Properties

Label 2100.3.m
Level $2100$
Weight $3$
Character orbit 2100.m
Rep. character $\chi_{2100}(251,\cdot)$
Character field $\Q$
Dimension $596$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2100, [\chi])\).

Total New Old
Modular forms 984 620 364
Cusp forms 936 596 340
Eisenstein series 48 24 24

Trace form

\( 596 q + 4 q^{4} + 4 q^{9} - 4 q^{16} - 56 q^{18} + 20 q^{21} - 8 q^{22} - 8 q^{28} - 32 q^{36} - 72 q^{37} + 140 q^{42} - 184 q^{46} + 20 q^{49} + 24 q^{57} - 72 q^{58} + 124 q^{64} - 28 q^{72} + 288 q^{78}+ \cdots + 200 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2100, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)