Properties

Label 2100.3.bf
Level $2100$
Weight $3$
Character orbit 2100.bf
Rep. character $\chi_{2100}(299,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $1136$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.bf (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 420 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2100, [\chi])\).

Total New Old
Modular forms 1968 1168 800
Cusp forms 1872 1136 736
Eisenstein series 96 32 64

Trace form

\( 1136 q + 4 q^{4} + 4 q^{9} - 4 q^{16} + 12 q^{21} + 60 q^{24} - 144 q^{36} + 128 q^{46} - 64 q^{49} - 102 q^{54} - 24 q^{61} - 176 q^{64} + 264 q^{66} - 84 q^{81} - 98 q^{84} - 780 q^{94} + 1086 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2100, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)