 0 0
\(193\) 20.0128 1.44055 0.720276 0.693687i \(-0.244015\pi\)
0.720276 + 0.693687i \(0.244015\pi\)
\(194\) 14.4910 1.04039
\(195\) 0 0
\(196\) 0 0
\(197\) −2.30558 −0.164265 −0.0821327 0.996621i \(-0.526173\pi\)
−0.0821327 + 0.996621i \(0.526173\pi\)
\(198\) 0 0
\(199\) −2.04625 −0.145055 −0.0725273 0.997366i \(-0.523106\pi\)
−0.0725273 + 0.997366i \(0.523106\pi\)
\(200\) 4.84190 0.342374
\(201\) 0 0
\(202\) −5.29482 −0.372542
\(203\) 6.94758 0.487625
\(204\) 0 0
\(205\) −2.30917 −0.161280
\(206\) −7.33775 −0.511245
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) 3.90465 0.270090
\(210\) 0 0
\(211\) −9.90134 −0.681636 −0.340818 0.940129i \(-0.610704\pi\)
−0.340818 + 0.940129i \(0.610704\pi\)
\(212\) −2.78404 −0.191208
\(213\) 0 0
\(214\) 1.84721 0.126273
\(215\) 2.65163 0.180840
\(216\) 0 0
\(217\) −5.60496 −0.380489
\(218\) −6.64906 −0.450331
\(219\) 0 0
\(220\) 1.98019 0.133504
\(221\) 2.37780 0.159948
\(222\) 0 0
\(223\) −16.6850 −1.11731 −0.558654 0.829400i \(-0.688682\pi\)
−0.558654 + 0.829400i \(0.688682\pi\)
\(224\) −2.64575 −0.176777
\(225\) 0 0
\(226\) 13.9373 0.927092
\(227\) 9.97976 0.662380 0.331190 0.943564i \(-0.392550\pi\)
0.331190 + 0.943564i \(0.392550\pi\)
\(228\) 0 0
\(229\) −20.3064 −1.34189 −0.670943 0.741508i \(-0.734111\pi\)
−0.670943 + 0.741508i \(0.734111\pi\)
\(230\) −2.74110 −0.180743
\(231\) 0 0
\(232\) −2.62594 −0.172401
\(233\) 3.81878 0.250177 0.125088 0.992146i \(-0.460079\pi\)
0.125088 + 0.992146i \(0.460079\pi\)
\(234\) 0 0
\(235\) 4.07611 0.265896
\(236\) −9.53059 −0.620389
\(237\) 0 0
\(238\) −6.29107 −0.407790
\(239\) −12.3955 −0.801797 −0.400898 0.916123i \(-0.631302\pi\)
−0.400898 + 0.916123i \(0.631302\pi\)
\(240\) 0 0
\(241\) 12.9229 0.832437 0.416218 0.909265i \(-0.363355\pi\)
0.416218 + 0.909265i \(0.363355\pi\)
\(242\) −13.8023 −0.887244
\(243\) 0 0
\(244\) −4.86171 −0.311239
\(245\) 0 0
\(246\) 0 0
\(247\) −0.784036 −0.0498870
\(248\) 2.11847 0.134523
\(249\) 0 0
\(250\) −3.91327 −0.247497
\(251\) 14.3906 0.908326 0.454163 0.890919i \(-0.349938\pi\)
0.454163 + 0.890919i \(0.349938\pi\)
\(252\) 0 0
\(253\) 34.3329 2.15849
\(254\) 7.10080 0.445544
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.4798 1.15274 0.576368 0.817190i \(-0.304469\pi\)
0.576368 + 0.817190i \(0.304469\pi\)
\(258\) 0 0
\(259\) 1.87451 0.116476
\(260\) −0.397613 −0.0246589
\(261\) 0 0
\(262\) 4.25933 0.263142
\(263\) −0.846783 −0.0522148 −0.0261074 0.999659i \(-0.508311\pi\)
−0.0261074 + 0.999659i \(0.508311\pi\)
\(264\) 0 0
\(265\) 1.10697 0.0680006
\(266\) 2.07437 0.127188
\(267\) 0 0
\(268\) 14.6293 0.893624
\(269\) −4.55828 −0.277923 −0.138962 0.990298i \(-0.544376\pi\)
−0.138962 + 0.990298i \(0.544376\pi\)
\(270\) 0 0
\(271\) 10.5665 0.641870 0.320935 0.947101i \(-0.396003\pi\)
0.320935 + 0.947101i \(0.396003\pi\)
\(272\) 2.37780 0.144175
\(273\) 0 0
\(274\) 2.45003 0.148012
\(275\) 24.1136 1.45410
\(276\) 0 0
\(277\) 10.6574 0.640339 0.320170 0.947360i \(-0.396260\pi\)
0.320170 + 0.947360i \(0.396260\pi\)
\(278\) −1.23909 −0.0743155
\(279\) 0 0
\(280\) 1.05199 0.0628682
\(281\) 17.4650 1.04187 0.520936 0.853596i \(-0.325583\pi\)
0.520936 + 0.853596i \(0.325583\pi\)
\(282\) 0 0
\(283\) −24.2668 −1.44251 −0.721256 0.692668i \(-0.756435\pi\)
−0.721256 + 0.692668i \(0.756435\pi\)
\(284\) 15.3382 0.910154
\(285\) 0 0
\(286\) 4.98019 0.294485
\(287\) 15.3654 0.906993
\(288\) 0 0
\(289\) −11.3461 −0.667415
\(290\) 1.04411 0.0613122
\(291\) 0 0
\(292\) 8.62925 0.504989
\(293\) −26.4386 −1.54456 −0.772278 0.635284i \(-0.780883\pi\)
−0.772278 + 0.635284i \(0.780883\pi\)
\(294\) 0 0
\(295\) 3.78949 0.220633
\(296\) −0.708497 −0.0411806
\(297\) 0 0
\(298\) 13.8221 0.800692
\(299\) −6.89389 −0.398684
\(300\) 0 0
\(301\) −17.6442 −1.01699
\(302\) −4.72460 −0.271870
\(303\) 0 0
\(304\) −0.784036 −0.0449676
\(305\) 1.93308 0.110688
\(306\) 0 0
\(307\) 1.56807 0.0894947 0.0447473 0.998998i \(-0.485752\pi\)
0.0447473 + 0.998998i \(0.485752\pi\)
\(308\) −13.1763 −0.750792
\(309\) 0 0
\(310\) −0.842333 −0.0478413
\(311\) 3.46410 0.196431 0.0982156 0.995165i \(-0.468687\pi\)
0.0982156 + 0.995165i \(0.468687\pi\)
\(312\) 0 0
\(313\) −11.9823 −0.677281 −0.338641 0.940916i \(-0.609967\pi\)
−0.338641 + 0.940916i \(0.609967\pi\)
\(314\) 21.6817 1.22357
\(315\) 0 0
\(316\) −13.7036 −0.770889
\(317\) −24.1458 −1.35616 −0.678081 0.734987i \(-0.737188\pi\)
−0.678081 + 0.734987i \(0.737188\pi\)
\(318\) 0 0
\(319\) −13.0777 −0.732209
\(320\) −0.397613 −0.0222273
\(321\) 0 0
\(322\) 18.2395 1.01645
\(323\) −1.86428 −0.103732
\(324\) 0 0
\(325\) −4.84190 −0.268580
\(326\) 22.6293 1.25332
\(327\) 0 0
\(328\) −5.80759 −0.320671
\(329\) −27.1228 −1.49533
\(330\) 0 0
\(331\) 2.62925 0.144517 0.0722584 0.997386i \(-0.476979\pi\)
0.0722584 + 0.997386i \(0.476979\pi\)
\(332\) −5.77542 −0.316967
\(333\) 0 0
\(334\) −1.41742 −0.0775580
\(335\) −5.81678 −0.317805
\(336\) 0 0
\(337\) 26.0392 1.41845 0.709224 0.704984i \(-0.249046\pi\)
0.709224 + 0.704984i \(0.249046\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 0 0
\(340\) −0.945446 −0.0512740
\(341\) 10.5504 0.571336
\(342\) 0 0
\(343\) −18.5203 −1.00000
\(344\) 6.66888 0.359562
\(345\) 0 0
\(346\) −15.1908 −0.816665
\(347\) 14.1775 0.761089 0.380544 0.924763i \(-0.375737\pi\)
0.380544 + 0.924763i \(0.375737\pi\)
\(348\) 0 0
\(349\) 14.4319 0.772523 0.386262 0.922389i \(-0.373766\pi\)
0.386262 + 0.922389i \(0.373766\pi\)
\(350\) 12.8105 0.684749
\(351\) 0 0
\(352\) 4.98019 0.265445
\(353\) 33.0414 1.75861 0.879307 0.476255i \(-0.158006\pi\)
0.879307 + 0.476255i \(0.158006\pi\)
\(354\) 0 0
\(355\) −6.09866 −0.323683
\(356\) −4.51609 −0.239352
\(357\) 0 0
\(358\) 6.92820 0.366167
\(359\) 16.6661 0.879605 0.439802 0.898095i \(-0.355048\pi\)
0.439802 + 0.898095i \(0.355048\pi\)
\(360\) 0 0
\(361\) −18.3853 −0.967647
\(362\) 23.0590 1.21196
\(363\) 0 0
\(364\) 2.64575 0.138675
\(365\) −3.43111 −0.179592
\(366\) 0 0
\(367\) −28.7143 −1.49887 −0.749436 0.662076i \(-0.769675\pi\)
−0.749436 + 0.662076i \(0.769675\pi\)
\(368\) −6.89389 −0.359369
\(369\) 0 0
\(370\) 0.281708 0.0146453
\(371\) −7.36587 −0.382417
\(372\) 0 0
\(373\) 0.476036 0.0246482 0.0123241 0.999924i \(-0.496077\pi\)
0.0123241 + 0.999924i \(0.496077\pi\)
\(374\) 11.8419 0.612330
\(375\) 0 0
\(376\) 10.2515 0.528678
\(377\) 2.62594 0.135243
\(378\) 0 0
\(379\) 16.5537 0.850307 0.425154 0.905121i \(-0.360220\pi\)
0.425154 + 0.905121i \(0.360220\pi\)
\(380\) 0.311743 0.0159921
\(381\) 0 0
\(382\) 7.01407 0.358871
\(383\) 36.8745 1.88420 0.942100 0.335333i \(-0.108849\pi\)
0.942100 + 0.335333i \(0.108849\pi\)
\(384\) 0 0
\(385\) 5.23909 0.267009
\(386\) −20.0128 −1.01862
\(387\) 0 0
\(388\) −14.4910 −0.735667
\(389\) 10.8494 0.550084 0.275042 0.961432i \(-0.411308\pi\)
0.275042 + 0.961432i \(0.411308\pi\)
\(390\) 0 0
\(391\) −16.3923 −0.828994
\(392\) 0 0
\(393\) 0 0
\(394\) 2.30558 0.116153
\(395\) 5.44874 0.274156
\(396\) 0 0
\(397\) −32.5080 −1.63153 −0.815766 0.578382i \(-0.803684\pi\)
−0.815766 + 0.578382i \(0.803684\pi\)
\(398\) 2.04625 0.102569
\(399\) 0 0
\(400\) −4.84190 −0.242095
\(401\) 4.63182 0.231302 0.115651 0.993290i \(-0.463105\pi\)
0.115651 + 0.993290i \(0.463105\pi\)
\(402\) 0 0
\(403\) −2.11847 −0.105529
\(404\) 5.29482 0.263427
\(405\) 0 0
\(406\) −6.94758 −0.344803
\(407\) −3.52845 −0.174899
\(408\) 0 0
\(409\) 4.46727 0.220892 0.110446 0.993882i \(-0.464772\pi\)
0.110446 + 0.993882i \(0.464772\pi\)
\(410\) 2.30917 0.114042
\(411\) 0 0
\(412\) 7.33775 0.361505
\(413\) −25.2156 −1.24078
\(414\) 0 0
\(415\) 2.29638 0.112725
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) −3.90465 −0.190983
\(419\) −37.3650 −1.82540 −0.912701 0.408628i \(-0.866007\pi\)
−0.912701 + 0.408628i \(0.866007\pi\)
\(420\) 0 0
\(421\) 23.9009 1.16486 0.582430 0.812881i \(-0.302102\pi\)
0.582430 + 0.812881i \(0.302102\pi\)
\(422\) 9.90134 0.481990
\(423\) 0 0
\(424\) 2.78404 0.135205
\(425\) −11.5131 −0.558467
\(426\) 0 0
\(427\) −12.8629 −0.622479
\(428\) −1.84721 −0.0892884
\(429\) 0 0
\(430\) −2.65163 −0.127873
\(431\) −1.11060 −0.0534956 −0.0267478 0.999642i \(-0.508515\pi\)
−0.0267478 + 0.999642i \(0.508515\pi\)
\(432\) 0 0
\(433\) −3.59665 −0.172844 −0.0864220 0.996259i \(-0.527543\pi\)
−0.0864220 + 0.996259i \(0.527543\pi\)
\(434\) 5.60496 0.269046
\(435\) 0 0
\(436\) 6.64906 0.318432
\(437\) 5.40506 0.258559
\(438\) 0 0
\(439\) 40.9819 1.95596 0.977981 0.208696i \(-0.0669220\pi\)
0.977981 + 0.208696i \(0.0669220\pi\)
\(440\) −1.98019 −0.0944018
\(441\) 0 0
\(442\) −2.37780 −0.113101
\(443\) 14.1040 0.670100 0.335050 0.942200i \(-0.391247\pi\)
0.335050 + 0.942200i \(0.391247\pi\)
\(444\) 0 0
\(445\) 1.79566 0.0851223
\(446\) 16.6850 0.790057
\(447\) 0 0
\(448\) 2.64575 0.125000
\(449\) 10.6913 0.504552 0.252276 0.967655i \(-0.418821\pi\)
0.252276 + 0.967655i \(0.418821\pi\)
\(450\) 0 0
\(451\) −28.9229 −1.36193
\(452\) −13.9373 −0.655553
\(453\) 0 0
\(454\) −9.97976 −0.468373
\(455\) −1.05199 −0.0493178
\(456\) 0 0
\(457\) 35.9732 1.68275 0.841377 0.540449i \(-0.181745\pi\)
0.841377 + 0.540449i \(0.181745\pi\)
\(458\) 20.3064 0.948857
\(459\) 0 0
\(460\) 2.74110 0.127805
\(461\) 15.6486 0.728830 0.364415 0.931237i \(-0.381269\pi\)
0.364415 + 0.931237i \(0.381269\pi\)
\(462\) 0 0
\(463\) 7.11965 0.330878 0.165439 0.986220i \(-0.447096\pi\)
0.165439 + 0.986220i \(0.447096\pi\)
\(464\) 2.62594 0.121906
\(465\) 0 0
\(466\) −3.81878 −0.176902
\(467\) −19.2321 −0.889954 −0.444977 0.895542i \(-0.646788\pi\)
−0.444977 + 0.895542i \(0.646788\pi\)
\(468\) 0 0
\(469\) 38.7054 1.78725
\(470\) −4.07611 −0.188017
\(471\) 0 0
\(472\) 9.53059 0.438681
\(473\) 33.2123 1.52710
\(474\) 0 0
\(475\) 3.79623 0.174183
\(476\) 6.29107 0.288351
\(477\) 0 0
\(478\) 12.3955 0.566956
\(479\) −25.0761 −1.14576 −0.572878 0.819640i \(-0.694173\pi\)
−0.572878 + 0.819640i \(0.694173\pi\)
\(480\) 0 0
\(481\) 0.708497 0.0323047
\(482\) −12.9229 −0.588622
\(483\) 0 0
\(484\) 13.8023 0.627376
\(485\) 5.76180 0.261630
\(486\) 0 0
\(487\) 23.4304 1.06173 0.530866 0.847456i \(-0.321867\pi\)
0.530866 + 0.847456i \(0.321867\pi\)
\(488\) 4.86171 0.220079
\(489\) 0 0
\(490\) 0 0
\(491\) 38.3354 1.73005 0.865027 0.501725i \(-0.167301\pi\)
0.865027 + 0.501725i \(0.167301\pi\)
\(492\) 0 0
\(493\) 6.24397 0.281214
\(494\) 0.784036 0.0352755
\(495\) 0 0
\(496\) −2.11847 −0.0951223
\(497\) 40.5810 1.82031
\(498\) 0 0
\(499\) −3.09749 −0.138663 −0.0693313 0.997594i \(-0.522087\pi\)
−0.0693313 + 0.997594i \(0.522087\pi\)
\(500\) 3.91327 0.175007
\(501\) 0 0
\(502\) −14.3906 −0.642284
\(503\) 15.4125 0.687211 0.343606 0.939114i \(-0.388352\pi\)
0.343606 + 0.939114i \(0.388352\pi\)
\(504\) 0 0
\(505\) −2.10529 −0.0936841
\(506\) −34.3329 −1.52628
\(507\) 0 0
\(508\) −7.10080 −0.315047
\(509\) −32.5971 −1.44484 −0.722421 0.691454i \(-0.756971\pi\)
−0.722421 + 0.691454i \(0.756971\pi\)
\(510\) 0 0
\(511\) 22.8309 1.00998
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −18.4798 −0.815108
\(515\) −2.91759 −0.128564
\(516\) 0 0
\(517\) 51.0542 2.24536
\(518\) −1.87451 −0.0823611
\(519\) 0 0
\(520\) 0.397613 0.0174365
\(521\) 39.5026 1.73064 0.865320 0.501220i \(-0.167115\pi\)
0.865320 + 0.501220i \(0.167115\pi\)
\(522\) 0 0
\(523\) −22.3589 −0.977684 −0.488842 0.872372i \(-0.662581\pi\)
−0.488842 + 0.872372i \(0.662581\pi\)
\(524\) −4.25933 −0.186070
\(525\) 0 0
\(526\) 0.846783 0.0369215
\(527\) −5.03731 −0.219429
\(528\) 0 0
\(529\) 24.5257 1.06634
\(530\) −1.10697 −0.0480837
\(531\) 0 0
\(532\) −2.07437 −0.0899352
\(533\) 5.80759 0.251555
\(534\) 0 0
\(535\) 0.734476 0.0317542
\(536\) −14.6293 −0.631887
\(537\) 0 0
\(538\) 4.55828 0.196521
\(539\) 0 0
\(540\) 0 0
\(541\) −19.5549 −0.840730 −0.420365 0.907355i \(-0.638098\pi\)
−0.420365 + 0.907355i \(0.638098\pi\)
\(542\) −10.5665 −0.453870
\(543\) 0 0
\(544\) −2.37780 −0.101947
\(545\) −2.64376 −0.113246
\(546\) 0 0
\(547\) −25.3840 −1.08534 −0.542671 0.839946i \(-0.682587\pi\)
−0.542671 + 0.839946i \(0.682587\pi\)
\(548\) −2.45003 −0.104660
\(549\) 0 0
\(550\) −24.1136 −1.02821
\(551\) −2.05883 −0.0877092
\(552\) 0 0
\(553\) −36.2564 −1.54178
\(554\) −10.6574 −0.452788
\(555\) 0 0
\(556\) 1.23909 0.0525490
\(557\) 35.8125 1.51742 0.758712 0.651426i \(-0.225829\pi\)
0.758712 + 0.651426i \(0.225829\pi\)
\(558\) 0 0
\(559\) −6.66888 −0.282063
\(560\) −1.05199 −0.0444545
\(561\) 0 0
\(562\) −17.4650 −0.736715
\(563\) −5.62751 −0.237171 −0.118586 0.992944i \(-0.537836\pi\)
−0.118586 + 0.992944i \(0.537836\pi\)
\(564\) 0 0
\(565\) 5.54164 0.233138
\(566\) 24.2668 1.02001
\(567\) 0 0
\(568\) −15.3382 −0.643576
\(569\) −4.86659 −0.204018 −0.102009 0.994783i \(-0.532527\pi\)
−0.102009 + 0.994783i \(0.532527\pi\)
\(570\) 0 0
\(571\) −28.2101 −1.18056 −0.590278 0.807200i \(-0.700982\pi\)
−0.590278 + 0.807200i \(0.700982\pi\)
\(572\) −4.98019 −0.208232
\(573\) 0 0
\(574\) −15.3654 −0.641341
\(575\) 33.3795 1.39202
\(576\) 0 0
\(577\) 37.1660 1.54724 0.773621 0.633649i \(-0.218444\pi\)
0.773621 + 0.633649i \(0.218444\pi\)
\(578\) 11.3461 0.471934
\(579\) 0 0
\(580\) −1.04411 −0.0433542
\(581\) −15.2803 −0.633934
\(582\) 0 0
\(583\) 13.8650 0.574231
\(584\) −8.62925 −0.357081
\(585\) 0 0
\(586\) 26.4386 1.09217
\(587\) 28.4315 1.17350 0.586748 0.809770i \(-0.300408\pi\)
0.586748 + 0.809770i \(0.300408\pi\)
\(588\) 0 0
\(589\) 1.66096 0.0684387
\(590\) −3.78949 −0.156011
\(591\) 0 0
\(592\) 0.708497 0.0291191
\(593\) 25.0305 1.02788 0.513939 0.857827i \(-0.328186\pi\)
0.513939 + 0.857827i \(0.328186\pi\)
\(594\) 0 0
\(595\) −2.50141 −0.102548
\(596\) −13.8221 −0.566175
\(597\) 0 0
\(598\) 6.89389 0.281912
\(599\) 35.2862 1.44175 0.720877 0.693063i \(-0.243739\pi\)
0.720877 + 0.693063i \(0.243739\pi\)
\(600\) 0 0
\(601\) 25.7710 1.05122 0.525610 0.850726i \(-0.323837\pi\)
0.525610 + 0.850726i \(0.323837\pi\)
\(602\) 17.6442 0.719123
\(603\) 0 0
\(604\) 4.72460 0.192241
\(605\) −5.48797 −0.223118
\(606\) 0 0
\(607\) 45.5187 1.84755 0.923773 0.382940i \(-0.125088\pi\)
0.923773 + 0.382940i \(0.125088\pi\)
\(608\) 0.784036 0.0317969
\(609\) 0 0
\(610\) −1.93308 −0.0782682
\(611\) −10.2515 −0.414729
\(612\) 0 0
\(613\) 46.1224 1.86286 0.931432 0.363915i \(-0.118560\pi\)
0.931432 + 0.363915i \(0.118560\pi\)
\(614\) −1.56807 −0.0632823
\(615\) 0 0
\(616\) 13.1763 0.530890
\(617\) 43.1991 1.73913 0.869565 0.493819i \(-0.164400\pi\)
0.869565 + 0.493819i \(0.164400\pi\)
\(618\) 0 0
\(619\) −21.7660 −0.874848 −0.437424 0.899255i \(-0.644109\pi\)
−0.437424 + 0.899255i \(0.644109\pi\)
\(620\) 0.842333 0.0338289
\(621\) 0 0
\(622\) −3.46410 −0.138898
\(623\) −11.9484 −0.478704
\(624\) 0 0
\(625\) 22.6536 0.906142
\(626\) 11.9823 0.478910
\(627\) 0 0
\(628\) −21.6817 −0.865193
\(629\) 1.68467 0.0671721
\(630\) 0 0
\(631\) −33.8160 −1.34620 −0.673098 0.739554i \(-0.735037\pi\)
−0.673098 + 0.739554i \(0.735037\pi\)
\(632\) 13.7036 0.545101
\(633\) 0 0
\(634\) 24.1458 0.958951
\(635\) 2.82337 0.112042
\(636\) 0 0
\(637\) 0 0
\(638\) 13.0777 0.517750
\(639\) 0 0
\(640\) 0.397613 0.0157170
\(641\) −49.5273 −1.95621 −0.978106 0.208109i \(-0.933269\pi\)
−0.978106 + 0.208109i \(0.933269\pi\)
\(642\) 0 0
\(643\) −20.2771 −0.799652 −0.399826 0.916591i \(-0.630930\pi\)
−0.399826 + 0.916591i \(0.630930\pi\)
\(644\) −18.2395 −0.718738
\(645\) 0 0
\(646\) 1.86428 0.0733493
\(647\) −8.72043 −0.342836 −0.171418 0.985198i \(-0.554835\pi\)
−0.171418 + 0.985198i \(0.554835\pi\)
\(648\) 0 0
\(649\) 47.4641 1.86313
\(650\) 4.84190 0.189915
\(651\) 0 0
\(652\) −22.6293 −0.886230
\(653\) −0.281708 −0.0110241 −0.00551204 0.999985i \(-0.501755\pi\)
−0.00551204 + 0.999985i \(0.501755\pi\)
\(654\) 0 0
\(655\) 1.69357 0.0661731
\(656\) 5.80759 0.226748
\(657\) 0 0
\(658\) 27.1228 1.05736
\(659\) −16.9216 −0.659171 −0.329586 0.944126i \(-0.606909\pi\)
−0.329586 + 0.944126i \(0.606909\pi\)
\(660\) 0 0
\(661\) −0.668875 −0.0260162 −0.0130081 0.999915i \(-0.504141\pi\)
−0.0130081 + 0.999915i \(0.504141\pi\)
\(662\) −2.62925 −0.102189
\(663\) 0 0
\(664\) 5.77542 0.224130
\(665\) 0.824795 0.0319842
\(666\) 0 0
\(667\) −18.1029 −0.700949
\(668\) 1.41742 0.0548418
\(669\) 0 0
\(670\) 5.81678 0.224722
\(671\) 24.2123 0.934704
\(672\) 0 0
\(673\) 46.8718 1.80677 0.903387 0.428826i \(-0.141073\pi\)
0.903387 + 0.428826i \(0.141073\pi\)
\(674\) −26.0392 −1.00299
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 42.6413 1.63884 0.819419 0.573195i \(-0.194296\pi\)
0.819419 + 0.573195i \(0.194296\pi\)
\(678\) 0 0
\(679\) −38.3395 −1.47133
\(680\) 0.945446 0.0362562
\(681\) 0 0
\(682\) −10.5504 −0.403996
\(683\) −15.7709 −0.603458 −0.301729 0.953394i \(-0.597564\pi\)
−0.301729 + 0.953394i \(0.597564\pi\)
\(684\) 0 0
\(685\) 0.974164 0.0372209
\(686\) 18.5203 0.707107
\(687\) 0 0
\(688\) −6.66888 −0.254248
\(689\) −2.78404 −0.106063
\(690\) 0 0
\(691\) −27.8425 −1.05918 −0.529589 0.848254i \(-0.677654\pi\)
−0.529589 + 0.848254i \(0.677654\pi\)
\(692\) 15.1908 0.577469
\(693\) 0 0
\(694\) −14.1775 −0.538171
\(695\) −0.492678 −0.0186883
\(696\) 0 0
\(697\) 13.8093 0.523065
\(698\) −14.4319 −0.546256
\(699\) 0 0
\(700\) −12.8105 −0.484190
\(701\) −22.3494 −0.844124 −0.422062 0.906567i \(-0.638694\pi\)
−0.422062 + 0.906567i \(0.638694\pi\)
\(702\) 0 0
\(703\) −0.555488 −0.0209506
\(704\) −4.98019 −0.187698
\(705\) 0 0
\(706\) −33.0414 −1.24353
\(707\) 14.0088 0.526854
\(708\) 0 0
\(709\) 2.94972 0.110779 0.0553896 0.998465i \(-0.482360\pi\)
0.0553896 + 0.998465i \(0.482360\pi\)
\(710\) 6.09866 0.228879
\(711\) 0 0
\(712\) 4.51609 0.169248
\(713\) 14.6045 0.546944
\(714\) 0 0
\(715\) 1.98019 0.0740549
\(716\) −6.92820 −0.258919
\(717\) 0 0
\(718\) −16.6661 −0.621975
\(719\) −25.0053 −0.932542 −0.466271 0.884642i \(-0.654403\pi\)
−0.466271 + 0.884642i \(0.654403\pi\)
\(720\) 0 0
\(721\) 19.4139 0.723010
\(722\) 18.3853 0.684230
\(723\) 0 0
\(724\) −23.0590 −0.856983
\(725\) −12.7145 −0.472207
\(726\) 0 0
\(727\) 23.0149 0.853577 0.426788 0.904352i \(-0.359645\pi\)
0.426788 + 0.904352i \(0.359645\pi\)
\(728\) −2.64575 −0.0980581
\(729\) 0 0
\(730\) 3.43111 0.126991
\(731\) −15.8573 −0.586502
\(732\) 0 0
\(733\) 8.25676 0.304970 0.152485 0.988306i \(-0.451272\pi\)
0.152485 + 0.988306i \(0.451272\pi\)
\(734\) 28.7143 1.05986
\(735\) 0 0
\(736\) 6.89389 0.254112
\(737\) −72.8564 −2.68370
\(738\) 0 0
\(739\) 20.4749 0.753180 0.376590 0.926380i \(-0.377097\pi\)
0.376590 + 0.926380i \(0.377097\pi\)
\(740\) −0.281708 −0.0103558
\(741\) 0 0
\(742\) 7.36587 0.270410
\(743\) 7.93522 0.291115 0.145558 0.989350i \(-0.453502\pi\)
0.145558 + 0.989350i \(0.453502\pi\)
\(744\) 0 0
\(745\) 5.49585 0.201352
\(746\) −0.476036 −0.0174289
\(747\) 0 0
\(748\) −11.8419 −0.432983
\(749\) −4.88726 −0.178577
\(750\) 0 0
\(751\) 7.40061 0.270052 0.135026 0.990842i \(-0.456888\pi\)
0.135026 + 0.990842i \(0.456888\pi\)
\(752\) −10.2515 −0.373832
\(753\) 0 0
\(754\) −2.62594 −0.0956311
\(755\) −1.87856 −0.0683680
\(756\) 0 0
\(757\) −7.88601 −0.286622 −0.143311 0.989678i \(-0.545775\pi\)
−0.143311 + 0.989678i \(0.545775\pi\)
\(758\) −16.5537 −0.601258
\(759\) 0 0
\(760\) −0.311743 −0.0113081
\(761\) −28.5896 −1.03637 −0.518187 0.855268i \(-0.673393\pi\)
−0.518187 + 0.855268i \(0.673393\pi\)
\(762\) 0 0
\(763\) 17.5918 0.636865
\(764\) −7.01407 −0.253760
\(765\) 0 0
\(766\) −36.8745 −1.33233
\(767\) −9.53059 −0.344130
\(768\) 0 0
\(769\) −18.8961 −0.681410 −0.340705 0.940170i \(-0.610666\pi\)
−0.340705 + 0.940170i \(0.610666\pi\)
\(770\) −5.23909 −0.188804
\(771\) 0 0
\(772\) 20.0128 0.720276
\(773\) 10.7728 0.387472 0.193736 0.981054i \(-0.437939\pi\)
0.193736 + 0.981054i \(0.437939\pi\)
\(774\) 0 0
\(775\) 10.2574 0.368458
\(776\) 14.4910 0.520195
\(777\) 0 0
\(778\) −10.8494 −0.388968
\(779\) −4.55336 −0.163141
\(780\) 0 0
\(781\) −76.3870 −2.73334
\(782\) 16.3923 0.586188
\(783\) 0 0
\(784\) 0 0
\(785\) 8.62092 0.307694
\(786\) 0 0
\(787\) 40.4741 1.44275 0.721373 0.692547i \(-0.243512\pi\)
0.721373 + 0.692547i \(0.243512\pi\)
\(788\) −2.30558 −0.0821327
\(789\) 0 0
\(790\) −5.44874 −0.193857
\(791\) −36.8745 −1.31111
\(792\) 0 0
\(793\) −4.86171 −0.172645
\(794\) 32.5080 1.15367
\(795\) 0 0
\(796\) −2.04625 −0.0725273
\(797\) −36.8601 −1.30565 −0.652827 0.757507i \(-0.726417\pi\)
−0.652827 + 0.757507i \(0.726417\pi\)
\(798\) 0 0
\(799\) −24.3759 −0.862358
\(800\) 4.84190 0.171187
\(801\) 0 0
\(802\) −4.63182 −0.163555
\(803\) −42.9753 −1.51657
\(804\) 0 0
\(805\) 7.25227 0.255609
\(806\) 2.11847 0.0746201
\(807\) 0 0
\(808\) −5.29482 −0.186271
\(809\) −37.4159 −1.31547 −0.657736 0.753249i \(-0.728486\pi\)
−0.657736 + 0.753249i \(0.728486\pi\)
\(810\) 0 0
\(811\) −51.0901 −1.79402 −0.897008 0.442015i \(-0.854264\pi\)
−0.897008 + 0.442015i \(0.854264\pi\)
\(812\) 6.94758 0.243812
\(813\) 0 0
\(814\) 3.52845 0.123672
\(815\) 8.99769 0.315175
\(816\) 0 0
\(817\) 5.22864 0.182927
\(818\) −4.46727 −0.156194
\(819\) 0 0
\(820\) −2.30917 −0.0806399
\(821\) −4.47390 −0.156140 −0.0780700 0.996948i \(-0.524876\pi\)
−0.0780700 + 0.996948i \(0.524876\pi\)
\(822\) 0 0
\(823\) 14.8894 0.519013 0.259507 0.965741i \(-0.416440\pi\)
0.259507 + 0.965741i \(0.416440\pi\)
\(824\) −7.33775 −0.255623
\(825\) 0 0
\(826\) 25.2156 0.877362
\(827\) 11.1361 0.387242 0.193621 0.981076i \(-0.437977\pi\)
0.193621 + 0.981076i \(0.437977\pi\)
\(828\) 0 0
\(829\) 12.8943 0.447838 0.223919 0.974608i \(-0.428115\pi\)
0.223919 + 0.974608i \(0.428115\pi\)
\(830\) −2.29638 −0.0797086
\(831\) 0 0
\(832\) 1.00000 0.0346688
\(833\) 0 0
\(834\) 0 0
\(835\) −0.563587 −0.0195037
\(836\) 3.90465 0.135045
\(837\) 0 0
\(838\) 37.3650 1.29075
\(839\) −31.0863 −1.07322 −0.536609 0.843831i \(-0.680295\pi\)
−0.536609 + 0.843831i \(0.680295\pi\)
\(840\) 0 0
\(841\) −22.1044 −0.762222
\(842\) −23.9009 −0.823681
\(843\) 0 0
\(844\) −9.90134 −0.340818
\(845\) −0.397613 −0.0136783
\(846\) 0 0
\(847\) 36.5174 1.25475
\(848\) −2.78404 −0.0956042
\(849\) 0 0
\(850\) 11.5131 0.394896
\(851\) −4.88430 −0.167432
\(852\) 0 0
\(853\) −26.7349 −0.915387 −0.457693 0.889110i \(-0.651324\pi\)
−0.457693 + 0.889110i \(0.651324\pi\)
\(854\) 12.8629 0.440159
\(855\) 0 0
\(856\) 1.84721 0.0631364
\(857\) 36.1679 1.23547 0.617735 0.786386i \(-0.288050\pi\)
0.617735 + 0.786386i \(0.288050\pi\)
\(858\) 0 0
\(859\) −26.0104 −0.887465 −0.443732 0.896159i \(-0.646346\pi\)
−0.443732 + 0.896159i \(0.646346\pi\)
\(860\) 2.65163 0.0904199
\(861\) 0 0
\(862\) 1.11060 0.0378271
\(863\) 28.5281 0.971106 0.485553 0.874207i \(-0.338618\pi\)
0.485553 + 0.874207i \(0.338618\pi\)
\(864\) 0 0
\(865\) −6.04008 −0.205369
\(866\) 3.59665 0.122219
\(867\) 0 0
\(868\) −5.60496 −0.190245
\(869\) 68.2466 2.31511
\(870\) 0 0
\(871\) 14.6293 0.495693
\(872\) −6.64906 −0.225166
\(873\) 0 0
\(874\) −5.40506 −0.182829
\(875\) 10.3535 0.350014
\(876\) 0 0
\(877\) 16.2932 0.550184 0.275092 0.961418i \(-0.411292\pi\)
0.275092 + 0.961418i \(0.411292\pi\)
\(878\) −40.9819 −1.38307
\(879\) 0 0
\(880\) 1.98019 0.0667522
\(881\) −25.8643 −0.871390 −0.435695 0.900094i \(-0.643497\pi\)
−0.435695 + 0.900094i \(0.643497\pi\)
\(882\) 0 0
\(883\) 33.0410 1.11192 0.555959 0.831210i \(-0.312351\pi\)
0.555959 + 0.831210i \(0.312351\pi\)
\(884\) 2.37780 0.0799741
\(885\) 0 0
\(886\) −14.1040 −0.473832
\(887\) −54.3144 −1.82370 −0.911849 0.410525i \(-0.865345\pi\)
−0.911849 + 0.410525i \(0.865345\pi\)
\(888\) 0 0
\(889\) −18.7870 −0.630094
\(890\) −1.79566 −0.0601905
\(891\) 0 0
\(892\) −16.6850 −0.558654
\(893\) 8.03751 0.268965
\(894\) 0 0
\(895\) 2.75475 0.0920810
\(896\) −2.64575 −0.0883883
\(897\) 0 0
\(898\) −10.6913 −0.356772
\(899\) −5.56299 −0.185536
\(900\) 0 0
\(901\) −6.61989 −0.220540
\(902\) 28.9229 0.963027
\(903\) 0 0
\(904\) 13.9373 0.463546
\(905\) 9.16858 0.304774
\(906\) 0 0
\(907\) 1.56807 0.0520670 0.0260335 0.999661i \(-0.491712\pi\)
0.0260335 + 0.999661i \(0.491712\pi\)
\(908\) 9.97976 0.331190
\(909\) 0 0
\(910\) 1.05199 0.0348730
\(911\) −43.0753 −1.42715 −0.713574 0.700580i \(-0.752925\pi\)
−0.713574 + 0.700580i \(0.752925\pi\)
\(912\) 0 0
\(913\) 28.7627 0.951905
\(914\) −35.9732 −1.18989
\(915\) 0 0
\(916\) −20.3064 −0.670943
\(917\) −11.2691 −0.372139
\(918\) 0 0
\(919\) −58.5403 −1.93106 −0.965532 0.260283i \(-0.916184\pi\)
−0.965532 + 0.260283i \(0.916184\pi\)
\(920\) −2.74110 −0.0903714
\(921\) 0 0
\(922\) −15.6486 −0.515360
\(923\) 15.3382 0.504862
\(924\) 0 0
\(925\) −3.43048 −0.112793
\(926\) −7.11965 −0.233966
\(927\) 0 0
\(928\) −2.62594 −0.0862007
\(929\) −13.1255 −0.430635 −0.215317 0.976544i \(-0.569079\pi\)
−0.215317 + 0.976544i \(0.569079\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 3.81878 0.125088
\(933\) 0 0
\(934\) 19.2321 0.629293
\(935\) 4.70850 0.153984
\(936\) 0 0
\(937\) −6.22330 −0.203306 −0.101653 0.994820i \(-0.532413\pi\)
−0.101653 + 0.994820i \(0.532413\pi\)
\(938\) −38.7054 −1.26377
\(939\) 0 0
\(940\) 4.07611 0.132948
\(941\) 25.8234 0.841819 0.420910 0.907103i \(-0.361711\pi\)
0.420910 + 0.907103i \(0.361711\pi\)
\(942\) 0 0
\(943\) −40.0369 −1.30378
\(944\) −9.53059 −0.310194
\(945\) 0 0
\(946\) −33.2123 −1.07982
\(947\) −8.03962 −0.261253 −0.130626 0.991432i \(-0.541699\pi\)
−0.130626 + 0.991432i \(0.541699\pi\)
\(948\) 0 0
\(949\) 8.62925 0.280117
\(950\) −3.79623 −0.123166
\(951\) 0 0
\(952\) −6.29107 −0.203895
\(953\) −25.8564 −0.837571 −0.418786 0.908085i \(-0.637544\pi\)
−0.418786 + 0.908085i \(0.637544\pi\)
\(954\) 0 0
\(955\) 2.78889 0.0902463
\(956\) −12.3955 −0.400898
\(957\) 0 0
\(958\) 25.0761 0.810172
\(959\) −6.48217 −0.209320
\(960\) 0 0
\(961\) −26.5121 −0.855228
\(962\) −0.708497 −0.0228429
\(963\) 0 0
\(964\) 12.9229 0.416218
\(965\) −7.95735 −0.256156
\(966\) 0 0
\(967\) 35.4304 1.13936 0.569682 0.821865i \(-0.307066\pi\)
0.569682 + 0.821865i \(0.307066\pi\)
\(968\) −13.8023 −0.443622
\(969\) 0 0
\(970\) −5.76180 −0.185000
\(971\) −27.2073 −0.873125 −0.436563 0.899674i \(-0.643804\pi\)
−0.436563 + 0.899674i \(0.643804\pi\)
\(972\) 0 0
\(973\) 3.27832 0.105098
\(974\) −23.4304 −0.750757
\(975\) 0 0
\(976\) −4.86171 −0.155620
\(977\) 27.1057 0.867189 0.433594 0.901108i \(-0.357245\pi\)
0.433594 + 0.901108i \(0.357245\pi\)
\(978\) 0 0
\(979\) 22.4910 0.718814
\(980\) 0 0
\(981\) 0 0
\(982\) −38.3354 −1.22333
\(983\) −20.7309 −0.661213 −0.330607 0.943769i \(-0.607253\pi\)
−0.330607 + 0.943769i \(0.607253\pi\)
\(984\) 0 0
\(985\) 0.916727 0.0292094
\(986\) −6.24397 −0.198848
\(987\) 0 0
\(988\) −0.784036 −0.0249435
\(989\) 45.9745 1.46190
\(990\) 0 0
\(991\) 22.0916 0.701764 0.350882 0.936420i \(-0.385882\pi\)
0.350882 + 0.936420i \(0.385882\pi\)
\(992\) 2.11847 0.0672616
\(993\) 0 0
\(994\) −40.5810 −1.28715
\(995\) 0.813615 0.0257933
\(996\) 0 0
\(997\) 28.1396 0.891189 0.445595 0.895235i \(-0.352992\pi\)
0.445595 + 0.895235i \(0.352992\pi\)
\(998\) 3.09749 0.0980493
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2106.2.a.s.1.3 4
3.2 odd 2 2106.2.a.u.1.2 yes 4
9.2 odd 6 2106.2.e.bi.1405.3 8
9.4 even 3 2106.2.e.bj.703.2 8
9.5 odd 6 2106.2.e.bi.703.3 8
9.7 even 3 2106.2.e.bj.1405.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2106.2.a.s.1.3 4 1.1 even 1 trivial
2106.2.a.u.1.2 yes 4 3.2 odd 2
2106.2.e.bi.703.3 8 9.5 odd 6
2106.2.e.bi.1405.3 8 9.2 odd 6
2106.2.e.bj.703.2 8 9.4 even 3
2106.2.e.bj.1405.2 8 9.7 even 3