Properties

Label 210.3.v.a.67.6
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.6
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.a.163.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-2.17682 + 4.50127i) q^{5} +2.44949 q^{6} +(-6.19254 - 3.26382i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-2.17682 + 4.50127i) q^{5} +2.44949 q^{6} +(-6.19254 - 3.26382i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(5.35208 + 4.62118i) q^{10} +(-0.187724 + 0.325147i) q^{11} +(0.896575 - 3.34607i) q^{12} +(-9.32144 + 9.32144i) q^{13} +(-6.72508 + 7.26452i) q^{14} +(-8.50662 - 1.62403i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-29.7515 + 7.97190i) q^{17} +(1.09808 + 4.09808i) q^{18} +(-6.46747 + 3.73399i) q^{19} +(8.27164 - 5.61961i) q^{20} +(2.68443 - 11.8234i) q^{21} +(0.375447 + 0.375447i) q^{22} +(38.4418 + 10.3004i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(-15.5229 - 19.5969i) q^{25} +(9.32144 + 16.1452i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(7.46197 + 11.8456i) q^{28} -22.0507i q^{29} +(-5.33211 + 11.0258i) q^{30} +(-23.7274 + 41.0971i) q^{31} +(5.46410 - 1.46410i) q^{32} +(-0.628136 - 0.168308i) q^{33} +43.5593i q^{34} +(28.1714 - 20.7695i) q^{35} +6.00000 q^{36} +(1.58305 - 5.90803i) q^{37} +(2.73347 + 10.2015i) q^{38} +(-19.7738 - 11.4164i) q^{39} +(-4.64889 - 13.3562i) q^{40} +78.1193 q^{41} +(-15.1686 - 7.99469i) q^{42} +(-12.2703 + 12.2703i) q^{43} +(0.650294 - 0.375447i) q^{44} +(-1.09635 - 14.9599i) q^{45} +(28.1413 - 48.7422i) q^{46} +(3.06391 - 11.4346i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(27.6950 + 40.4226i) q^{49} +(-32.4517 + 14.0317i) q^{50} +(-26.6745 - 46.2016i) q^{51} +(25.4667 - 6.82377i) q^{52} +(-1.05511 - 3.93772i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(-1.05493 - 1.55278i) q^{55} +(18.9127 - 5.85744i) q^{56} +(-9.14638 - 9.14638i) q^{57} +(-30.1218 - 8.07112i) q^{58} +(-2.87480 - 1.65977i) q^{59} +(13.1099 + 11.3195i) q^{60} +(-44.2733 - 76.6835i) q^{61} +(47.4548 + 47.4548i) q^{62} +(20.9844 - 0.809158i) q^{63} -8.00000i q^{64} +(-21.6672 - 62.2495i) q^{65} +(-0.459827 + 0.796444i) q^{66} +(-86.4726 + 23.1703i) q^{67} +(59.5031 + 15.9438i) q^{68} +68.9319i q^{69} +(-18.0603 - 46.0850i) q^{70} +64.3942 q^{71} +(2.19615 - 8.19615i) q^{72} +(3.13198 + 11.6887i) q^{73} +(-7.49108 - 4.32498i) q^{74} +(25.8276 - 34.7554i) q^{75} +14.9360 q^{76} +(2.22371 - 1.40079i) q^{77} +(-22.8328 + 22.8328i) q^{78} +(31.3872 - 18.1214i) q^{79} +(-19.9465 + 1.46180i) q^{80} +(4.50000 - 7.79423i) q^{81} +(28.5937 - 106.713i) q^{82} +(-94.4289 + 94.4289i) q^{83} +(-16.4730 + 17.7944i) q^{84} +(28.8802 - 151.273i) q^{85} +(12.2703 + 21.2529i) q^{86} +(36.8916 - 9.88507i) q^{87} +(-0.274847 - 1.02574i) q^{88} +(50.7781 - 29.3168i) q^{89} +(-20.8369 - 3.97805i) q^{90} +(88.1468 - 27.2999i) q^{91} +(-56.2827 - 56.2827i) q^{92} +(-79.3934 - 21.2734i) q^{93} +(-14.4986 - 8.37074i) q^{94} +(-2.72918 - 37.2401i) q^{95} +(4.89898 + 8.48528i) q^{96} +(56.0148 + 56.0148i) q^{97} +(65.3554 - 23.0364i) q^{98} -1.12634i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −2.17682 + 4.50127i −0.435365 + 0.900254i
\(6\) 2.44949 0.408248
\(7\) −6.19254 3.26382i −0.884648 0.466260i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) 5.35208 + 4.62118i 0.535208 + 0.462118i
\(11\) −0.187724 + 0.325147i −0.0170658 + 0.0295588i −0.874432 0.485148i \(-0.838766\pi\)
0.857366 + 0.514707i \(0.172099\pi\)
\(12\) 0.896575 3.34607i 0.0747146 0.278839i
\(13\) −9.32144 + 9.32144i −0.717034 + 0.717034i −0.967997 0.250963i \(-0.919253\pi\)
0.250963 + 0.967997i \(0.419253\pi\)
\(14\) −6.72508 + 7.26452i −0.480363 + 0.518894i
\(15\) −8.50662 1.62403i −0.567108 0.108269i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −29.7515 + 7.97190i −1.75009 + 0.468935i −0.984646 0.174566i \(-0.944148\pi\)
−0.765445 + 0.643501i \(0.777481\pi\)
\(18\) 1.09808 + 4.09808i 0.0610042 + 0.227671i
\(19\) −6.46747 + 3.73399i −0.340393 + 0.196526i −0.660446 0.750874i \(-0.729633\pi\)
0.320053 + 0.947400i \(0.396299\pi\)
\(20\) 8.27164 5.61961i 0.413582 0.280980i
\(21\) 2.68443 11.8234i 0.127830 0.563021i
\(22\) 0.375447 + 0.375447i 0.0170658 + 0.0170658i
\(23\) 38.4418 + 10.3004i 1.67138 + 0.447845i 0.965483 0.260467i \(-0.0838764\pi\)
0.705899 + 0.708312i \(0.250543\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) −15.5229 19.5969i −0.620915 0.783878i
\(26\) 9.32144 + 16.1452i 0.358517 + 0.620970i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 7.46197 + 11.8456i 0.266499 + 0.423058i
\(29\) 22.0507i 0.760370i −0.924911 0.380185i \(-0.875860\pi\)
0.924911 0.380185i \(-0.124140\pi\)
\(30\) −5.33211 + 11.0258i −0.177737 + 0.367527i
\(31\) −23.7274 + 41.0971i −0.765400 + 1.32571i 0.174635 + 0.984633i \(0.444125\pi\)
−0.940035 + 0.341078i \(0.889208\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) −0.628136 0.168308i −0.0190344 0.00510026i
\(34\) 43.5593i 1.28116i
\(35\) 28.1714 20.7695i 0.804897 0.593415i
\(36\) 6.00000 0.166667
\(37\) 1.58305 5.90803i 0.0427852 0.159676i −0.941228 0.337772i \(-0.890327\pi\)
0.984013 + 0.178095i \(0.0569935\pi\)
\(38\) 2.73347 + 10.2015i 0.0719335 + 0.268459i
\(39\) −19.7738 11.4164i −0.507020 0.292728i
\(40\) −4.64889 13.3562i −0.116222 0.333905i
\(41\) 78.1193 1.90535 0.952675 0.303992i \(-0.0983197\pi\)
0.952675 + 0.303992i \(0.0983197\pi\)
\(42\) −15.1686 7.99469i −0.361156 0.190350i
\(43\) −12.2703 + 12.2703i −0.285357 + 0.285357i −0.835241 0.549884i \(-0.814672\pi\)
0.549884 + 0.835241i \(0.314672\pi\)
\(44\) 0.650294 0.375447i 0.0147794 0.00853289i
\(45\) −1.09635 14.9599i −0.0243634 0.332442i
\(46\) 28.1413 48.7422i 0.611768 1.05961i
\(47\) 3.06391 11.4346i 0.0651895 0.243290i −0.925641 0.378404i \(-0.876473\pi\)
0.990830 + 0.135113i \(0.0431398\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 27.6950 + 40.4226i 0.565204 + 0.824951i
\(50\) −32.4517 + 14.0317i −0.649034 + 0.280633i
\(51\) −26.6745 46.2016i −0.523029 0.905914i
\(52\) 25.4667 6.82377i 0.489743 0.131226i
\(53\) −1.05511 3.93772i −0.0199077 0.0742967i 0.955257 0.295776i \(-0.0955782\pi\)
−0.975165 + 0.221479i \(0.928912\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) −1.05493 1.55278i −0.0191806 0.0282324i
\(56\) 18.9127 5.85744i 0.337727 0.104597i
\(57\) −9.14638 9.14638i −0.160463 0.160463i
\(58\) −30.1218 8.07112i −0.519342 0.139157i
\(59\) −2.87480 1.65977i −0.0487254 0.0281316i 0.475439 0.879748i \(-0.342289\pi\)
−0.524165 + 0.851617i \(0.675622\pi\)
\(60\) 13.1099 + 11.3195i 0.218498 + 0.188659i
\(61\) −44.2733 76.6835i −0.725791 1.25711i −0.958648 0.284596i \(-0.908141\pi\)
0.232857 0.972511i \(-0.425193\pi\)
\(62\) 47.4548 + 47.4548i 0.765400 + 0.765400i
\(63\) 20.9844 0.809158i 0.333086 0.0128438i
\(64\) 8.00000i 0.125000i
\(65\) −21.6672 62.2495i −0.333342 0.957684i
\(66\) −0.459827 + 0.796444i −0.00696708 + 0.0120673i
\(67\) −86.4726 + 23.1703i −1.29064 + 0.345825i −0.837902 0.545821i \(-0.816218\pi\)
−0.452734 + 0.891646i \(0.649551\pi\)
\(68\) 59.5031 + 15.9438i 0.875045 + 0.234468i
\(69\) 68.9319i 0.999013i
\(70\) −18.0603 46.0850i −0.258004 0.658357i
\(71\) 64.3942 0.906960 0.453480 0.891266i \(-0.350182\pi\)
0.453480 + 0.891266i \(0.350182\pi\)
\(72\) 2.19615 8.19615i 0.0305021 0.113835i
\(73\) 3.13198 + 11.6887i 0.0429038 + 0.160119i 0.984054 0.177869i \(-0.0569203\pi\)
−0.941150 + 0.337988i \(0.890254\pi\)
\(74\) −7.49108 4.32498i −0.101231 0.0584456i
\(75\) 25.8276 34.7554i 0.344368 0.463405i
\(76\) 14.9360 0.196526
\(77\) 2.22371 1.40079i 0.0288793 0.0181921i
\(78\) −22.8328 + 22.8328i −0.292728 + 0.292728i
\(79\) 31.3872 18.1214i 0.397307 0.229385i −0.288015 0.957626i \(-0.592995\pi\)
0.685321 + 0.728241i \(0.259662\pi\)
\(80\) −19.9465 + 1.46180i −0.249331 + 0.0182726i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 28.5937 106.713i 0.348703 1.30138i
\(83\) −94.4289 + 94.4289i −1.13770 + 1.13770i −0.148836 + 0.988862i \(0.547553\pi\)
−0.988862 + 0.148836i \(0.952447\pi\)
\(84\) −16.4730 + 17.7944i −0.196107 + 0.211838i
\(85\) 28.8802 151.273i 0.339767 1.77968i
\(86\) 12.2703 + 21.2529i 0.142678 + 0.247126i
\(87\) 36.8916 9.88507i 0.424041 0.113621i
\(88\) −0.274847 1.02574i −0.00312326 0.0116562i
\(89\) 50.7781 29.3168i 0.570541 0.329402i −0.186825 0.982393i \(-0.559820\pi\)
0.757365 + 0.652992i \(0.226486\pi\)
\(90\) −20.8369 3.97805i −0.231521 0.0442006i
\(91\) 88.1468 27.2999i 0.968647 0.299999i
\(92\) −56.2827 56.2827i −0.611768 0.611768i
\(93\) −79.3934 21.2734i −0.853693 0.228746i
\(94\) −14.4986 8.37074i −0.154240 0.0890505i
\(95\) −2.72918 37.2401i −0.0287282 0.392001i
\(96\) 4.89898 + 8.48528i 0.0510310 + 0.0883883i
\(97\) 56.0148 + 56.0148i 0.577472 + 0.577472i 0.934206 0.356734i \(-0.116110\pi\)
−0.356734 + 0.934206i \(0.616110\pi\)
\(98\) 65.3554 23.0364i 0.666892 0.235065i
\(99\) 1.12634i 0.0113772i
\(100\) 7.28947 + 49.4658i 0.0728947 + 0.494658i
\(101\) 52.5283 90.9817i 0.520082 0.900809i −0.479645 0.877463i \(-0.659235\pi\)
0.999727 0.0233465i \(-0.00743211\pi\)
\(102\) −72.8761 + 19.5271i −0.714472 + 0.191442i
\(103\) −149.926 40.1725i −1.45559 0.390025i −0.557627 0.830092i \(-0.688288\pi\)
−0.897965 + 0.440067i \(0.854955\pi\)
\(104\) 37.2858i 0.358517i
\(105\) 47.3770 + 37.8209i 0.451209 + 0.360199i
\(106\) −5.76523 −0.0543889
\(107\) −32.8768 + 122.698i −0.307260 + 1.14671i 0.623723 + 0.781646i \(0.285619\pi\)
−0.930983 + 0.365063i \(0.881047\pi\)
\(108\) 2.68973 + 10.0382i 0.0249049 + 0.0929463i
\(109\) −39.6455 22.8893i −0.363720 0.209994i 0.306991 0.951712i \(-0.400678\pi\)
−0.670711 + 0.741719i \(0.734011\pi\)
\(110\) −2.50727 + 0.872708i −0.0227934 + 0.00793371i
\(111\) 10.5940 0.0954413
\(112\) −1.07888 27.9792i −0.00963283 0.249814i
\(113\) −85.7539 + 85.7539i −0.758884 + 0.758884i −0.976119 0.217235i \(-0.930296\pi\)
0.217235 + 0.976119i \(0.430296\pi\)
\(114\) −15.8420 + 9.14638i −0.138965 + 0.0802314i
\(115\) −130.046 + 150.615i −1.13084 + 1.30969i
\(116\) −22.0507 + 38.1930i −0.190092 + 0.329250i
\(117\) 10.2357 38.2000i 0.0874842 0.326496i
\(118\) −3.31953 + 3.31953i −0.0281316 + 0.0281316i
\(119\) 210.256 + 47.7373i 1.76686 + 0.401154i
\(120\) 20.2613 13.7652i 0.168844 0.114710i
\(121\) 60.4295 + 104.667i 0.499418 + 0.865017i
\(122\) −120.957 + 32.4103i −0.991449 + 0.265658i
\(123\) 35.0199 + 130.696i 0.284715 + 1.06257i
\(124\) 82.1941 47.4548i 0.662856 0.382700i
\(125\) 122.002 27.2136i 0.976014 0.217709i
\(126\) 6.57550 28.9614i 0.0521865 0.229852i
\(127\) 47.9961 + 47.9961i 0.377922 + 0.377922i 0.870352 0.492430i \(-0.163891\pi\)
−0.492430 + 0.870352i \(0.663891\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) −26.0293 15.0280i −0.201778 0.116496i
\(130\) −92.9651 + 6.81306i −0.715116 + 0.0524082i
\(131\) 84.1928 + 145.826i 0.642693 + 1.11318i 0.984829 + 0.173527i \(0.0555164\pi\)
−0.342136 + 0.939651i \(0.611150\pi\)
\(132\) 0.919654 + 0.919654i 0.00696708 + 0.00696708i
\(133\) 52.2371 2.01426i 0.392760 0.0151448i
\(134\) 126.605i 0.944811i
\(135\) 24.5369 8.54057i 0.181755 0.0632634i
\(136\) 43.5593 75.4469i 0.320289 0.554757i
\(137\) −137.626 + 36.8767i −1.00457 + 0.269173i −0.723358 0.690473i \(-0.757402\pi\)
−0.281210 + 0.959646i \(0.590736\pi\)
\(138\) 94.1628 + 25.2308i 0.682339 + 0.182832i
\(139\) 142.573i 1.02570i 0.858478 + 0.512851i \(0.171411\pi\)
−0.858478 + 0.512851i \(0.828589\pi\)
\(140\) −69.5638 + 7.80249i −0.496884 + 0.0557321i
\(141\) 20.5041 0.145419
\(142\) 23.5699 87.9641i 0.165985 0.619465i
\(143\) −1.28098 4.78069i −0.00895792 0.0334314i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) 99.2563 + 48.0005i 0.684526 + 0.331038i
\(146\) 17.1134 0.117215
\(147\) −55.2130 + 64.4556i −0.375599 + 0.438473i
\(148\) −8.64995 + 8.64995i −0.0584456 + 0.0584456i
\(149\) −108.686 + 62.7499i −0.729437 + 0.421140i −0.818216 0.574911i \(-0.805037\pi\)
0.0887794 + 0.996051i \(0.471703\pi\)
\(150\) −38.0231 48.0025i −0.253488 0.320017i
\(151\) −70.3253 + 121.807i −0.465730 + 0.806669i −0.999234 0.0391290i \(-0.987542\pi\)
0.533504 + 0.845798i \(0.320875\pi\)
\(152\) 5.46695 20.4029i 0.0359667 0.134230i
\(153\) 65.3389 65.3389i 0.427052 0.427052i
\(154\) −1.09958 3.55036i −0.00714013 0.0230543i
\(155\) −133.339 196.264i −0.860249 1.26622i
\(156\) 22.8328 + 39.5475i 0.146364 + 0.253510i
\(157\) 49.9055 13.3721i 0.317870 0.0851729i −0.0963566 0.995347i \(-0.530719\pi\)
0.414226 + 0.910174i \(0.364052\pi\)
\(158\) −13.2658 49.5087i −0.0839608 0.313346i
\(159\) 6.11495 3.53047i 0.0384588 0.0222042i
\(160\) −5.30407 + 27.7825i −0.0331504 + 0.173641i
\(161\) −204.433 189.253i −1.26977 1.17548i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 46.9692 + 12.5854i 0.288155 + 0.0772108i 0.400001 0.916515i \(-0.369010\pi\)
−0.111846 + 0.993726i \(0.535676\pi\)
\(164\) −135.307 78.1193i −0.825040 0.476337i
\(165\) 2.12494 2.46103i 0.0128784 0.0149153i
\(166\) 94.4289 + 163.556i 0.568849 + 0.985275i
\(167\) 145.174 + 145.174i 0.869303 + 0.869303i 0.992395 0.123092i \(-0.0392810\pi\)
−0.123092 + 0.992395i \(0.539281\pi\)
\(168\) 18.2780 + 29.0158i 0.108798 + 0.172713i
\(169\) 4.77853i 0.0282753i
\(170\) −196.072 94.8209i −1.15337 0.557770i
\(171\) 11.2020 19.4024i 0.0655086 0.113464i
\(172\) 33.5232 8.98251i 0.194902 0.0522239i
\(173\) −168.049 45.0285i −0.971379 0.260280i −0.261969 0.965076i \(-0.584372\pi\)
−0.709410 + 0.704796i \(0.751039\pi\)
\(174\) 54.0130i 0.310420i
\(175\) 32.1651 + 172.019i 0.183801 + 0.982964i
\(176\) −1.50179 −0.00853289
\(177\) 1.48811 5.55369i 0.00840738 0.0313768i
\(178\) −21.4614 80.0949i −0.120569 0.449971i
\(179\) 19.7474 + 11.4012i 0.110321 + 0.0636936i 0.554145 0.832420i \(-0.313045\pi\)
−0.443824 + 0.896114i \(0.646379\pi\)
\(180\) −13.0609 + 27.0076i −0.0725608 + 0.150042i
\(181\) −232.706 −1.28567 −0.642835 0.766005i \(-0.722242\pi\)
−0.642835 + 0.766005i \(0.722242\pi\)
\(182\) −5.02834 130.403i −0.0276283 0.716501i
\(183\) 108.447 108.447i 0.592606 0.592606i
\(184\) −97.4845 + 56.2827i −0.529807 + 0.305884i
\(185\) 23.1476 + 19.9865i 0.125122 + 0.108035i
\(186\) −58.1200 + 100.667i −0.312473 + 0.541219i
\(187\) 2.99303 11.1701i 0.0160055 0.0597334i
\(188\) −16.7415 + 16.7415i −0.0890505 + 0.0890505i
\(189\) 10.7608 + 34.7449i 0.0569354 + 0.183835i
\(190\) −51.8698 9.90267i −0.272999 0.0521193i
\(191\) −30.6491 53.0858i −0.160466 0.277936i 0.774570 0.632489i \(-0.217967\pi\)
−0.935036 + 0.354553i \(0.884633\pi\)
\(192\) 13.3843 3.58630i 0.0697097 0.0186787i
\(193\) −80.7774 301.465i −0.418536 1.56200i −0.777647 0.628701i \(-0.783587\pi\)
0.359112 0.933295i \(-0.383080\pi\)
\(194\) 97.0205 56.0148i 0.500106 0.288736i
\(195\) 94.4322 64.1556i 0.484268 0.329003i
\(196\) −7.54653 97.7090i −0.0385027 0.498515i
\(197\) −80.4508 80.4508i −0.408380 0.408380i 0.472794 0.881173i \(-0.343246\pi\)
−0.881173 + 0.472794i \(0.843246\pi\)
\(198\) −1.53861 0.412270i −0.00777077 0.00208217i
\(199\) 88.7801 + 51.2572i 0.446131 + 0.257574i 0.706195 0.708017i \(-0.250410\pi\)
−0.260064 + 0.965591i \(0.583744\pi\)
\(200\) 70.2396 + 8.14813i 0.351198 + 0.0407407i
\(201\) −77.5292 134.284i −0.385717 0.668082i
\(202\) −105.057 105.057i −0.520082 0.520082i
\(203\) −71.9695 + 136.550i −0.354530 + 0.672659i
\(204\) 106.698i 0.523029i
\(205\) −170.052 + 351.636i −0.829522 + 1.71530i
\(206\) −109.753 + 190.098i −0.532784 + 0.922808i
\(207\) −115.325 + 30.9013i −0.557127 + 0.149282i
\(208\) −50.9333 13.6475i −0.244872 0.0656132i
\(209\) 2.80384i 0.0134155i
\(210\) 69.0055 50.8747i 0.328598 0.242261i
\(211\) 71.6773 0.339703 0.169851 0.985470i \(-0.445671\pi\)
0.169851 + 0.985470i \(0.445671\pi\)
\(212\) −2.11022 + 7.87545i −0.00995387 + 0.0371483i
\(213\) 28.8671 + 107.734i 0.135526 + 0.505791i
\(214\) 155.575 + 89.8211i 0.726984 + 0.419725i
\(215\) −28.5218 81.9425i −0.132659 0.381128i
\(216\) 14.6969 0.0680414
\(217\) 281.066 177.053i 1.29524 0.815913i
\(218\) −45.7786 + 45.7786i −0.209994 + 0.209994i
\(219\) −18.1515 + 10.4798i −0.0828837 + 0.0478530i
\(220\) 0.274415 + 3.74443i 0.00124734 + 0.0170201i
\(221\) 203.018 351.637i 0.918632 1.59112i
\(222\) 3.87767 14.4717i 0.0174670 0.0651876i
\(223\) 20.6150 20.6150i 0.0924442 0.0924442i −0.659372 0.751817i \(-0.729178\pi\)
0.751817 + 0.659372i \(0.229178\pi\)
\(224\) −38.6152 8.76733i −0.172389 0.0391399i
\(225\) 69.7250 + 27.6300i 0.309889 + 0.122800i
\(226\) 85.7539 + 148.530i 0.379442 + 0.657213i
\(227\) 392.022 105.042i 1.72697 0.462740i 0.747488 0.664276i \(-0.231260\pi\)
0.979481 + 0.201536i \(0.0645933\pi\)
\(228\) 6.69561 + 24.9884i 0.0293667 + 0.109598i
\(229\) 149.768 86.4685i 0.654008 0.377592i −0.135982 0.990711i \(-0.543419\pi\)
0.789990 + 0.613120i \(0.210086\pi\)
\(230\) 158.143 + 232.775i 0.687579 + 1.01207i
\(231\) 3.34042 + 3.09238i 0.0144607 + 0.0133869i
\(232\) 44.1014 + 44.1014i 0.190092 + 0.190092i
\(233\) 87.7253 + 23.5059i 0.376503 + 0.100884i 0.442108 0.896962i \(-0.354231\pi\)
−0.0656045 + 0.997846i \(0.520898\pi\)
\(234\) −48.4356 27.9643i −0.206990 0.119506i
\(235\) 44.8009 + 38.6827i 0.190642 + 0.164607i
\(236\) 3.31953 + 5.74960i 0.0140658 + 0.0243627i
\(237\) 44.3882 + 44.3882i 0.187292 + 0.187292i
\(238\) 142.170 269.742i 0.597351 1.13337i
\(239\) 307.147i 1.28513i −0.766230 0.642567i \(-0.777870\pi\)
0.766230 0.642567i \(-0.222130\pi\)
\(240\) −11.3874 32.7158i −0.0474476 0.136316i
\(241\) −44.1804 + 76.5228i −0.183321 + 0.317522i −0.943010 0.332766i \(-0.892018\pi\)
0.759688 + 0.650287i \(0.225352\pi\)
\(242\) 165.097 44.2375i 0.682217 0.182799i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 177.093i 0.725791i
\(245\) −242.240 + 36.6698i −0.988736 + 0.149673i
\(246\) 191.352 0.777855
\(247\) 25.4799 95.0923i 0.103158 0.384989i
\(248\) −34.7393 129.649i −0.140078 0.522778i
\(249\) −200.314 115.651i −0.804474 0.464463i
\(250\) 7.48127 176.618i 0.0299251 0.706473i
\(251\) −140.207 −0.558592 −0.279296 0.960205i \(-0.590101\pi\)
−0.279296 + 0.960205i \(0.590101\pi\)
\(252\) −37.1552 19.5829i −0.147441 0.0777099i
\(253\) −10.5656 + 10.5656i −0.0417612 + 0.0417612i
\(254\) 83.1317 47.9961i 0.327290 0.188961i
\(255\) 266.032 19.4964i 1.04326 0.0764567i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −60.9269 + 227.382i −0.237070 + 0.884757i 0.740135 + 0.672458i \(0.234762\pi\)
−0.977205 + 0.212298i \(0.931905\pi\)
\(258\) −30.0561 + 30.0561i −0.116496 + 0.116496i
\(259\) −29.0858 + 31.4189i −0.112300 + 0.121308i
\(260\) −24.7208 + 129.486i −0.0950799 + 0.498025i
\(261\) 33.0761 + 57.2895i 0.126728 + 0.219500i
\(262\) 230.019 61.6334i 0.877935 0.235242i
\(263\) −17.5320 65.4304i −0.0666617 0.248785i 0.924552 0.381056i \(-0.124440\pi\)
−0.991214 + 0.132272i \(0.957773\pi\)
\(264\) 1.59289 0.919654i 0.00603367 0.00348354i
\(265\) 20.0216 + 3.82239i 0.0755530 + 0.0144241i
\(266\) 16.3686 72.0944i 0.0615360 0.271032i
\(267\) 71.8111 + 71.8111i 0.268955 + 0.268955i
\(268\) 172.945 + 46.3405i 0.645318 + 0.172912i
\(269\) −206.056 118.966i −0.766008 0.442255i 0.0654410 0.997856i \(-0.479155\pi\)
−0.831449 + 0.555602i \(0.812488\pi\)
\(270\) −2.68551 36.6441i −0.00994632 0.135719i
\(271\) −35.7113 61.8537i −0.131776 0.228243i 0.792585 0.609761i \(-0.208735\pi\)
−0.924361 + 0.381518i \(0.875401\pi\)
\(272\) −87.1186 87.1186i −0.320289 0.320289i
\(273\) 85.1887 + 135.234i 0.312047 + 0.495364i
\(274\) 201.498i 0.735395i
\(275\) 9.28590 1.36841i 0.0337669 0.00497602i
\(276\) 68.9319 119.394i 0.249753 0.432586i
\(277\) −300.187 + 80.4348i −1.08371 + 0.290379i −0.756114 0.654440i \(-0.772904\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(278\) 194.758 + 52.1852i 0.700567 + 0.187716i
\(279\) 142.364i 0.510267i
\(280\) −14.8037 + 97.8818i −0.0528704 + 0.349578i
\(281\) −78.2913 −0.278617 −0.139308 0.990249i \(-0.544488\pi\)
−0.139308 + 0.990249i \(0.544488\pi\)
\(282\) 7.50500 28.0091i 0.0266135 0.0993229i
\(283\) −81.5257 304.258i −0.288077 1.07512i −0.946562 0.322523i \(-0.895469\pi\)
0.658485 0.752594i \(-0.271198\pi\)
\(284\) −111.534 64.3942i −0.392725 0.226740i
\(285\) 61.0804 21.2603i 0.214317 0.0745974i
\(286\) −6.99942 −0.0244735
\(287\) −483.757 254.967i −1.68556 0.888387i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 571.322 329.853i 1.97689 1.14136i
\(290\) 101.900 118.017i 0.351380 0.406956i
\(291\) −68.6039 + 118.825i −0.235752 + 0.408335i
\(292\) 6.26395 23.3774i 0.0214519 0.0800596i
\(293\) 18.2834 18.2834i 0.0624008 0.0624008i −0.675218 0.737618i \(-0.735950\pi\)
0.737618 + 0.675218i \(0.235950\pi\)
\(294\) 67.8386 + 99.0148i 0.230744 + 0.336785i
\(295\) 13.7290 9.32723i 0.0465389 0.0316177i
\(296\) 8.64995 + 14.9822i 0.0292228 + 0.0506154i
\(297\) 1.88441 0.504925i 0.00634480 0.00170009i
\(298\) 45.9361 + 171.436i 0.154148 + 0.575289i
\(299\) −454.348 + 262.318i −1.51956 + 0.877317i
\(300\) −79.4901 + 34.3704i −0.264967 + 0.114568i
\(301\) 116.033 35.9364i 0.385491 0.119390i
\(302\) 140.651 + 140.651i 0.465730 + 0.465730i
\(303\) 175.763 + 47.0956i 0.580077 + 0.155431i
\(304\) −25.8699 14.9360i −0.0850982 0.0491315i
\(305\) 441.548 32.3594i 1.44770 0.106096i
\(306\) −65.3389 113.170i −0.213526 0.369838i
\(307\) 93.0997 + 93.0997i 0.303256 + 0.303256i 0.842286 0.539030i \(-0.181209\pi\)
−0.539030 + 0.842286i \(0.681209\pi\)
\(308\) −5.25236 + 0.202531i −0.0170531 + 0.000657567i
\(309\) 268.840i 0.870032i
\(310\) −316.908 + 110.306i −1.02228 + 0.355826i
\(311\) −253.781 + 439.562i −0.816017 + 1.41338i 0.0925788 + 0.995705i \(0.470489\pi\)
−0.908596 + 0.417677i \(0.862844\pi\)
\(312\) 62.3803 16.7148i 0.199937 0.0535729i
\(313\) −384.584 103.049i −1.22870 0.329230i −0.414629 0.909991i \(-0.636089\pi\)
−0.814074 + 0.580761i \(0.802755\pi\)
\(314\) 73.0668i 0.232697i
\(315\) −42.0371 + 96.2179i −0.133451 + 0.305454i
\(316\) −72.4857 −0.229385
\(317\) −55.9201 + 208.697i −0.176404 + 0.658349i 0.819904 + 0.572501i \(0.194027\pi\)
−0.996308 + 0.0858484i \(0.972640\pi\)
\(318\) −2.58448 9.64542i −0.00812730 0.0303315i
\(319\) 7.16972 + 4.13944i 0.0224756 + 0.0129763i
\(320\) 36.0102 + 17.4146i 0.112532 + 0.0544206i
\(321\) −220.016 −0.685407
\(322\) −333.352 + 209.990i −1.03525 + 0.652142i
\(323\) 162.650 162.650i 0.503561 0.503561i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) 327.367 + 37.9762i 1.00728 + 0.116850i
\(326\) 34.3839 59.5546i 0.105472 0.182683i
\(327\) 20.5220 76.5891i 0.0627584 0.234218i
\(328\) −156.239 + 156.239i −0.476337 + 0.476337i
\(329\) −56.2939 + 60.8094i −0.171106 + 0.184831i
\(330\) −2.58405 3.80353i −0.00783045 0.0115258i
\(331\) −35.1679 60.9126i −0.106247 0.184026i 0.808000 0.589183i \(-0.200550\pi\)
−0.914247 + 0.405157i \(0.867217\pi\)
\(332\) 257.985 69.1267i 0.777062 0.208213i
\(333\) 4.74915 + 17.7241i 0.0142617 + 0.0532255i
\(334\) 251.448 145.174i 0.752839 0.434652i
\(335\) 83.9399 439.674i 0.250567 1.31246i
\(336\) 46.3265 14.3477i 0.137876 0.0427016i
\(337\) 50.1616 + 50.1616i 0.148848 + 0.148848i 0.777603 0.628755i \(-0.216435\pi\)
−0.628755 + 0.777603i \(0.716435\pi\)
\(338\) −6.52759 1.74906i −0.0193124 0.00517474i
\(339\) −181.911 105.027i −0.536612 0.309813i
\(340\) −201.295 + 233.133i −0.592044 + 0.685684i
\(341\) −8.90839 15.4298i −0.0261243 0.0452486i
\(342\) −22.4040 22.4040i −0.0655086 0.0655086i
\(343\) −39.5702 340.710i −0.115365 0.993323i
\(344\) 49.0814i 0.142678i
\(345\) −310.281 150.053i −0.899366 0.434935i
\(346\) −123.020 + 213.077i −0.355550 + 0.615830i
\(347\) −118.911 + 31.8622i −0.342684 + 0.0918218i −0.426056 0.904697i \(-0.640097\pi\)
0.0833727 + 0.996518i \(0.473431\pi\)
\(348\) −73.7831 19.7701i −0.212021 0.0568107i
\(349\) 623.821i 1.78745i −0.448613 0.893726i \(-0.648082\pi\)
0.448613 0.893726i \(-0.351918\pi\)
\(350\) 246.755 + 19.0248i 0.705014 + 0.0543565i
\(351\) 68.4983 0.195152
\(352\) −0.549693 + 2.05148i −0.00156163 + 0.00582808i
\(353\) 136.499 + 509.421i 0.386682 + 1.44312i 0.835498 + 0.549493i \(0.185179\pi\)
−0.448816 + 0.893624i \(0.648154\pi\)
\(354\) −7.04179 4.06558i −0.0198921 0.0114847i
\(355\) −140.175 + 289.856i −0.394858 + 0.816495i
\(356\) −117.267 −0.329402
\(357\) 14.3893 + 373.166i 0.0403060 + 1.04528i
\(358\) 22.8023 22.8023i 0.0636936 0.0636936i
\(359\) 40.2571 23.2425i 0.112137 0.0647423i −0.442883 0.896580i \(-0.646044\pi\)
0.555019 + 0.831837i \(0.312711\pi\)
\(360\) 32.1125 + 27.7271i 0.0892013 + 0.0770196i
\(361\) −152.615 + 264.336i −0.422755 + 0.732233i
\(362\) −85.1764 + 317.882i −0.235294 + 0.878128i
\(363\) −148.021 + 148.021i −0.407773 + 0.407773i
\(364\) −179.975 40.8621i −0.494436 0.112258i
\(365\) −59.4317 11.3464i −0.162827 0.0310859i
\(366\) −108.447 187.836i −0.296303 0.513212i
\(367\) 292.973 78.5019i 0.798292 0.213902i 0.163458 0.986550i \(-0.447735\pi\)
0.634834 + 0.772649i \(0.281069\pi\)
\(368\) 41.2018 + 153.767i 0.111961 + 0.417846i
\(369\) −202.960 + 117.179i −0.550027 + 0.317558i
\(370\) 35.7746 24.3047i 0.0966882 0.0656883i
\(371\) −6.31821 + 27.8282i −0.0170302 + 0.0750086i
\(372\) 116.240 + 116.240i 0.312473 + 0.312473i
\(373\) 295.074 + 79.0648i 0.791082 + 0.211970i 0.631665 0.775241i \(-0.282372\pi\)
0.159417 + 0.987211i \(0.449038\pi\)
\(374\) −14.1632 8.17711i −0.0378694 0.0218639i
\(375\) 100.221 + 191.913i 0.267256 + 0.511769i
\(376\) 16.7415 + 28.9971i 0.0445252 + 0.0771200i
\(377\) 205.544 + 205.544i 0.545211 + 0.545211i
\(378\) 51.4011 1.98202i 0.135982 0.00524345i
\(379\) 604.578i 1.59519i 0.603191 + 0.797597i \(0.293896\pi\)
−0.603191 + 0.797597i \(0.706104\pi\)
\(380\) −32.5130 + 67.2309i −0.0855605 + 0.176923i
\(381\) −58.7830 + 101.815i −0.154286 + 0.267231i
\(382\) −83.7349 + 22.4367i −0.219201 + 0.0587348i
\(383\) 351.847 + 94.2770i 0.918659 + 0.246154i 0.687012 0.726646i \(-0.258922\pi\)
0.231647 + 0.972800i \(0.425589\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 1.46471 + 13.0588i 0.00380445 + 0.0339189i
\(386\) −441.376 −1.14346
\(387\) 13.4738 50.2848i 0.0348159 0.129935i
\(388\) −41.0057 153.035i −0.105685 0.394421i
\(389\) 184.090 + 106.285i 0.473240 + 0.273225i 0.717595 0.696461i \(-0.245243\pi\)
−0.244355 + 0.969686i \(0.578576\pi\)
\(390\) −53.0736 152.479i −0.136086 0.390973i
\(391\) −1225.82 −3.13508
\(392\) −136.235 25.4552i −0.347539 0.0649368i
\(393\) −206.229 + 206.229i −0.524757 + 0.524757i
\(394\) −139.345 + 80.4508i −0.353667 + 0.204190i
\(395\) 13.2450 + 180.730i 0.0335316 + 0.457543i
\(396\) −1.12634 + 1.95088i −0.00284430 + 0.00492647i
\(397\) 6.97072 26.0151i 0.0175585 0.0655292i −0.956591 0.291435i \(-0.905867\pi\)
0.974149 + 0.225906i \(0.0725341\pi\)
\(398\) 102.514 102.514i 0.257574 0.257574i
\(399\) 26.7872 + 86.4914i 0.0671357 + 0.216770i
\(400\) 36.8400 92.9667i 0.0921001 0.232417i
\(401\) 137.819 + 238.709i 0.343688 + 0.595284i 0.985114 0.171900i \(-0.0549905\pi\)
−0.641427 + 0.767184i \(0.721657\pi\)
\(402\) −211.814 + 56.7553i −0.526900 + 0.141182i
\(403\) −161.910 604.257i −0.401762 1.49940i
\(404\) −181.963 + 105.057i −0.450405 + 0.260041i
\(405\) 25.2882 + 37.2224i 0.0624401 + 0.0919071i
\(406\) 160.188 + 148.293i 0.394552 + 0.365253i
\(407\) 1.62380 + 1.62380i 0.00398968 + 0.00398968i
\(408\) 145.752 + 39.0542i 0.357236 + 0.0957210i
\(409\) −663.911 383.309i −1.62325 0.937186i −0.986042 0.166498i \(-0.946754\pi\)
−0.637212 0.770688i \(-0.719912\pi\)
\(410\) 418.101 + 361.003i 1.01976 + 0.880495i
\(411\) −123.392 213.721i −0.300224 0.520003i
\(412\) 219.507 + 219.507i 0.532784 + 0.532784i
\(413\) 12.3851 + 19.6610i 0.0299882 + 0.0476053i
\(414\) 168.848i 0.407846i
\(415\) −219.495 630.605i −0.528904 1.51953i
\(416\) −37.2858 + 64.5808i −0.0896292 + 0.155242i
\(417\) −238.528 + 63.9135i −0.572011 + 0.153270i
\(418\) −3.83011 1.02628i −0.00916294 0.00245520i
\(419\) 19.8062i 0.0472702i 0.999721 + 0.0236351i \(0.00752399\pi\)
−0.999721 + 0.0236351i \(0.992476\pi\)
\(420\) −44.2384 112.885i −0.105330 0.268773i
\(421\) 435.571 1.03461 0.517305 0.855801i \(-0.326935\pi\)
0.517305 + 0.855801i \(0.326935\pi\)
\(422\) 26.2357 97.9130i 0.0621699 0.232021i
\(423\) 9.19172 + 34.3039i 0.0217298 + 0.0810968i
\(424\) 9.98567 + 5.76523i 0.0235511 + 0.0135972i
\(425\) 618.054 + 459.292i 1.45425 + 1.08069i
\(426\) 157.733 0.370265
\(427\) 23.8827 + 619.365i 0.0559314 + 1.45050i
\(428\) 179.642 179.642i 0.419725 0.419725i
\(429\) 7.42401 4.28625i 0.0173054 0.00999126i
\(430\) −122.375 + 8.96842i −0.284594 + 0.0208568i
\(431\) 307.905 533.307i 0.714396 1.23737i −0.248796 0.968556i \(-0.580035\pi\)
0.963192 0.268815i \(-0.0866319\pi\)
\(432\) 5.37945 20.0764i 0.0124524 0.0464731i
\(433\) 412.622 412.622i 0.952937 0.952937i −0.0460046 0.998941i \(-0.514649\pi\)
0.998941 + 0.0460046i \(0.0146489\pi\)
\(434\) −138.982 448.749i −0.320234 1.03398i
\(435\) −35.8111 + 187.577i −0.0823243 + 0.431212i
\(436\) 45.7786 + 79.2909i 0.104997 + 0.181860i
\(437\) −287.083 + 76.9236i −0.656940 + 0.176027i
\(438\) 7.67174 + 28.6313i 0.0175154 + 0.0653684i
\(439\) −169.189 + 97.6811i −0.385396 + 0.222508i −0.680163 0.733061i \(-0.738091\pi\)
0.294768 + 0.955569i \(0.404758\pi\)
\(440\) 5.21543 + 0.995699i 0.0118533 + 0.00226295i
\(441\) −132.588 63.4785i −0.300652 0.143942i
\(442\) −406.035 406.035i −0.918632 0.918632i
\(443\) 581.846 + 155.905i 1.31342 + 0.351931i 0.846510 0.532373i \(-0.178699\pi\)
0.466913 + 0.884303i \(0.345366\pi\)
\(444\) −18.3493 10.5940i −0.0413273 0.0238603i
\(445\) 21.4277 + 292.383i 0.0481521 + 0.657041i
\(446\) −20.6150 35.7063i −0.0462221 0.0800590i
\(447\) −153.705 153.705i −0.343860 0.343860i
\(448\) −26.1105 + 49.5403i −0.0582824 + 0.110581i
\(449\) 230.113i 0.512501i −0.966610 0.256251i \(-0.917513\pi\)
0.966610 0.256251i \(-0.0824872\pi\)
\(450\) 63.2645 85.1329i 0.140588 0.189184i
\(451\) −14.6648 + 25.4003i −0.0325163 + 0.0563199i
\(452\) 234.284 62.7762i 0.518327 0.138885i
\(453\) −235.313 63.0519i −0.519455 0.139187i
\(454\) 573.960i 1.26423i
\(455\) −68.9960 + 456.200i −0.151639 + 1.00264i
\(456\) 36.5855 0.0802314
\(457\) 217.652 812.288i 0.476262 1.77744i −0.140278 0.990112i \(-0.544800\pi\)
0.616540 0.787323i \(-0.288534\pi\)
\(458\) −63.2994 236.236i −0.138208 0.515800i
\(459\) 138.605 + 80.0235i 0.301971 + 0.174343i
\(460\) 375.861 130.826i 0.817089 0.284405i
\(461\) 391.784 0.849856 0.424928 0.905227i \(-0.360299\pi\)
0.424928 + 0.905227i \(0.360299\pi\)
\(462\) 5.44694 3.43122i 0.0117899 0.00742688i
\(463\) −253.040 + 253.040i −0.546523 + 0.546523i −0.925433 0.378911i \(-0.876299\pi\)
0.378911 + 0.925433i \(0.376299\pi\)
\(464\) 76.3859 44.1014i 0.164625 0.0950462i
\(465\) 268.583 311.063i 0.577597 0.668952i
\(466\) 64.2193 111.231i 0.137810 0.238693i
\(467\) −200.751 + 749.215i −0.429875 + 1.60431i 0.323167 + 0.946342i \(0.395252\pi\)
−0.753042 + 0.657972i \(0.771414\pi\)
\(468\) −55.9286 + 55.9286i −0.119506 + 0.119506i
\(469\) 611.108 + 138.748i 1.30300 + 0.295838i
\(470\) 69.2398 47.0403i 0.147319 0.100086i
\(471\) 44.7441 + 77.4990i 0.0949980 + 0.164541i
\(472\) 9.06913 2.43007i 0.0192143 0.00514845i
\(473\) −1.68623 6.29310i −0.00356497 0.0133046i
\(474\) 76.8827 44.3882i 0.162200 0.0936461i
\(475\) 173.569 + 68.7802i 0.365407 + 0.144801i
\(476\) −316.437 292.940i −0.664784 0.615420i
\(477\) 8.64784 + 8.64784i 0.0181296 + 0.0181296i
\(478\) −419.570 112.424i −0.877762 0.235196i
\(479\) 453.629 + 261.903i 0.947033 + 0.546770i 0.892158 0.451724i \(-0.149191\pi\)
0.0548749 + 0.998493i \(0.482524\pi\)
\(480\) −48.8588 + 3.58067i −0.101789 + 0.00745974i
\(481\) 40.3150 + 69.8276i 0.0838150 + 0.145172i
\(482\) 88.3609 + 88.3609i 0.183321 + 0.183321i
\(483\) 224.981 426.863i 0.465800 0.883775i
\(484\) 241.718i 0.499418i
\(485\) −374.072 + 130.203i −0.771283 + 0.268461i
\(486\) 11.0227 19.0919i 0.0226805 0.0392837i
\(487\) 706.561 189.323i 1.45084 0.388753i 0.554527 0.832166i \(-0.312899\pi\)
0.896317 + 0.443413i \(0.146233\pi\)
\(488\) 241.914 + 64.8205i 0.495725 + 0.132829i
\(489\) 84.2229i 0.172235i
\(490\) −38.5742 + 344.328i −0.0787229 + 0.702711i
\(491\) 127.496 0.259666 0.129833 0.991536i \(-0.458556\pi\)
0.129833 + 0.991536i \(0.458556\pi\)
\(492\) 70.0399 261.392i 0.142357 0.531285i
\(493\) 175.786 + 656.043i 0.356564 + 1.33072i
\(494\) −120.572 69.6124i −0.244073 0.140916i
\(495\) 5.06997 + 2.45185i 0.0102424 + 0.00495323i
\(496\) −189.819 −0.382700
\(497\) −398.763 210.171i −0.802341 0.422879i
\(498\) −231.303 + 231.303i −0.464463 + 0.464463i
\(499\) −361.313 + 208.604i −0.724074 + 0.418044i −0.816250 0.577698i \(-0.803951\pi\)
0.0921761 + 0.995743i \(0.470618\pi\)
\(500\) −238.527 74.8664i −0.477054 0.149733i
\(501\) −177.801 + 307.960i −0.354892 + 0.614690i
\(502\) −51.3192 + 191.526i −0.102229 + 0.381526i
\(503\) 184.123 184.123i 0.366049 0.366049i −0.499985 0.866034i \(-0.666661\pi\)
0.866034 + 0.499985i \(0.166661\pi\)
\(504\) −40.3505 + 43.5871i −0.0800605 + 0.0864824i
\(505\) 295.189 + 434.495i 0.584532 + 0.860387i
\(506\) 10.5656 + 18.3001i 0.0208806 + 0.0361663i
\(507\) 7.99463 2.14216i 0.0157685 0.00422516i
\(508\) −35.1356 131.128i −0.0691646 0.258126i
\(509\) −165.126 + 95.3357i −0.324413 + 0.187300i −0.653358 0.757049i \(-0.726640\pi\)
0.328945 + 0.944349i \(0.393307\pi\)
\(510\) 70.7417 370.542i 0.138709 0.726553i
\(511\) 18.7549 82.6049i 0.0367023 0.161653i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 37.4826 + 10.0434i 0.0730654 + 0.0195778i
\(514\) 288.309 + 166.456i 0.560913 + 0.323843i
\(515\) 507.190 587.409i 0.984834 1.14060i
\(516\) 30.0561 + 52.0586i 0.0582482 + 0.100889i
\(517\) 3.14277 + 3.14277i 0.00607887 + 0.00607887i
\(518\) 32.2728 + 51.2321i 0.0623028 + 0.0989036i
\(519\) 301.337i 0.580610i
\(520\) 167.833 + 81.1645i 0.322756 + 0.156086i
\(521\) −111.708 + 193.483i −0.214410 + 0.371369i −0.953090 0.302688i \(-0.902116\pi\)
0.738680 + 0.674056i \(0.235449\pi\)
\(522\) 90.3655 24.2134i 0.173114 0.0463858i
\(523\) −799.159 214.134i −1.52803 0.409434i −0.605653 0.795729i \(-0.707088\pi\)
−0.922375 + 0.386295i \(0.873755\pi\)
\(524\) 336.771i 0.642693i
\(525\) −273.374 + 130.927i −0.520711 + 0.249385i
\(526\) −95.7967 −0.182123
\(527\) 378.305 1411.85i 0.717846 2.67904i
\(528\) −0.673234 2.51254i −0.00127506 0.00475860i
\(529\) 913.545 + 527.435i 1.72693 + 0.997042i
\(530\) 12.5499 25.9509i 0.0236790 0.0489639i
\(531\) 9.95860 0.0187544
\(532\) −92.4915 48.7483i −0.173856 0.0916321i
\(533\) −728.185 + 728.185i −1.36620 + 1.36620i
\(534\) 124.380 71.8111i 0.232922 0.134478i
\(535\) −480.729 415.079i −0.898559 0.775848i
\(536\) 126.605 219.286i 0.236203 0.409115i
\(537\) −10.2220 + 38.1490i −0.0190354 + 0.0710410i
\(538\) −237.933 + 237.933i −0.442255 + 0.442255i
\(539\) −18.3423 + 1.41666i −0.0340302 + 0.00262832i
\(540\) −51.0397 9.74419i −0.0945180 0.0180448i
\(541\) −132.318 229.182i −0.244581 0.423626i 0.717433 0.696628i \(-0.245317\pi\)
−0.962014 + 0.273001i \(0.911984\pi\)
\(542\) −97.5650 + 26.1425i −0.180009 + 0.0482333i
\(543\) −104.319 389.325i −0.192117 0.716989i
\(544\) −150.894 + 87.1186i −0.277378 + 0.160144i
\(545\) 189.332 128.629i 0.347398 0.236016i
\(546\) 215.915 66.8708i 0.395448 0.122474i
\(547\) 399.059 + 399.059i 0.729540 + 0.729540i 0.970528 0.240988i \(-0.0774714\pi\)
−0.240988 + 0.970528i \(0.577471\pi\)
\(548\) 275.252 + 73.7535i 0.502284 + 0.134587i
\(549\) 230.051 + 132.820i 0.419036 + 0.241930i
\(550\) 1.52960 13.1856i 0.00278109 0.0239739i
\(551\) 82.3372 + 142.612i 0.149432 + 0.258824i
\(552\) −137.864 137.864i −0.249753 0.249753i
\(553\) −253.512 + 9.77539i −0.458430 + 0.0176770i
\(554\) 439.504i 0.793329i
\(555\) −23.0612 + 47.6864i −0.0415518 + 0.0859214i
\(556\) 142.573 246.943i 0.256425 0.444142i
\(557\) 455.378 122.018i 0.817554 0.219063i 0.174277 0.984697i \(-0.444241\pi\)
0.643277 + 0.765634i \(0.277574\pi\)
\(558\) −194.473 52.1090i −0.348519 0.0933853i
\(559\) 228.755i 0.409221i
\(560\) 128.291 + 56.0495i 0.229090 + 0.100088i
\(561\) 20.0297 0.0357036
\(562\) −28.6566 + 106.948i −0.0509904 + 0.190299i
\(563\) −174.029 649.485i −0.309110 1.15361i −0.929349 0.369202i \(-0.879631\pi\)
0.620239 0.784413i \(-0.287035\pi\)
\(564\) −35.5141 20.5041i −0.0629682 0.0363547i
\(565\) −199.330 572.673i −0.352797 1.01358i
\(566\) −445.465 −0.787041
\(567\) −53.3053 + 33.5789i −0.0940130 + 0.0592220i
\(568\) −128.788 + 128.788i −0.226740 + 0.226740i
\(569\) −928.455 + 536.044i −1.63173 + 0.942080i −0.648172 + 0.761494i \(0.724466\pi\)
−0.983559 + 0.180587i \(0.942200\pi\)
\(570\) −6.68511 91.2191i −0.0117283 0.160034i
\(571\) 320.180 554.568i 0.560735 0.971222i −0.436697 0.899609i \(-0.643852\pi\)
0.997432 0.0716136i \(-0.0228148\pi\)
\(572\) −2.56197 + 9.56139i −0.00447896 + 0.0167157i
\(573\) 75.0746 75.0746i 0.131020 0.131020i
\(574\) −525.359 + 567.499i −0.915259 + 0.988675i
\(575\) −394.870 913.234i −0.686730 1.58823i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 680.047 182.218i 1.17859 0.315802i 0.384223 0.923240i \(-0.374469\pi\)
0.794367 + 0.607438i \(0.207803\pi\)
\(578\) −241.469 901.174i −0.417766 1.55913i
\(579\) 468.150 270.286i 0.808549 0.466816i
\(580\) −123.916 182.396i −0.213649 0.314475i
\(581\) 892.953 276.556i 1.53692 0.475999i
\(582\) 137.208 + 137.208i 0.235752 + 0.235752i
\(583\) 1.47841 + 0.396138i 0.00253586 + 0.000679482i
\(584\) −29.6413 17.1134i −0.0507557 0.0293038i
\(585\) 149.667 + 129.228i 0.255841 + 0.220903i
\(586\) −18.2834 31.6678i −0.0312004 0.0540406i
\(587\) 5.11267 + 5.11267i 0.00870982 + 0.00870982i 0.711448 0.702738i \(-0.248040\pi\)
−0.702738 + 0.711448i \(0.748040\pi\)
\(588\) 160.087 56.4273i 0.272257 0.0959649i
\(589\) 354.392i 0.601684i
\(590\) −7.71608 22.1681i −0.0130781 0.0375731i
\(591\) 98.5317 170.662i 0.166720 0.288768i
\(592\) 23.6321 6.33220i 0.0399191 0.0106963i
\(593\) 293.979 + 78.7716i 0.495749 + 0.132836i 0.498027 0.867162i \(-0.334058\pi\)
−0.00227715 + 0.999997i \(0.500725\pi\)
\(594\) 2.75896i 0.00464472i
\(595\) −672.569 + 842.505i −1.13037 + 1.41597i
\(596\) 251.000 0.421140
\(597\) −45.9560 + 171.510i −0.0769782 + 0.287287i
\(598\) 192.030 + 716.666i 0.321120 + 1.19844i
\(599\) 766.173 + 442.350i 1.27909 + 0.738481i 0.976680 0.214699i \(-0.0688769\pi\)
0.302406 + 0.953179i \(0.402210\pi\)
\(600\) 17.8555 + 121.166i 0.0297591 + 0.201943i
\(601\) 297.022 0.494213 0.247106 0.968988i \(-0.420520\pi\)
0.247106 + 0.968988i \(0.420520\pi\)
\(602\) −6.61909 171.657i −0.0109952 0.285145i
\(603\) 189.907 189.907i 0.314937 0.314937i
\(604\) 243.614 140.651i 0.403334 0.232865i
\(605\) −602.679 + 44.1681i −0.996163 + 0.0730051i
\(606\) 128.668 222.859i 0.212323 0.367754i
\(607\) −50.3503 + 187.910i −0.0829495 + 0.309572i −0.994918 0.100689i \(-0.967895\pi\)
0.911969 + 0.410260i \(0.134562\pi\)
\(608\) −29.8719 + 29.8719i −0.0491315 + 0.0491315i
\(609\) −260.715 59.1937i −0.428104 0.0971982i
\(610\) 117.414 615.011i 0.192482 1.00821i
\(611\) 78.0274 + 135.147i 0.127704 + 0.221191i
\(612\) −178.509 + 47.8314i −0.291682 + 0.0781559i
\(613\) 283.467 + 1057.91i 0.462426 + 1.72580i 0.665284 + 0.746591i \(0.268311\pi\)
−0.202857 + 0.979208i \(0.565023\pi\)
\(614\) 161.253 93.0997i 0.262628 0.151628i
\(615\) −664.531 126.868i −1.08054 0.206290i
\(616\) −1.64583 + 7.24899i −0.00267181 + 0.0117678i
\(617\) −775.030 775.030i −1.25613 1.25613i −0.952927 0.303200i \(-0.901945\pi\)
−0.303200 0.952927i \(-0.598055\pi\)
\(618\) −367.242 98.4022i −0.594243 0.159227i
\(619\) −29.3925 16.9698i −0.0474839 0.0274148i 0.476070 0.879407i \(-0.342061\pi\)
−0.523554 + 0.851992i \(0.675394\pi\)
\(620\) 34.6848 + 473.279i 0.0559432 + 0.763353i
\(621\) −103.398 179.090i −0.166502 0.288390i
\(622\) 507.562 + 507.562i 0.816017 + 0.816017i
\(623\) −410.130 + 15.8146i −0.658314 + 0.0253846i
\(624\) 91.3311i 0.146364i
\(625\) −143.080 + 608.402i −0.228929 + 0.973443i
\(626\) −281.535 + 487.633i −0.449737 + 0.778967i
\(627\) 4.69091 1.25693i 0.00748151 0.00200467i
\(628\) −99.8110 26.7443i −0.158935 0.0425864i
\(629\) 188.393i 0.299512i
\(630\) 116.049 + 92.6419i 0.184205 + 0.147051i
\(631\) 608.079 0.963675 0.481837 0.876261i \(-0.339970\pi\)
0.481837 + 0.876261i \(0.339970\pi\)
\(632\) −26.5316 + 99.0173i −0.0419804 + 0.156673i
\(633\) 32.1320 + 119.918i 0.0507615 + 0.189445i
\(634\) 264.617 + 152.777i 0.417377 + 0.240973i
\(635\) −320.523 + 111.564i −0.504760 + 0.175692i
\(636\) −14.1219 −0.0222042
\(637\) −634.954 118.640i −0.996788 0.186248i
\(638\) 8.27888 8.27888i 0.0129763 0.0129763i
\(639\) −167.301 + 96.5913i −0.261817 + 0.151160i
\(640\) 36.9694 42.8166i 0.0577647 0.0669010i
\(641\) −146.536 + 253.807i −0.228605 + 0.395955i −0.957395 0.288782i \(-0.906750\pi\)
0.728790 + 0.684737i \(0.240083\pi\)
\(642\) −80.5314 + 300.547i −0.125438 + 0.468142i
\(643\) 644.666 644.666i 1.00259 1.00259i 0.00259505 0.999997i \(-0.499174\pi\)
0.999997 0.00259505i \(-0.000826032\pi\)
\(644\) 164.836 + 532.229i 0.255957 + 0.826442i
\(645\) 124.307 84.4517i 0.192723 0.130933i
\(646\) −162.650 281.718i −0.251780 0.436096i
\(647\) 5.74208 1.53858i 0.00887493 0.00237803i −0.254379 0.967105i \(-0.581871\pi\)
0.263254 + 0.964727i \(0.415204\pi\)
\(648\) 6.58846 + 24.5885i 0.0101674 + 0.0379452i
\(649\) 1.07934 0.623155i 0.00166308 0.000960177i
\(650\) 171.701 433.292i 0.264156 0.666603i
\(651\) 422.214 + 390.862i 0.648562 + 0.600402i
\(652\) −68.7677 68.7677i −0.105472 0.105472i
\(653\) 447.127 + 119.807i 0.684727 + 0.183472i 0.584379 0.811481i \(-0.301338\pi\)
0.100347 + 0.994952i \(0.468005\pi\)
\(654\) −97.1111 56.0671i −0.148488 0.0857296i
\(655\) −839.676 + 61.5367i −1.28195 + 0.0939492i
\(656\) 156.239 + 270.613i 0.238169 + 0.412520i
\(657\) −25.6702 25.6702i −0.0390718 0.0390718i
\(658\) 62.4622 + 99.1568i 0.0949274 + 0.150694i
\(659\) 743.223i 1.12780i 0.825842 + 0.563902i \(0.190701\pi\)
−0.825842 + 0.563902i \(0.809299\pi\)
\(660\) −6.14154 + 2.13769i −0.00930536 + 0.00323892i
\(661\) −369.828 + 640.561i −0.559497 + 0.969078i 0.438041 + 0.898955i \(0.355673\pi\)
−0.997538 + 0.0701230i \(0.977661\pi\)
\(662\) −96.0805 + 25.7447i −0.145137 + 0.0388893i
\(663\) 679.310 + 182.021i 1.02460 + 0.274541i
\(664\) 377.716i 0.568849i
\(665\) −104.644 + 239.518i −0.157360 + 0.360177i
\(666\) 25.9499 0.0389637
\(667\) 227.132 847.669i 0.340528 1.27087i
\(668\) −106.275 396.622i −0.159094 0.593745i
\(669\) 43.7311 + 25.2482i 0.0653679 + 0.0377402i
\(670\) −569.882 275.596i −0.850570 0.411337i
\(671\) 33.2446 0.0495448
\(672\) −2.64270 68.5348i −0.00393259 0.101986i
\(673\) 419.551 419.551i 0.623404 0.623404i −0.322997 0.946400i \(-0.604690\pi\)
0.946400 + 0.322997i \(0.104690\pi\)
\(674\) 86.8825 50.1616i 0.128906 0.0744238i
\(675\) −14.9691 + 129.038i −0.0221764 + 0.191168i
\(676\) −4.77853 + 8.27665i −0.00706883 + 0.0122436i
\(677\) 277.005 1033.80i 0.409165 1.52702i −0.387077 0.922047i \(-0.626515\pi\)
0.796243 0.604978i \(-0.206818\pi\)
\(678\) −210.053 + 210.053i −0.309813 + 0.309813i
\(679\) −164.052 529.696i −0.241608 0.780112i
\(680\) 244.786 + 360.307i 0.359979 + 0.529863i
\(681\) 351.477 + 608.776i 0.516119 + 0.893945i
\(682\) −24.3382 + 6.52139i −0.0356865 + 0.00956216i
\(683\) −56.8591 212.201i −0.0832491 0.310690i 0.911728 0.410795i \(-0.134749\pi\)
−0.994977 + 0.100105i \(0.968082\pi\)
\(684\) −38.8048 + 22.4040i −0.0567322 + 0.0327543i
\(685\) 133.595 699.765i 0.195029 1.02156i
\(686\) −479.902 70.6545i −0.699566 0.102995i
\(687\) 211.804 + 211.804i 0.308302 + 0.308302i
\(688\) −67.0464 17.9650i −0.0974511 0.0261120i
\(689\) 46.5404 + 26.8701i 0.0675478 + 0.0389987i
\(690\) −318.547 + 368.929i −0.461662 + 0.534680i
\(691\) 420.815 + 728.873i 0.608994 + 1.05481i 0.991407 + 0.130817i \(0.0417600\pi\)
−0.382412 + 0.923992i \(0.624907\pi\)
\(692\) 246.040 + 246.040i 0.355550 + 0.355550i
\(693\) −3.67617 + 6.97491i −0.00530473 + 0.0100648i
\(694\) 174.098i 0.250862i
\(695\) −641.758 310.355i −0.923392 0.446554i
\(696\) −54.0130 + 93.5533i −0.0776049 + 0.134416i
\(697\) −2324.17 + 622.759i −3.33453 + 0.893486i
\(698\) −852.155 228.334i −1.22085 0.327127i
\(699\) 157.305i 0.225042i
\(700\) 116.307 330.110i 0.166153 0.471586i
\(701\) −161.172 −0.229917 −0.114959 0.993370i \(-0.536674\pi\)
−0.114959 + 0.993370i \(0.536674\pi\)
\(702\) 25.0721 93.5704i 0.0357153 0.133291i
\(703\) 11.8222 + 44.1211i 0.0168168 + 0.0627611i
\(704\) 2.60118 + 1.50179i 0.00369485 + 0.00213322i
\(705\) −44.6337 + 92.2943i −0.0633102 + 0.130914i
\(706\) 745.843 1.05644
\(707\) −622.231 + 391.965i −0.880101 + 0.554406i
\(708\) −8.13116 + 8.13116i −0.0114847 + 0.0114847i
\(709\) −440.263 + 254.186i −0.620964 + 0.358514i −0.777244 0.629199i \(-0.783383\pi\)
0.156280 + 0.987713i \(0.450050\pi\)
\(710\) 344.643 + 297.577i 0.485412 + 0.419122i
\(711\) −54.3643 + 94.1617i −0.0764617 + 0.132436i
\(712\) −42.9227 + 160.190i −0.0602847 + 0.224986i
\(713\) −1335.44 + 1335.44i −1.87299 + 1.87299i
\(714\) 515.021 + 116.932i 0.721317 + 0.163770i
\(715\) 24.3077 + 4.64067i 0.0339967 + 0.00649045i
\(716\) −22.8023 39.4948i −0.0318468 0.0551603i
\(717\) 513.867 137.690i 0.716690 0.192036i
\(718\) −17.0147 63.4996i −0.0236973 0.0884396i
\(719\) −437.657 + 252.681i −0.608702 + 0.351434i −0.772457 0.635067i \(-0.780973\pi\)
0.163755 + 0.986501i \(0.447639\pi\)
\(720\) 49.6298 33.7176i 0.0689303 0.0468301i
\(721\) 797.306 + 738.101i 1.10583 + 1.02372i
\(722\) 305.229 + 305.229i 0.422755 + 0.422755i
\(723\) −147.831 39.6111i −0.204468 0.0547871i
\(724\) 403.059 + 232.706i 0.556711 + 0.321417i
\(725\) −432.127 + 342.291i −0.596037 + 0.472125i
\(726\) 148.021 + 256.381i 0.203886 + 0.353142i
\(727\) 61.0414 + 61.0414i 0.0839634 + 0.0839634i 0.747841 0.663878i \(-0.231090\pi\)
−0.663878 + 0.747841i \(0.731090\pi\)
\(728\) −121.694 + 230.893i −0.167162 + 0.317161i
\(729\) 27.0000i 0.0370370i
\(730\) −37.2529 + 77.0322i −0.0510314 + 0.105524i
\(731\) 267.244 462.880i 0.365586 0.633214i
\(732\) −296.282 + 79.3886i −0.404757 + 0.108454i
\(733\) 21.8324 + 5.84998i 0.0297850 + 0.00798088i 0.273681 0.961821i \(-0.411759\pi\)
−0.243896 + 0.969801i \(0.578425\pi\)
\(734\) 428.942i 0.584390i
\(735\) −169.943 388.837i −0.231215 0.529030i
\(736\) 225.131 0.305884
\(737\) 8.69921 32.4659i 0.0118035 0.0440514i
\(738\) 85.7810 + 320.139i 0.116234 + 0.433793i
\(739\) 170.468 + 98.4197i 0.230674 + 0.133180i 0.610883 0.791721i \(-0.290815\pi\)
−0.380209 + 0.924901i \(0.624148\pi\)
\(740\) −20.1064 57.7652i −0.0271708 0.0780611i
\(741\) 170.515 0.230114
\(742\) 35.7014 + 18.8167i 0.0481151 + 0.0253594i
\(743\) −78.6647 + 78.6647i −0.105874 + 0.105874i −0.758060 0.652185i \(-0.773852\pi\)
0.652185 + 0.758060i \(0.273852\pi\)
\(744\) 201.334 116.240i 0.270610 0.156237i
\(745\) −45.8640 625.821i −0.0615625 0.840028i
\(746\) 216.009 374.138i 0.289556 0.501526i
\(747\) 103.690 386.977i 0.138809 0.518041i
\(748\) −16.3542 + 16.3542i −0.0218639 + 0.0218639i
\(749\) 604.054 652.507i 0.806481 0.871171i
\(750\) 298.842 66.6594i 0.398456 0.0888792i
\(751\) 184.597 + 319.732i 0.245802 + 0.425741i 0.962357 0.271789i \(-0.0876154\pi\)
−0.716555 + 0.697531i \(0.754282\pi\)
\(752\) 45.7386 12.2556i 0.0608226 0.0162974i
\(753\) −62.8529 234.570i −0.0834700 0.311514i
\(754\) 356.014 205.544i 0.472166 0.272605i
\(755\) −395.200 581.705i −0.523444 0.770471i
\(756\) 16.1066 70.9407i 0.0213050 0.0938369i
\(757\) −193.004 193.004i −0.254958 0.254958i 0.568041 0.823000i \(-0.307701\pi\)
−0.823000 + 0.568041i \(0.807701\pi\)
\(758\) 825.870 + 221.291i 1.08954 + 0.291941i
\(759\) −22.4130 12.9402i −0.0295297 0.0170490i
\(760\) 79.9385 + 69.0217i 0.105182 + 0.0908181i
\(761\) −569.684 986.721i −0.748599 1.29661i −0.948494 0.316794i \(-0.897394\pi\)
0.199896 0.979817i \(-0.435940\pi\)
\(762\) 117.566 + 117.566i 0.154286 + 0.154286i
\(763\) 170.799 + 271.138i 0.223852 + 0.355358i