# Properties

 Label 2100.2.k.e Level 2100 Weight 2 Character orbit 2100.k Analytic conductor 16.769 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2100.k (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$16.7685844245$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -i q^{3} -i q^{7} - q^{9} +O(q^{10})$$ $$q -i q^{3} -i q^{7} - q^{9} - q^{11} + 2 i q^{13} + 8 i q^{17} + 2 q^{19} - q^{21} -i q^{23} + i q^{27} - q^{29} + 6 q^{31} + i q^{33} + 9 i q^{37} + 2 q^{39} + i q^{43} + 6 i q^{47} - q^{49} + 8 q^{51} -2 i q^{53} -2 i q^{57} + 6 q^{59} + 8 q^{61} + i q^{63} -3 i q^{67} - q^{69} + 7 q^{71} -16 i q^{73} + i q^{77} - q^{79} + q^{81} + 6 i q^{83} + i q^{87} + 14 q^{89} + 2 q^{91} -6 i q^{93} + 14 i q^{97} + q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{9} + O(q^{10})$$ $$2q - 2q^{9} - 2q^{11} + 4q^{19} - 2q^{21} - 2q^{29} + 12q^{31} + 4q^{39} - 2q^{49} + 16q^{51} + 12q^{59} + 16q^{61} - 2q^{69} + 14q^{71} - 2q^{79} + 2q^{81} + 28q^{89} + 4q^{91} + 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times$$.

 $$n$$ $$701$$ $$1051$$ $$1177$$ $$1501$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1849.1
 1.00000i − 1.00000i
0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
1849.2 0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.k.e 2
3.b odd 2 1 6300.2.k.l 2
5.b even 2 1 inner 2100.2.k.e 2
5.c odd 4 1 2100.2.a.f 1
5.c odd 4 1 2100.2.a.l yes 1
15.d odd 2 1 6300.2.k.l 2
15.e even 4 1 6300.2.a.j 1
15.e even 4 1 6300.2.a.ba 1
20.e even 4 1 8400.2.a.ba 1
20.e even 4 1 8400.2.a.by 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.2.a.f 1 5.c odd 4 1
2100.2.a.l yes 1 5.c odd 4 1
2100.2.k.e 2 1.a even 1 1 trivial
2100.2.k.e 2 5.b even 2 1 inner
6300.2.a.j 1 15.e even 4 1
6300.2.a.ba 1 15.e even 4 1
6300.2.k.l 2 3.b odd 2 1
6300.2.k.l 2 15.d odd 2 1
8400.2.a.ba 1 20.e even 4 1
8400.2.a.by 1 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2100, [\chi])$$:

 $$T_{11} + 1$$ $$T_{13}^{2} + 4$$ $$T_{17}^{2} + 64$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 + T^{2}$$
$5$ 1
$7$ $$1 + T^{2}$$
$11$ $$( 1 + T + 11 T^{2} )^{2}$$
$13$ $$1 - 22 T^{2} + 169 T^{4}$$
$17$ $$( 1 - 2 T + 17 T^{2} )( 1 + 2 T + 17 T^{2} )$$
$19$ $$( 1 - 2 T + 19 T^{2} )^{2}$$
$23$ $$1 - 45 T^{2} + 529 T^{4}$$
$29$ $$( 1 + T + 29 T^{2} )^{2}$$
$31$ $$( 1 - 6 T + 31 T^{2} )^{2}$$
$37$ $$1 + 7 T^{2} + 1369 T^{4}$$
$41$ $$( 1 + 41 T^{2} )^{2}$$
$43$ $$1 - 85 T^{2} + 1849 T^{4}$$
$47$ $$1 - 58 T^{2} + 2209 T^{4}$$
$53$ $$1 - 102 T^{2} + 2809 T^{4}$$
$59$ $$( 1 - 6 T + 59 T^{2} )^{2}$$
$61$ $$( 1 - 8 T + 61 T^{2} )^{2}$$
$67$ $$1 - 125 T^{2} + 4489 T^{4}$$
$71$ $$( 1 - 7 T + 71 T^{2} )^{2}$$
$73$ $$( 1 - 6 T + 73 T^{2} )( 1 + 6 T + 73 T^{2} )$$
$79$ $$( 1 + T + 79 T^{2} )^{2}$$
$83$ $$1 - 130 T^{2} + 6889 T^{4}$$
$89$ $$( 1 - 14 T + 89 T^{2} )^{2}$$
$97$ $$1 + 2 T^{2} + 9409 T^{4}$$