Properties

Label 210.3.v.a.37.4
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.4
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.a.193.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.98663 - 0.365451i) q^{5} +2.44949 q^{6} +(-3.26382 - 6.19254i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.98663 - 0.365451i) q^{5} +2.44949 q^{6} +(-3.26382 - 6.19254i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-6.67809 + 2.32445i) q^{10} +(-0.187724 - 0.325147i) q^{11} +(-3.34607 + 0.896575i) q^{12} +(-9.32144 + 9.32144i) q^{13} +(6.72508 + 7.26452i) q^{14} +(-8.50662 - 1.62403i) q^{15} +(2.00000 - 3.46410i) q^{16} +(7.97190 - 29.7515i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(6.46747 + 3.73399i) q^{19} +(8.27164 - 5.61961i) q^{20} +(2.68443 + 11.8234i) q^{21} +(0.375447 + 0.375447i) q^{22} +(-10.3004 - 38.4418i) q^{23} +(4.24264 - 2.44949i) q^{24} +(24.7329 - 3.64474i) q^{25} +(9.32144 - 16.1452i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-11.8456 - 7.46197i) q^{28} -22.0507i q^{29} +(12.2147 - 0.895168i) q^{30} +(-23.7274 - 41.0971i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(0.168308 + 0.628136i) q^{33} +43.5593i q^{34} +(-18.5385 - 29.6871i) q^{35} +6.00000 q^{36} +(-5.90803 + 1.58305i) q^{37} +(-10.2015 - 2.73347i) q^{38} +(19.7738 - 11.4164i) q^{39} +(-9.24235 + 10.7042i) q^{40} +78.1193 q^{41} +(-7.99469 - 15.1686i) q^{42} +(-12.2703 + 12.2703i) q^{43} +(-0.650294 - 0.375447i) q^{44} +(13.5038 + 6.53047i) q^{45} +(28.1413 + 48.7422i) q^{46} +(-11.4346 + 3.06391i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(-27.6950 + 40.4226i) q^{49} +(-32.4517 + 14.0317i) q^{50} +(-26.6745 + 46.2016i) q^{51} +(-6.82377 + 25.4667i) q^{52} +(3.93772 + 1.05511i) q^{53} +(6.36396 + 3.67423i) q^{54} +(-1.05493 - 1.55278i) q^{55} +(18.9127 + 5.85744i) q^{56} +(-9.14638 - 9.14638i) q^{57} +(8.07112 + 30.1218i) q^{58} +(2.87480 - 1.65977i) q^{59} +(-16.3579 + 5.69371i) q^{60} +(-44.2733 + 76.6835i) q^{61} +(47.4548 + 47.4548i) q^{62} +(0.809158 - 20.9844i) q^{63} -8.00000i q^{64} +(-43.0760 + 49.8891i) q^{65} +(-0.459827 - 0.796444i) q^{66} +(23.1703 - 86.4726i) q^{67} +(-15.9438 - 59.5031i) q^{68} +68.9319i q^{69} +(36.1903 + 33.7678i) q^{70} +64.3942 q^{71} +(-8.19615 + 2.19615i) q^{72} +(-11.6887 - 3.13198i) q^{73} +(7.49108 - 4.32498i) q^{74} +(-43.0128 - 4.98969i) q^{75} +14.9360 q^{76} +(-1.40079 + 2.22371i) q^{77} +(-22.8328 + 22.8328i) q^{78} +(-31.3872 - 18.1214i) q^{79} +(8.70729 - 18.0051i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-106.713 + 28.5937i) q^{82} +(-94.4289 + 94.4289i) q^{83} +(16.4730 + 17.7944i) q^{84} +(28.8802 - 151.273i) q^{85} +(12.2703 - 21.2529i) q^{86} +(-9.88507 + 36.8916i) q^{87} +(1.02574 + 0.274847i) q^{88} +(-50.7781 - 29.3168i) q^{89} +(-20.8369 - 3.97805i) q^{90} +(88.1468 + 27.2999i) q^{91} +(-56.2827 - 56.2827i) q^{92} +(21.2734 + 79.3934i) q^{93} +(14.4986 - 8.37074i) q^{94} +(33.6154 + 16.2565i) q^{95} +(4.89898 - 8.48528i) q^{96} +(56.0148 + 56.0148i) q^{97} +(23.0364 - 65.3554i) q^{98} -1.12634i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 4.98663 0.365451i 0.997325 0.0730902i
\(6\) 2.44949 0.408248
\(7\) −3.26382 6.19254i −0.466260 0.884648i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −6.67809 + 2.32445i −0.667809 + 0.232445i
\(11\) −0.187724 0.325147i −0.0170658 0.0295588i 0.857366 0.514707i \(-0.172099\pi\)
−0.874432 + 0.485148i \(0.838766\pi\)
\(12\) −3.34607 + 0.896575i −0.278839 + 0.0747146i
\(13\) −9.32144 + 9.32144i −0.717034 + 0.717034i −0.967997 0.250963i \(-0.919253\pi\)
0.250963 + 0.967997i \(0.419253\pi\)
\(14\) 6.72508 + 7.26452i 0.480363 + 0.518894i
\(15\) −8.50662 1.62403i −0.567108 0.108269i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 7.97190 29.7515i 0.468935 1.75009i −0.174566 0.984646i \(-0.555852\pi\)
0.643501 0.765445i \(-0.277481\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) 6.46747 + 3.73399i 0.340393 + 0.196526i 0.660446 0.750874i \(-0.270367\pi\)
−0.320053 + 0.947400i \(0.603701\pi\)
\(20\) 8.27164 5.61961i 0.413582 0.280980i
\(21\) 2.68443 + 11.8234i 0.127830 + 0.563021i
\(22\) 0.375447 + 0.375447i 0.0170658 + 0.0170658i
\(23\) −10.3004 38.4418i −0.447845 1.67138i −0.708312 0.705899i \(-0.750543\pi\)
0.260467 0.965483i \(-0.416124\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) 24.7329 3.64474i 0.989316 0.145789i
\(26\) 9.32144 16.1452i 0.358517 0.620970i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −11.8456 7.46197i −0.423058 0.266499i
\(29\) 22.0507i 0.760370i −0.924911 0.380185i \(-0.875860\pi\)
0.924911 0.380185i \(-0.124140\pi\)
\(30\) 12.2147 0.895168i 0.407156 0.0298389i
\(31\) −23.7274 41.0971i −0.765400 1.32571i −0.940035 0.341078i \(-0.889208\pi\)
0.174635 0.984633i \(-0.444125\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) 0.168308 + 0.628136i 0.00510026 + 0.0190344i
\(34\) 43.5593i 1.28116i
\(35\) −18.5385 29.6871i −0.529672 0.848203i
\(36\) 6.00000 0.166667
\(37\) −5.90803 + 1.58305i −0.159676 + 0.0427852i −0.337772 0.941228i \(-0.609673\pi\)
0.178095 + 0.984013i \(0.443006\pi\)
\(38\) −10.2015 2.73347i −0.268459 0.0719335i
\(39\) 19.7738 11.4164i 0.507020 0.292728i
\(40\) −9.24235 + 10.7042i −0.231059 + 0.267604i
\(41\) 78.1193 1.90535 0.952675 0.303992i \(-0.0983197\pi\)
0.952675 + 0.303992i \(0.0983197\pi\)
\(42\) −7.99469 15.1686i −0.190350 0.361156i
\(43\) −12.2703 + 12.2703i −0.285357 + 0.285357i −0.835241 0.549884i \(-0.814672\pi\)
0.549884 + 0.835241i \(0.314672\pi\)
\(44\) −0.650294 0.375447i −0.0147794 0.00853289i
\(45\) 13.5038 + 6.53047i 0.300085 + 0.145122i
\(46\) 28.1413 + 48.7422i 0.611768 + 1.05961i
\(47\) −11.4346 + 3.06391i −0.243290 + 0.0651895i −0.378404 0.925641i \(-0.623527\pi\)
0.135113 + 0.990830i \(0.456860\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) −27.6950 + 40.4226i −0.565204 + 0.824951i
\(50\) −32.4517 + 14.0317i −0.649034 + 0.280633i
\(51\) −26.6745 + 46.2016i −0.523029 + 0.905914i
\(52\) −6.82377 + 25.4667i −0.131226 + 0.489743i
\(53\) 3.93772 + 1.05511i 0.0742967 + 0.0199077i 0.295776 0.955257i \(-0.404422\pi\)
−0.221479 + 0.975165i \(0.571088\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) −1.05493 1.55278i −0.0191806 0.0282324i
\(56\) 18.9127 + 5.85744i 0.337727 + 0.104597i
\(57\) −9.14638 9.14638i −0.160463 0.160463i
\(58\) 8.07112 + 30.1218i 0.139157 + 0.519342i
\(59\) 2.87480 1.65977i 0.0487254 0.0281316i −0.475439 0.879748i \(-0.657711\pi\)
0.524165 + 0.851617i \(0.324378\pi\)
\(60\) −16.3579 + 5.69371i −0.272632 + 0.0948952i
\(61\) −44.2733 + 76.6835i −0.725791 + 1.25711i 0.232857 + 0.972511i \(0.425193\pi\)
−0.958648 + 0.284596i \(0.908141\pi\)
\(62\) 47.4548 + 47.4548i 0.765400 + 0.765400i
\(63\) 0.809158 20.9844i 0.0128438 0.333086i
\(64\) 8.00000i 0.125000i
\(65\) −43.0760 + 49.8891i −0.662708 + 0.767524i
\(66\) −0.459827 0.796444i −0.00696708 0.0120673i
\(67\) 23.1703 86.4726i 0.345825 1.29064i −0.545821 0.837902i \(-0.683782\pi\)
0.891646 0.452734i \(-0.149551\pi\)
\(68\) −15.9438 59.5031i −0.234468 0.875045i
\(69\) 68.9319i 0.999013i
\(70\) 36.1903 + 33.7678i 0.517004 + 0.482397i
\(71\) 64.3942 0.906960 0.453480 0.891266i \(-0.350182\pi\)
0.453480 + 0.891266i \(0.350182\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) −11.6887 3.13198i −0.160119 0.0429038i 0.177869 0.984054i \(-0.443080\pi\)
−0.337988 + 0.941150i \(0.609746\pi\)
\(74\) 7.49108 4.32498i 0.101231 0.0584456i
\(75\) −43.0128 4.98969i −0.573504 0.0665292i
\(76\) 14.9360 0.196526
\(77\) −1.40079 + 2.22371i −0.0181921 + 0.0288793i
\(78\) −22.8328 + 22.8328i −0.292728 + 0.292728i
\(79\) −31.3872 18.1214i −0.397307 0.229385i 0.288015 0.957626i \(-0.407005\pi\)
−0.685321 + 0.728241i \(0.740338\pi\)
\(80\) 8.70729 18.0051i 0.108841 0.225064i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −106.713 + 28.5937i −1.30138 + 0.348703i
\(83\) −94.4289 + 94.4289i −1.13770 + 1.13770i −0.148836 + 0.988862i \(0.547553\pi\)
−0.988862 + 0.148836i \(0.952447\pi\)
\(84\) 16.4730 + 17.7944i 0.196107 + 0.211838i
\(85\) 28.8802 151.273i 0.339767 1.77968i
\(86\) 12.2703 21.2529i 0.142678 0.247126i
\(87\) −9.88507 + 36.8916i −0.113621 + 0.424041i
\(88\) 1.02574 + 0.274847i 0.0116562 + 0.00312326i
\(89\) −50.7781 29.3168i −0.570541 0.329402i 0.186825 0.982393i \(-0.440180\pi\)
−0.757365 + 0.652992i \(0.773514\pi\)
\(90\) −20.8369 3.97805i −0.231521 0.0442006i
\(91\) 88.1468 + 27.2999i 0.968647 + 0.299999i
\(92\) −56.2827 56.2827i −0.611768 0.611768i
\(93\) 21.2734 + 79.3934i 0.228746 + 0.853693i
\(94\) 14.4986 8.37074i 0.154240 0.0890505i
\(95\) 33.6154 + 16.2565i 0.353847 + 0.171121i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) 56.0148 + 56.0148i 0.577472 + 0.577472i 0.934206 0.356734i \(-0.116110\pi\)
−0.356734 + 0.934206i \(0.616110\pi\)
\(98\) 23.0364 65.3554i 0.235065 0.666892i
\(99\) 1.12634i 0.0113772i
\(100\) 39.1939 31.0458i 0.391939 0.310458i
\(101\) 52.5283 + 90.9817i 0.520082 + 0.900809i 0.999727 + 0.0233465i \(0.00743211\pi\)
−0.479645 + 0.877463i \(0.659235\pi\)
\(102\) 19.5271 72.8761i 0.191442 0.714472i
\(103\) 40.1725 + 149.926i 0.390025 + 1.45559i 0.830092 + 0.557627i \(0.188288\pi\)
−0.440067 + 0.897965i \(0.645045\pi\)
\(104\) 37.2858i 0.358517i
\(105\) 17.7072 + 57.9781i 0.168640 + 0.552172i
\(106\) −5.76523 −0.0543889
\(107\) 122.698 32.8768i 1.14671 0.307260i 0.365063 0.930983i \(-0.381047\pi\)
0.781646 + 0.623723i \(0.214381\pi\)
\(108\) −10.0382 2.68973i −0.0929463 0.0249049i
\(109\) 39.6455 22.8893i 0.363720 0.209994i −0.306991 0.951712i \(-0.599322\pi\)
0.670711 + 0.741719i \(0.265989\pi\)
\(110\) 2.00942 + 1.73501i 0.0182675 + 0.0157728i
\(111\) 10.5940 0.0954413
\(112\) −27.9792 1.07888i −0.249814 0.00963283i
\(113\) −85.7539 + 85.7539i −0.758884 + 0.758884i −0.976119 0.217235i \(-0.930296\pi\)
0.217235 + 0.976119i \(0.430296\pi\)
\(114\) 15.8420 + 9.14638i 0.138965 + 0.0802314i
\(115\) −65.4131 187.931i −0.568809 1.63418i
\(116\) −22.0507 38.1930i −0.190092 0.329250i
\(117\) −38.2000 + 10.2357i −0.326496 + 0.0874842i
\(118\) −3.31953 + 3.31953i −0.0281316 + 0.0281316i
\(119\) −210.256 + 47.7373i −1.76686 + 0.401154i
\(120\) 20.2613 13.7652i 0.168844 0.114710i
\(121\) 60.4295 104.667i 0.499418 0.865017i
\(122\) 32.4103 120.957i 0.265658 0.991449i
\(123\) −130.696 35.0199i −1.06257 0.284715i
\(124\) −82.1941 47.4548i −0.662856 0.382700i
\(125\) 122.002 27.2136i 0.976014 0.217709i
\(126\) 6.57550 + 28.9614i 0.0521865 + 0.229852i
\(127\) 47.9961 + 47.9961i 0.377922 + 0.377922i 0.870352 0.492430i \(-0.163891\pi\)
−0.492430 + 0.870352i \(0.663891\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 26.0293 15.0280i 0.201778 0.116496i
\(130\) 40.5823 83.9167i 0.312171 0.645513i
\(131\) 84.1928 145.826i 0.642693 1.11318i −0.342136 0.939651i \(-0.611150\pi\)
0.984829 0.173527i \(-0.0555164\pi\)
\(132\) 0.919654 + 0.919654i 0.00696708 + 0.00696708i
\(133\) 2.01426 52.2371i 0.0151448 0.392760i
\(134\) 126.605i 0.944811i
\(135\) −19.6648 16.9793i −0.145665 0.125772i
\(136\) 43.5593 + 75.4469i 0.320289 + 0.554757i
\(137\) 36.8767 137.626i 0.269173 1.00457i −0.690473 0.723358i \(-0.742598\pi\)
0.959646 0.281210i \(-0.0907358\pi\)
\(138\) −25.2308 94.1628i −0.182832 0.682339i
\(139\) 142.573i 1.02570i 0.858478 + 0.512851i \(0.171411\pi\)
−0.858478 + 0.512851i \(0.828589\pi\)
\(140\) −61.7967 32.8811i −0.441405 0.234865i
\(141\) 20.5041 0.145419
\(142\) −87.9641 + 23.5699i −0.619465 + 0.165985i
\(143\) 4.78069 + 1.28098i 0.0334314 + 0.00895792i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) −8.05846 109.959i −0.0555756 0.758336i
\(146\) 17.1134 0.117215
\(147\) 64.4556 55.2130i 0.438473 0.375599i
\(148\) −8.64995 + 8.64995i −0.0584456 + 0.0584456i
\(149\) 108.686 + 62.7499i 0.729437 + 0.421140i 0.818216 0.574911i \(-0.194963\pi\)
−0.0887794 + 0.996051i \(0.528297\pi\)
\(150\) 60.5830 8.92774i 0.403886 0.0595183i
\(151\) −70.3253 121.807i −0.465730 0.806669i 0.533504 0.845798i \(-0.320875\pi\)
−0.999234 + 0.0391290i \(0.987542\pi\)
\(152\) −20.4029 + 5.46695i −0.134230 + 0.0359667i
\(153\) 65.3389 65.3389i 0.427052 0.427052i
\(154\) 1.09958 3.55036i 0.00714013 0.0230543i
\(155\) −133.339 196.264i −0.860249 1.26622i
\(156\) 22.8328 39.5475i 0.146364 0.253510i
\(157\) −13.3721 + 49.9055i −0.0851729 + 0.317870i −0.995347 0.0963566i \(-0.969281\pi\)
0.910174 + 0.414226i \(0.135948\pi\)
\(158\) 49.5087 + 13.2658i 0.313346 + 0.0839608i
\(159\) −6.11495 3.53047i −0.0384588 0.0222042i
\(160\) −5.30407 + 27.7825i −0.0331504 + 0.173641i
\(161\) −204.433 + 189.253i −1.26977 + 1.17548i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −12.5854 46.9692i −0.0772108 0.288155i 0.916515 0.400001i \(-0.130990\pi\)
−0.993726 + 0.111846i \(0.964324\pi\)
\(164\) 135.307 78.1193i 0.825040 0.476337i
\(165\) 1.06884 + 3.07077i 0.00647784 + 0.0186107i
\(166\) 94.4289 163.556i 0.568849 0.985275i
\(167\) 145.174 + 145.174i 0.869303 + 0.869303i 0.992395 0.123092i \(-0.0392810\pi\)
−0.123092 + 0.992395i \(0.539281\pi\)
\(168\) −29.0158 18.2780i −0.172713 0.108798i
\(169\) 4.77853i 0.0282753i
\(170\) 15.9188 + 217.214i 0.0936399 + 1.27773i
\(171\) 11.2020 + 19.4024i 0.0655086 + 0.113464i
\(172\) −8.98251 + 33.5232i −0.0522239 + 0.194902i
\(173\) 45.0285 + 168.049i 0.260280 + 0.971379i 0.965076 + 0.261969i \(0.0843719\pi\)
−0.704796 + 0.709410i \(0.748961\pi\)
\(174\) 54.0130i 0.310420i
\(175\) −103.294 141.264i −0.590250 0.807220i
\(176\) −1.50179 −0.00853289
\(177\) −5.55369 + 1.48811i −0.0313768 + 0.00840738i
\(178\) 80.0949 + 21.4614i 0.449971 + 0.120569i
\(179\) −19.7474 + 11.4012i −0.110321 + 0.0636936i −0.554145 0.832420i \(-0.686955\pi\)
0.443824 + 0.896114i \(0.353621\pi\)
\(180\) 29.9198 2.19271i 0.166221 0.0121817i
\(181\) −232.706 −1.28567 −0.642835 0.766005i \(-0.722242\pi\)
−0.642835 + 0.766005i \(0.722242\pi\)
\(182\) −130.403 5.02834i −0.716501 0.0276283i
\(183\) 108.447 108.447i 0.592606 0.592606i
\(184\) 97.4845 + 56.2827i 0.529807 + 0.305884i
\(185\) −28.8826 + 10.0532i −0.156122 + 0.0543415i
\(186\) −58.1200 100.667i −0.312473 0.541219i
\(187\) −11.1701 + 2.99303i −0.0597334 + 0.0160055i
\(188\) −16.7415 + 16.7415i −0.0890505 + 0.0890505i
\(189\) −10.7608 + 34.7449i −0.0569354 + 0.183835i
\(190\) −51.8698 9.90267i −0.272999 0.0521193i
\(191\) −30.6491 + 53.0858i −0.160466 + 0.277936i −0.935036 0.354553i \(-0.884633\pi\)
0.774570 + 0.632489i \(0.217967\pi\)
\(192\) −3.58630 + 13.3843i −0.0186787 + 0.0697097i
\(193\) 301.465 + 80.7774i 1.56200 + 0.418536i 0.933295 0.359112i \(-0.116920\pi\)
0.628701 + 0.777647i \(0.283587\pi\)
\(194\) −97.0205 56.0148i −0.500106 0.288736i
\(195\) 94.4322 64.1556i 0.484268 0.329003i
\(196\) −7.54653 + 97.7090i −0.0385027 + 0.498515i
\(197\) −80.4508 80.4508i −0.408380 0.408380i 0.472794 0.881173i \(-0.343246\pi\)
−0.881173 + 0.472794i \(0.843246\pi\)
\(198\) 0.412270 + 1.53861i 0.00208217 + 0.00777077i
\(199\) −88.7801 + 51.2572i −0.446131 + 0.257574i −0.706195 0.708017i \(-0.749590\pi\)
0.260064 + 0.965591i \(0.416256\pi\)
\(200\) −42.1763 + 56.7553i −0.210882 + 0.283776i
\(201\) −77.5292 + 134.284i −0.385717 + 0.668082i
\(202\) −105.057 105.057i −0.520082 0.520082i
\(203\) −136.550 + 71.9695i −0.672659 + 0.354530i
\(204\) 106.698i 0.523029i
\(205\) 389.552 28.5488i 1.90025 0.139262i
\(206\) −109.753 190.098i −0.532784 0.922808i
\(207\) 30.9013 115.325i 0.149282 0.557127i
\(208\) 13.6475 + 50.9333i 0.0656132 + 0.244872i
\(209\) 2.80384i 0.0134155i
\(210\) −45.4099 72.7182i −0.216238 0.346277i
\(211\) 71.6773 0.339703 0.169851 0.985470i \(-0.445671\pi\)
0.169851 + 0.985470i \(0.445671\pi\)
\(212\) 7.87545 2.11022i 0.0371483 0.00995387i
\(213\) −107.734 28.8671i −0.505791 0.135526i
\(214\) −155.575 + 89.8211i −0.726984 + 0.419725i
\(215\) −56.7034 + 65.6718i −0.263737 + 0.305450i
\(216\) 14.6969 0.0680414
\(217\) −177.053 + 281.066i −0.815913 + 1.29524i
\(218\) −45.7786 + 45.7786i −0.209994 + 0.209994i
\(219\) 18.1515 + 10.4798i 0.0828837 + 0.0478530i
\(220\) −3.37998 1.63457i −0.0153635 0.00742984i
\(221\) 203.018 + 351.637i 0.918632 + 1.59112i
\(222\) −14.4717 + 3.87767i −0.0651876 + 0.0174670i
\(223\) 20.6150 20.6150i 0.0924442 0.0924442i −0.659372 0.751817i \(-0.729178\pi\)
0.751817 + 0.659372i \(0.229178\pi\)
\(224\) 38.6152 8.76733i 0.172389 0.0391399i
\(225\) 69.7250 + 27.6300i 0.309889 + 0.122800i
\(226\) 85.7539 148.530i 0.379442 0.657213i
\(227\) −105.042 + 392.022i −0.462740 + 1.72697i 0.201536 + 0.979481i \(0.435407\pi\)
−0.664276 + 0.747488i \(0.731260\pi\)
\(228\) −24.9884 6.69561i −0.109598 0.0293667i
\(229\) −149.768 86.4685i −0.654008 0.377592i 0.135982 0.990711i \(-0.456581\pi\)
−0.789990 + 0.613120i \(0.789914\pi\)
\(230\) 158.143 + 232.775i 0.687579 + 1.01207i
\(231\) 3.34042 3.09238i 0.0144607 0.0133869i
\(232\) 44.1014 + 44.1014i 0.190092 + 0.190092i
\(233\) −23.5059 87.7253i −0.100884 0.376503i 0.896962 0.442108i \(-0.145769\pi\)
−0.997846 + 0.0656045i \(0.979102\pi\)
\(234\) 48.4356 27.9643i 0.206990 0.119506i
\(235\) −55.9006 + 19.4574i −0.237875 + 0.0827973i
\(236\) 3.31953 5.74960i 0.0140658 0.0243627i
\(237\) 44.3882 + 44.3882i 0.187292 + 0.187292i
\(238\) 269.742 142.170i 1.13337 0.597351i
\(239\) 307.147i 1.28513i −0.766230 0.642567i \(-0.777870\pi\)
0.766230 0.642567i \(-0.222130\pi\)
\(240\) −22.6390 + 26.2197i −0.0943294 + 0.109249i
\(241\) −44.1804 76.5228i −0.183321 0.317522i 0.759688 0.650287i \(-0.225352\pi\)
−0.943010 + 0.332766i \(0.892018\pi\)
\(242\) −44.2375 + 165.097i −0.182799 + 0.682217i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 177.093i 0.725791i
\(245\) −123.332 + 211.694i −0.503396 + 0.864056i
\(246\) 191.352 0.777855
\(247\) −95.0923 + 25.4799i −0.384989 + 0.103158i
\(248\) 129.649 + 34.7393i 0.522778 + 0.140078i
\(249\) 200.314 115.651i 0.804474 0.464463i
\(250\) −156.697 + 81.8302i −0.626786 + 0.327321i
\(251\) −140.207 −0.558592 −0.279296 0.960205i \(-0.590101\pi\)
−0.279296 + 0.960205i \(0.590101\pi\)
\(252\) −19.5829 37.1552i −0.0777099 0.147441i
\(253\) −10.5656 + 10.5656i −0.0417612 + 0.0417612i
\(254\) −83.1317 47.9961i −0.327290 0.188961i
\(255\) −116.131 + 240.138i −0.455417 + 0.941719i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 227.382 60.9269i 0.884757 0.237070i 0.212298 0.977205i \(-0.431905\pi\)
0.672458 + 0.740135i \(0.265238\pi\)
\(258\) −30.0561 + 30.0561i −0.116496 + 0.116496i
\(259\) 29.0858 + 31.4189i 0.112300 + 0.121308i
\(260\) −24.7208 + 129.486i −0.0950799 + 0.498025i
\(261\) 33.0761 57.2895i 0.126728 0.219500i
\(262\) −61.6334 + 230.019i −0.235242 + 0.877935i
\(263\) 65.4304 + 17.5320i 0.248785 + 0.0666617i 0.381056 0.924552i \(-0.375560\pi\)
−0.132272 + 0.991214i \(0.542227\pi\)
\(264\) −1.59289 0.919654i −0.00603367 0.00348354i
\(265\) 20.0216 + 3.82239i 0.0755530 + 0.0144241i
\(266\) 16.3686 + 72.0944i 0.0615360 + 0.271032i
\(267\) 71.8111 + 71.8111i 0.268955 + 0.268955i
\(268\) −46.3405 172.945i −0.172912 0.645318i
\(269\) 206.056 118.966i 0.766008 0.442255i −0.0654410 0.997856i \(-0.520845\pi\)
0.831449 + 0.555602i \(0.187512\pi\)
\(270\) 33.0775 + 15.9963i 0.122509 + 0.0592456i
\(271\) −35.7113 + 61.8537i −0.131776 + 0.228243i −0.924361 0.381518i \(-0.875401\pi\)
0.792585 + 0.609761i \(0.208735\pi\)
\(272\) −87.1186 87.1186i −0.320289 0.320289i
\(273\) −135.234 85.1887i −0.495364 0.312047i
\(274\) 201.498i 0.735395i
\(275\) −5.82802 7.35762i −0.0211928 0.0267550i
\(276\) 68.9319 + 119.394i 0.249753 + 0.432586i
\(277\) 80.4348 300.187i 0.290379 1.08371i −0.654440 0.756114i \(-0.727096\pi\)
0.944819 0.327594i \(-0.106238\pi\)
\(278\) −52.1852 194.758i −0.187716 0.700567i
\(279\) 142.364i 0.510267i
\(280\) 96.4512 + 22.2972i 0.344469 + 0.0796328i
\(281\) −78.2913 −0.278617 −0.139308 0.990249i \(-0.544488\pi\)
−0.139308 + 0.990249i \(0.544488\pi\)
\(282\) −28.0091 + 7.50500i −0.0993229 + 0.0266135i
\(283\) 304.258 + 81.5257i 1.07512 + 0.288077i 0.752594 0.658485i \(-0.228802\pi\)
0.322523 + 0.946562i \(0.395469\pi\)
\(284\) 111.534 64.3942i 0.392725 0.226740i
\(285\) −48.9521 42.2670i −0.171762 0.148305i
\(286\) −6.99942 −0.0244735
\(287\) −254.967 483.757i −0.888387 1.68556i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −571.322 329.853i −1.97689 1.14136i
\(290\) 51.2557 + 147.257i 0.176744 + 0.507782i
\(291\) −68.6039 118.825i −0.235752 0.408335i
\(292\) −23.3774 + 6.26395i −0.0800596 + 0.0214519i
\(293\) 18.2834 18.2834i 0.0624008 0.0624008i −0.675218 0.737618i \(-0.735950\pi\)
0.737618 + 0.675218i \(0.235950\pi\)
\(294\) −67.8386 + 99.0148i −0.230744 + 0.336785i
\(295\) 13.7290 9.32723i 0.0465389 0.0316177i
\(296\) 8.64995 14.9822i 0.0292228 0.0506154i
\(297\) −0.504925 + 1.88441i −0.00170009 + 0.00634480i
\(298\) −171.436 45.9361i −0.575289 0.154148i
\(299\) 454.348 + 262.318i 1.51956 + 0.877317i
\(300\) −79.4901 + 34.3704i −0.264967 + 0.114568i
\(301\) 116.033 + 35.9364i 0.385491 + 0.119390i
\(302\) 140.651 + 140.651i 0.465730 + 0.465730i
\(303\) −47.0956 175.763i −0.155431 0.580077i
\(304\) 25.8699 14.9360i 0.0850982 0.0491315i
\(305\) −192.750 + 398.572i −0.631968 + 1.30679i
\(306\) −65.3389 + 113.170i −0.213526 + 0.369838i
\(307\) 93.0997 + 93.0997i 0.303256 + 0.303256i 0.842286 0.539030i \(-0.181209\pi\)
−0.539030 + 0.842286i \(0.681209\pi\)
\(308\) −0.202531 + 5.25236i −0.000657567 + 0.0170531i
\(309\) 268.840i 0.870032i
\(310\) 253.982 + 219.297i 0.819296 + 0.707409i
\(311\) −253.781 439.562i −0.816017 1.41338i −0.908596 0.417677i \(-0.862844\pi\)
0.0925788 0.995705i \(-0.470489\pi\)
\(312\) −16.7148 + 62.3803i −0.0535729 + 0.199937i
\(313\) 103.049 + 384.584i 0.329230 + 1.22870i 0.909991 + 0.414629i \(0.136089\pi\)
−0.580761 + 0.814074i \(0.697245\pi\)
\(314\) 73.0668i 0.232697i
\(315\) −3.63380 104.937i −0.0115359 0.333134i
\(316\) −72.4857 −0.229385
\(317\) 208.697 55.9201i 0.658349 0.176404i 0.0858484 0.996308i \(-0.472640\pi\)
0.572501 + 0.819904i \(0.305973\pi\)
\(318\) 9.64542 + 2.58448i 0.0303315 + 0.00812730i
\(319\) −7.16972 + 4.13944i −0.0224756 + 0.0129763i
\(320\) −2.92361 39.8930i −0.00913628 0.124666i
\(321\) −220.016 −0.685407
\(322\) 209.990 333.352i 0.652142 1.03525i
\(323\) 162.650 162.650i 0.503561 0.503561i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) −196.572 + 264.520i −0.604837 + 0.813909i
\(326\) 34.3839 + 59.5546i 0.105472 + 0.182683i
\(327\) −76.5891 + 20.5220i −0.234218 + 0.0627584i
\(328\) −156.239 + 156.239i −0.476337 + 0.476337i
\(329\) 56.2939 + 60.8094i 0.171106 + 0.184831i
\(330\) −2.58405 3.80353i −0.00783045 0.0115258i
\(331\) −35.1679 + 60.9126i −0.106247 + 0.184026i −0.914247 0.405157i \(-0.867217\pi\)
0.808000 + 0.589183i \(0.200550\pi\)
\(332\) −69.1267 + 257.985i −0.208213 + 0.777062i
\(333\) −17.7241 4.74915i −0.0532255 0.0142617i
\(334\) −251.448 145.174i −0.752839 0.434652i
\(335\) 83.9399 439.674i 0.250567 1.31246i
\(336\) 46.3265 + 14.3477i 0.137876 + 0.0427016i
\(337\) 50.1616 + 50.1616i 0.148848 + 0.148848i 0.777603 0.628755i \(-0.216435\pi\)
−0.628755 + 0.777603i \(0.716435\pi\)
\(338\) 1.74906 + 6.52759i 0.00517474 + 0.0193124i
\(339\) 181.911 105.027i 0.536612 0.309813i
\(340\) −101.251 290.893i −0.297798 0.855568i
\(341\) −8.90839 + 15.4298i −0.0261243 + 0.0452486i
\(342\) −22.4040 22.4040i −0.0655086 0.0655086i
\(343\) 340.710 + 39.5702i 0.993323 + 0.115365i
\(344\) 49.0814i 0.142678i
\(345\) 25.1912 + 343.738i 0.0730181 + 0.996341i
\(346\) −123.020 213.077i −0.355550 0.615830i
\(347\) 31.8622 118.911i 0.0918218 0.342684i −0.904697 0.426056i \(-0.859903\pi\)
0.996518 + 0.0833727i \(0.0265692\pi\)
\(348\) 19.7701 + 73.7831i 0.0568107 + 0.212021i
\(349\) 623.821i 1.78745i −0.448613 0.893726i \(-0.648082\pi\)
0.448613 0.893726i \(-0.351918\pi\)
\(350\) 192.808 + 155.161i 0.550880 + 0.443318i
\(351\) 68.4983 0.195152
\(352\) 2.05148 0.549693i 0.00582808 0.00156163i
\(353\) −509.421 136.499i −1.44312 0.386682i −0.549493 0.835498i \(-0.685179\pi\)
−0.893624 + 0.448816i \(0.851846\pi\)
\(354\) 7.04179 4.06558i 0.0198921 0.0114847i
\(355\) 321.110 23.5329i 0.904534 0.0662899i
\(356\) −117.267 −0.329402
\(357\) 373.166 + 14.3893i 1.04528 + 0.0403060i
\(358\) 22.8023 22.8023i 0.0636936 0.0636936i
\(359\) −40.2571 23.2425i −0.112137 0.0647423i 0.442883 0.896580i \(-0.353956\pi\)
−0.555019 + 0.831837i \(0.687289\pi\)
\(360\) −40.0686 + 13.9467i −0.111302 + 0.0387408i
\(361\) −152.615 264.336i −0.422755 0.732233i
\(362\) 317.882 85.1764i 0.878128 0.235294i
\(363\) −148.021 + 148.021i −0.407773 + 0.407773i
\(364\) 179.975 40.8621i 0.494436 0.112258i
\(365\) −59.4317 11.3464i −0.162827 0.0310859i
\(366\) −108.447 + 187.836i −0.296303 + 0.513212i
\(367\) −78.5019 + 292.973i −0.213902 + 0.798292i 0.772649 + 0.634834i \(0.218931\pi\)
−0.986550 + 0.163458i \(0.947735\pi\)
\(368\) −153.767 41.2018i −0.417846 0.111961i
\(369\) 202.960 + 117.179i 0.550027 + 0.317558i
\(370\) 35.7746 24.3047i 0.0966882 0.0656883i
\(371\) −6.31821 27.8282i −0.0170302 0.0750086i
\(372\) 116.240 + 116.240i 0.312473 + 0.312473i
\(373\) −79.0648 295.074i −0.211970 0.791082i −0.987211 0.159417i \(-0.949038\pi\)
0.775241 0.631665i \(-0.217628\pi\)
\(374\) 14.1632 8.17711i 0.0378694 0.0218639i
\(375\) −216.312 9.16264i −0.576833 0.0244337i
\(376\) 16.7415 28.9971i 0.0445252 0.0771200i
\(377\) 205.544 + 205.544i 0.545211 + 0.545211i
\(378\) 1.98202 51.4011i 0.00524345 0.135982i
\(379\) 604.578i 1.59519i 0.603191 + 0.797597i \(0.293896\pi\)
−0.603191 + 0.797597i \(0.706104\pi\)
\(380\) 74.4801 5.45837i 0.196000 0.0143641i
\(381\) −58.7830 101.815i −0.154286 0.267231i
\(382\) 22.4367 83.7349i 0.0587348 0.219201i
\(383\) −94.2770 351.847i −0.246154 0.918659i −0.972800 0.231647i \(-0.925589\pi\)
0.726646 0.687012i \(-0.241078\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −6.17255 + 11.6007i −0.0160326 + 0.0301317i
\(386\) −441.376 −1.14346
\(387\) −50.2848 + 13.4738i −0.129935 + 0.0348159i
\(388\) 153.035 + 41.0057i 0.394421 + 0.105685i
\(389\) −184.090 + 106.285i −0.473240 + 0.273225i −0.717595 0.696461i \(-0.754757\pi\)
0.244355 + 0.969686i \(0.421424\pi\)
\(390\) −105.514 + 122.203i −0.270549 + 0.313340i
\(391\) −1225.82 −3.13508
\(392\) −25.4552 136.235i −0.0649368 0.347539i
\(393\) −206.229 + 206.229i −0.524757 + 0.524757i
\(394\) 139.345 + 80.4508i 0.353667 + 0.204190i
\(395\) −163.139 78.8943i −0.413010 0.199732i
\(396\) −1.12634 1.95088i −0.00284430 0.00492647i
\(397\) −26.0151 + 6.97072i −0.0655292 + 0.0175585i −0.291435 0.956591i \(-0.594133\pi\)
0.225906 + 0.974149i \(0.427466\pi\)
\(398\) 102.514 102.514i 0.257574 0.257574i
\(399\) −26.7872 + 86.4914i −0.0671357 + 0.216770i
\(400\) 36.8400 92.9667i 0.0921001 0.232417i
\(401\) 137.819 238.709i 0.343688 0.595284i −0.641427 0.767184i \(-0.721657\pi\)
0.985114 + 0.171900i \(0.0549905\pi\)
\(402\) 56.7553 211.814i 0.141182 0.526900i
\(403\) 604.257 + 161.910i 1.49940 + 0.401762i
\(404\) 181.963 + 105.057i 0.450405 + 0.260041i
\(405\) 25.2882 + 37.2224i 0.0624401 + 0.0919071i
\(406\) 160.188 148.293i 0.394552 0.365253i
\(407\) 1.62380 + 1.62380i 0.00398968 + 0.00398968i
\(408\) −39.0542 145.752i −0.0957210 0.357236i
\(409\) 663.911 383.309i 1.62325 0.937186i 0.637212 0.770688i \(-0.280088\pi\)
0.986042 0.166498i \(-0.0532458\pi\)
\(410\) −521.688 + 181.584i −1.27241 + 0.442888i
\(411\) −123.392 + 213.721i −0.300224 + 0.520003i
\(412\) 219.507 + 219.507i 0.532784 + 0.532784i
\(413\) −19.6610 12.3851i −0.0476053 0.0299882i
\(414\) 168.848i 0.407846i
\(415\) −436.373 + 505.391i −1.05150 + 1.21781i
\(416\) −37.2858 64.5808i −0.0896292 0.155242i
\(417\) 63.9135 238.528i 0.153270 0.572011i
\(418\) 1.02628 + 3.83011i 0.00245520 + 0.00916294i
\(419\) 19.8062i 0.0472702i 0.999721 + 0.0236351i \(0.00752399\pi\)
−0.999721 + 0.0236351i \(0.992476\pi\)
\(420\) 88.6478 + 82.7138i 0.211066 + 0.196938i
\(421\) 435.571 1.03461 0.517305 0.855801i \(-0.326935\pi\)
0.517305 + 0.855801i \(0.326935\pi\)
\(422\) −97.9130 + 26.2357i −0.232021 + 0.0621699i
\(423\) −34.3039 9.19172i −0.0810968 0.0217298i
\(424\) −9.98567 + 5.76523i −0.0235511 + 0.0135972i
\(425\) 88.7317 764.897i 0.208780 1.79976i
\(426\) 157.733 0.370265
\(427\) 619.365 + 23.8827i 1.45050 + 0.0559314i
\(428\) 179.642 179.642i 0.419725 0.419725i
\(429\) −7.42401 4.28625i −0.0173054 0.00999126i
\(430\) 53.4207 110.464i 0.124234 0.256894i
\(431\) 307.905 + 533.307i 0.714396 + 1.23737i 0.963192 + 0.268815i \(0.0866319\pi\)
−0.248796 + 0.968556i \(0.580035\pi\)
\(432\) −20.0764 + 5.37945i −0.0464731 + 0.0124524i
\(433\) 412.622 412.622i 0.952937 0.952937i −0.0460046 0.998941i \(-0.514649\pi\)
0.998941 + 0.0460046i \(0.0146489\pi\)
\(434\) 138.982 448.749i 0.320234 1.03398i
\(435\) −35.8111 + 187.577i −0.0823243 + 0.431212i
\(436\) 45.7786 79.2909i 0.104997 0.181860i
\(437\) 76.9236 287.083i 0.176027 0.656940i
\(438\) −28.6313 7.67174i −0.0653684 0.0175154i
\(439\) 169.189 + 97.6811i 0.385396 + 0.222508i 0.680163 0.733061i \(-0.261909\pi\)
−0.294768 + 0.955569i \(0.595242\pi\)
\(440\) 5.21543 + 0.995699i 0.0118533 + 0.00226295i
\(441\) −132.588 + 63.4785i −0.300652 + 0.143942i
\(442\) −406.035 406.035i −0.918632 0.918632i
\(443\) −155.905 581.846i −0.351931 1.31342i −0.884303 0.466913i \(-0.845366\pi\)
0.532373 0.846510i \(-0.321301\pi\)
\(444\) 18.3493 10.5940i 0.0413273 0.0238603i
\(445\) −263.925 127.635i −0.593091 0.286820i
\(446\) −20.6150 + 35.7063i −0.0462221 + 0.0800590i
\(447\) −153.705 153.705i −0.343860 0.343860i
\(448\) −49.5403 + 26.1105i −0.110581 + 0.0582824i
\(449\) 230.113i 0.512501i −0.966610 0.256251i \(-0.917513\pi\)
0.966610 0.256251i \(-0.0824872\pi\)
\(450\) −105.359 12.2222i −0.234132 0.0271604i
\(451\) −14.6648 25.4003i −0.0325163 0.0563199i
\(452\) −62.7762 + 234.284i −0.138885 + 0.518327i
\(453\) 63.0519 + 235.313i 0.139187 + 0.519455i
\(454\) 573.960i 1.26423i
\(455\) 449.532 + 103.921i 0.987983 + 0.228398i
\(456\) 36.5855 0.0802314
\(457\) −812.288 + 217.652i −1.77744 + 0.476262i −0.990112 0.140278i \(-0.955200\pi\)
−0.787323 + 0.616540i \(0.788534\pi\)
\(458\) 236.236 + 63.2994i 0.515800 + 0.138208i
\(459\) −138.605 + 80.0235i −0.301971 + 0.174343i
\(460\) −301.229 260.092i −0.654846 0.565418i
\(461\) 391.784 0.849856 0.424928 0.905227i \(-0.360299\pi\)
0.424928 + 0.905227i \(0.360299\pi\)
\(462\) −3.43122 + 5.44694i −0.00742688 + 0.0117899i
\(463\) −253.040 + 253.040i −0.546523 + 0.546523i −0.925433 0.378911i \(-0.876299\pi\)
0.378911 + 0.925433i \(0.376299\pi\)
\(464\) −76.3859 44.1014i −0.164625 0.0950462i
\(465\) 135.097 + 388.131i 0.290531 + 0.834690i
\(466\) 64.2193 + 111.231i 0.137810 + 0.238693i
\(467\) 749.215 200.751i 1.60431 0.429875i 0.657972 0.753042i \(-0.271414\pi\)
0.946342 + 0.323167i \(0.104748\pi\)
\(468\) −55.9286 + 55.9286i −0.119506 + 0.119506i
\(469\) −611.108 + 138.748i −1.30300 + 0.295838i
\(470\) 69.2398 47.0403i 0.147319 0.100086i
\(471\) 44.7441 77.4990i 0.0949980 0.164541i
\(472\) −2.43007 + 9.06913i −0.00514845 + 0.0192143i
\(473\) 6.29310 + 1.68623i 0.0133046 + 0.00356497i
\(474\) −76.8827 44.3882i −0.162200 0.0936461i
\(475\) 173.569 + 68.7802i 0.365407 + 0.144801i
\(476\) −316.437 + 292.940i −0.664784 + 0.615420i
\(477\) 8.64784 + 8.64784i 0.0181296 + 0.0181296i
\(478\) 112.424 + 419.570i 0.235196 + 0.877762i
\(479\) −453.629 + 261.903i −0.947033 + 0.546770i −0.892158 0.451724i \(-0.850809\pi\)
−0.0548749 + 0.998493i \(0.517476\pi\)
\(480\) 21.3284 44.1033i 0.0444342 0.0918818i
\(481\) 40.3150 69.8276i 0.0838150 0.145172i
\(482\) 88.3609 + 88.3609i 0.183321 + 0.183321i
\(483\) 426.863 224.981i 0.883775 0.465800i
\(484\) 241.718i 0.499418i
\(485\) 299.796 + 258.854i 0.618135 + 0.533720i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) −189.323 + 706.561i −0.388753 + 1.45084i 0.443413 + 0.896317i \(0.353767\pi\)
−0.832166 + 0.554527i \(0.812899\pi\)
\(488\) −64.8205 241.914i −0.132829 0.495725i
\(489\) 84.2229i 0.172235i
\(490\) 90.9896 334.322i 0.185693 0.682289i
\(491\) 127.496 0.259666 0.129833 0.991536i \(-0.458556\pi\)
0.129833 + 0.991536i \(0.458556\pi\)
\(492\) −261.392 + 70.0399i −0.531285 + 0.142357i
\(493\) −656.043 175.786i −1.33072 0.356564i
\(494\) 120.572 69.6124i 0.244073 0.140916i
\(495\) −0.411623 5.61665i −0.000831561 0.0113468i
\(496\) −189.819 −0.382700
\(497\) −210.171 398.763i −0.422879 0.802341i
\(498\) −231.303 + 231.303i −0.464463 + 0.464463i
\(499\) 361.313 + 208.604i 0.724074 + 0.418044i 0.816250 0.577698i \(-0.196049\pi\)
−0.0921761 + 0.995743i \(0.529382\pi\)
\(500\) 184.100 169.137i 0.368199 0.338274i
\(501\) −177.801 307.960i −0.354892 0.614690i
\(502\) 191.526 51.3192i 0.381526 0.102229i
\(503\) 184.123 184.123i 0.366049 0.366049i −0.499985 0.866034i \(-0.666661\pi\)
0.866034 + 0.499985i \(0.166661\pi\)
\(504\) 40.3505 + 43.5871i 0.0800605 + 0.0864824i
\(505\) 295.189 + 434.495i 0.584532 + 0.860387i
\(506\) 10.5656 18.3001i 0.0208806 0.0361663i
\(507\) −2.14216 + 7.99463i −0.00422516 + 0.0157685i
\(508\) 131.128 + 35.1356i 0.258126 + 0.0691646i
\(509\) 165.126 + 95.3357i 0.324413 + 0.187300i 0.653358 0.757049i \(-0.273360\pi\)
−0.328945 + 0.944349i \(0.606693\pi\)
\(510\) 70.7417 370.542i 0.138709 0.726553i
\(511\) 18.7549 + 82.6049i 0.0367023 + 0.161653i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −10.0434 37.4826i −0.0195778 0.0730654i
\(514\) −288.309 + 166.456i −0.560913 + 0.323843i
\(515\) 255.116 + 732.944i 0.495371 + 1.42319i
\(516\) 30.0561 52.0586i 0.0582482 0.100889i
\(517\) 3.14277 + 3.14277i 0.00607887 + 0.00607887i
\(518\) −51.2321 32.2728i −0.0989036 0.0623028i
\(519\) 301.337i 0.580610i
\(520\) −13.6261 185.930i −0.0262041 0.357558i
\(521\) −111.708 193.483i −0.214410 0.371369i 0.738680 0.674056i \(-0.235449\pi\)
−0.953090 + 0.302688i \(0.902116\pi\)
\(522\) −24.2134 + 90.3655i −0.0463858 + 0.173114i
\(523\) 214.134 + 799.159i 0.409434 + 1.52803i 0.795729 + 0.605653i \(0.207088\pi\)
−0.386295 + 0.922375i \(0.626245\pi\)
\(524\) 336.771i 0.642693i
\(525\) 109.487 + 282.644i 0.208547 + 0.538369i
\(526\) −95.7967 −0.182123
\(527\) −1411.85 + 378.305i −2.67904 + 0.717846i
\(528\) 2.51254 + 0.673234i 0.00475860 + 0.00127506i
\(529\) −913.545 + 527.435i −1.72693 + 0.997042i
\(530\) −28.7490 + 2.10691i −0.0542435 + 0.00397530i
\(531\) 9.95860 0.0187544
\(532\) −48.7483 92.4915i −0.0916321 0.173856i
\(533\) −728.185 + 728.185i −1.36620 + 1.36620i
\(534\) −124.380 71.8111i −0.232922 0.134478i
\(535\) 599.834 208.784i 1.12118 0.390251i
\(536\) 126.605 + 219.286i 0.236203 + 0.409115i
\(537\) 38.1490 10.2220i 0.0710410 0.0190354i
\(538\) −237.933 + 237.933i −0.442255 + 0.442255i
\(539\) 18.3423 + 1.41666i 0.0340302 + 0.00262832i
\(540\) −51.0397 9.74419i −0.0945180 0.0180448i
\(541\) −132.318 + 229.182i −0.244581 + 0.423626i −0.962014 0.273001i \(-0.911984\pi\)
0.717433 + 0.696628i \(0.245317\pi\)
\(542\) 26.1425 97.5650i 0.0482333 0.180009i
\(543\) 389.325 + 104.319i 0.716989 + 0.192117i
\(544\) 150.894 + 87.1186i 0.277378 + 0.160144i
\(545\) 189.332 128.629i 0.347398 0.236016i
\(546\) 215.915 + 66.8708i 0.395448 + 0.122474i
\(547\) 399.059 + 399.059i 0.729540 + 0.729540i 0.970528 0.240988i \(-0.0774714\pi\)
−0.240988 + 0.970528i \(0.577471\pi\)
\(548\) −73.7535 275.252i −0.134587 0.502284i
\(549\) −230.051 + 132.820i −0.419036 + 0.241930i
\(550\) 10.6543 + 7.91749i 0.0193715 + 0.0143954i
\(551\) 82.3372 142.612i 0.149432 0.258824i
\(552\) −137.864 137.864i −0.249753 0.249753i
\(553\) −9.77539 + 253.512i −0.0176770 + 0.458430i
\(554\) 439.504i 0.793329i
\(555\) 52.8282 3.87158i 0.0951860 0.00697582i
\(556\) 142.573 + 246.943i 0.256425 + 0.444142i
\(557\) −122.018 + 455.378i −0.219063 + 0.817554i 0.765634 + 0.643277i \(0.222426\pi\)
−0.984697 + 0.174277i \(0.944241\pi\)
\(558\) 52.1090 + 194.473i 0.0933853 + 0.348519i
\(559\) 228.755i 0.409221i
\(560\) −139.916 + 4.84507i −0.249850 + 0.00865192i
\(561\) 20.0297 0.0357036
\(562\) 106.948 28.6566i 0.190299 0.0509904i
\(563\) 649.485 + 174.029i 1.15361 + 0.309110i 0.784413 0.620239i \(-0.212965\pi\)
0.369202 + 0.929349i \(0.379631\pi\)
\(564\) 35.5141 20.5041i 0.0629682 0.0363547i
\(565\) −396.284 + 458.961i −0.701387 + 0.812321i
\(566\) −445.465 −0.787041
\(567\) 33.5789 53.3053i 0.0592220 0.0940130i
\(568\) −128.788 + 128.788i −0.226740 + 0.226740i
\(569\) 928.455 + 536.044i 1.63173 + 0.942080i 0.983559 + 0.180587i \(0.0577996\pi\)
0.648172 + 0.761494i \(0.275534\pi\)
\(570\) 82.3406 + 39.8201i 0.144457 + 0.0698598i
\(571\) 320.180 + 554.568i 0.560735 + 0.971222i 0.997432 + 0.0716136i \(0.0228148\pi\)
−0.436697 + 0.899609i \(0.643852\pi\)
\(572\) 9.56139 2.56197i 0.0167157 0.00447896i
\(573\) 75.0746 75.0746i 0.131020 0.131020i
\(574\) 525.359 + 567.499i 0.915259 + 0.988675i
\(575\) −394.870 913.234i −0.686730 1.58823i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −182.218 + 680.047i −0.315802 + 1.17859i 0.607438 + 0.794367i \(0.292197\pi\)
−0.923240 + 0.384223i \(0.874469\pi\)
\(578\) 901.174 + 241.469i 1.55913 + 0.417766i
\(579\) −468.150 270.286i −0.808549 0.466816i
\(580\) −123.916 182.396i −0.213649 0.314475i
\(581\) 892.953 + 276.556i 1.53692 + 0.475999i
\(582\) 137.208 + 137.208i 0.235752 + 0.235752i
\(583\) −0.396138 1.47841i −0.000679482 0.00253586i
\(584\) 29.6413 17.1134i 0.0507557 0.0293038i
\(585\) −186.748 + 65.0016i −0.319228 + 0.111114i
\(586\) −18.2834 + 31.6678i −0.0312004 + 0.0540406i
\(587\) 5.11267 + 5.11267i 0.00870982 + 0.00870982i 0.711448 0.702738i \(-0.248040\pi\)
−0.702738 + 0.711448i \(0.748040\pi\)
\(588\) 56.4273 160.087i 0.0959649 0.272257i
\(589\) 354.392i 0.601684i
\(590\) −15.3401 + 17.7664i −0.0260002 + 0.0301125i
\(591\) 98.5317 + 170.662i 0.166720 + 0.288768i
\(592\) −6.33220 + 23.6321i −0.0106963 + 0.0399191i
\(593\) −78.7716 293.979i −0.132836 0.495749i 0.867162 0.498027i \(-0.165942\pi\)
−0.999997 + 0.00227715i \(0.999275\pi\)
\(594\) 2.75896i 0.00464472i
\(595\) −1031.02 + 314.887i −1.73281 + 0.529221i
\(596\) 251.000 0.421140
\(597\) 171.510 45.9560i 0.287287 0.0769782i
\(598\) −716.666 192.030i −1.19844 0.321120i
\(599\) −766.173 + 442.350i −1.27909 + 0.738481i −0.976680 0.214699i \(-0.931123\pi\)
−0.302406 + 0.953179i \(0.597790\pi\)
\(600\) 96.0050 76.0463i 0.160008 0.126744i
\(601\) 297.022 0.494213 0.247106 0.968988i \(-0.420520\pi\)
0.247106 + 0.968988i \(0.420520\pi\)
\(602\) −171.657 6.61909i −0.285145 0.0109952i
\(603\) 189.907 189.907i 0.314937 0.314937i
\(604\) −243.614 140.651i −0.403334 0.232865i
\(605\) 263.089 544.019i 0.434858 0.899205i
\(606\) 128.668 + 222.859i 0.212323 + 0.367754i
\(607\) 187.910 50.3503i 0.309572 0.0829495i −0.100689 0.994918i \(-0.532105\pi\)
0.410260 + 0.911969i \(0.365438\pi\)
\(608\) −29.8719 + 29.8719i −0.0491315 + 0.0491315i
\(609\) 260.715 59.1937i 0.428104 0.0971982i
\(610\) 117.414 615.011i 0.192482 1.00821i
\(611\) 78.0274 135.147i 0.127704 0.221191i
\(612\) 47.8314 178.509i 0.0781559 0.291682i
\(613\) −1057.91 283.467i −1.72580 0.462426i −0.746591 0.665284i \(-0.768311\pi\)
−0.979208 + 0.202857i \(0.934977\pi\)
\(614\) −161.253 93.0997i −0.262628 0.151628i
\(615\) −664.531 126.868i −1.08054 0.206290i
\(616\) −1.64583 7.24899i −0.00267181 0.0117678i
\(617\) −775.030 775.030i −1.25613 1.25613i −0.952927 0.303200i \(-0.901945\pi\)
−0.303200 0.952927i \(-0.598055\pi\)
\(618\) 98.4022 + 367.242i 0.159227 + 0.594243i
\(619\) 29.3925 16.9698i 0.0474839 0.0274148i −0.476070 0.879407i \(-0.657939\pi\)
0.523554 + 0.851992i \(0.324606\pi\)
\(620\) −427.214 206.601i −0.689054 0.333228i
\(621\) −103.398 + 179.090i −0.166502 + 0.288390i
\(622\) 507.562 + 507.562i 0.816017 + 0.816017i
\(623\) −15.8146 + 410.130i −0.0253846 + 0.658314i
\(624\) 91.3311i 0.146364i
\(625\) 598.432 180.290i 0.957491 0.288464i
\(626\) −281.535 487.633i −0.449737 0.778967i
\(627\) −1.25693 + 4.69091i −0.00200467 + 0.00748151i
\(628\) 26.7443 + 99.8110i 0.0425864 + 0.158935i
\(629\) 188.393i 0.299512i
\(630\) 43.3735 + 142.017i 0.0688468 + 0.225423i
\(631\) 608.079 0.963675 0.481837 0.876261i \(-0.339970\pi\)
0.481837 + 0.876261i \(0.339970\pi\)
\(632\) 99.0173 26.5316i 0.156673 0.0419804i
\(633\) −119.918 32.1320i −0.189445 0.0507615i
\(634\) −264.617 + 152.777i −0.417377 + 0.240973i
\(635\) 256.879 + 221.799i 0.404534 + 0.349289i
\(636\) −14.1219 −0.0222042
\(637\) −118.640 634.954i −0.186248 0.996788i
\(638\) 8.27888 8.27888i 0.0129763 0.0129763i
\(639\) 167.301 + 96.5913i 0.261817 + 0.151160i
\(640\) 18.5956 + 53.4248i 0.0290556 + 0.0834762i
\(641\) −146.536 253.807i −0.228605 0.395955i 0.728790 0.684737i \(-0.240083\pi\)
−0.957395 + 0.288782i \(0.906750\pi\)
\(642\) 300.547 80.5314i 0.468142 0.125438i
\(643\) 644.666 644.666i 1.00259 1.00259i 0.00259505 0.999997i \(-0.499174\pi\)
0.999997 0.00259505i \(-0.000826032\pi\)
\(644\) −164.836 + 532.229i −0.255957 + 0.826442i
\(645\) 124.307 84.4517i 0.192723 0.130933i
\(646\) −162.650 + 281.718i −0.251780 + 0.436096i
\(647\) −1.53858 + 5.74208i −0.00237803 + 0.00887493i −0.967105 0.254379i \(-0.918129\pi\)
0.964727 + 0.263254i \(0.0847957\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) −1.07934 0.623155i −0.00166308 0.000960177i
\(650\) 171.701 433.292i 0.264156 0.666603i
\(651\) 422.214 390.862i 0.648562 0.600402i
\(652\) −68.7677 68.7677i −0.105472 0.105472i
\(653\) −119.807 447.127i −0.183472 0.684727i −0.994952 0.100347i \(-0.968005\pi\)
0.811481 0.584379i \(-0.198662\pi\)
\(654\) 97.1111 56.0671i 0.148488 0.0857296i
\(655\) 366.546 757.949i 0.559612 1.15717i
\(656\) 156.239 270.613i 0.238169 0.412520i
\(657\) −25.6702 25.6702i −0.0390718 0.0390718i
\(658\) −99.1568 62.4622i −0.150694 0.0949274i
\(659\) 743.223i 1.12780i 0.825842 + 0.563902i \(0.190701\pi\)
−0.825842 + 0.563902i \(0.809299\pi\)
\(660\) 4.92206 + 4.24988i 0.00745767 + 0.00643922i
\(661\) −369.828 640.561i −0.559497 0.969078i −0.997538 0.0701230i \(-0.977661\pi\)
0.438041 0.898955i \(-0.355673\pi\)
\(662\) 25.7447 96.0805i 0.0388893 0.145137i
\(663\) −182.021 679.310i −0.274541 1.02460i
\(664\) 377.716i 0.568849i
\(665\) −9.04573 261.223i −0.0136026 0.392816i
\(666\) 25.9499 0.0389637
\(667\) −847.669 + 227.132i −1.27087 + 0.340528i
\(668\) 396.622 + 106.275i 0.593745 + 0.159094i
\(669\) −43.7311 + 25.2482i −0.0653679 + 0.0377402i
\(670\) 46.2678 + 631.330i 0.0690564 + 0.942284i
\(671\) 33.2446 0.0495448
\(672\) −68.5348 2.64270i −0.101986 0.00393259i
\(673\) 419.551 419.551i 0.623404 0.623404i −0.322997 0.946400i \(-0.604690\pi\)
0.946400 + 0.322997i \(0.104690\pi\)
\(674\) −86.8825 50.1616i −0.128906 0.0744238i
\(675\) −104.266 77.4828i −0.154468 0.114789i
\(676\) −4.77853 8.27665i −0.00706883 0.0122436i
\(677\) −1033.80 + 277.005i −1.52702 + 0.409165i −0.922047 0.387077i \(-0.873485\pi\)
−0.604978 + 0.796243i \(0.706818\pi\)
\(678\) −210.053 + 210.053i −0.309813 + 0.309813i
\(679\) 164.052 529.696i 0.241608 0.780112i
\(680\) 244.786 + 360.307i 0.359979 + 0.529863i
\(681\) 351.477 608.776i 0.516119 0.893945i
\(682\) 6.52139 24.3382i 0.00956216 0.0356865i
\(683\) 212.201 + 56.8591i 0.310690 + 0.0832491i 0.410795 0.911728i \(-0.365251\pi\)
−0.100105 + 0.994977i \(0.531918\pi\)
\(684\) 38.8048 + 22.4040i 0.0567322 + 0.0327543i
\(685\) 133.595 699.765i 0.195029 1.02156i
\(686\) −479.902 + 70.6545i −0.699566 + 0.102995i
\(687\) 211.804 + 211.804i 0.308302 + 0.308302i
\(688\) 17.9650 + 67.0464i 0.0261120 + 0.0974511i
\(689\) −46.5404 + 26.8701i −0.0675478 + 0.0389987i
\(690\) −160.229 460.334i −0.232215 0.667151i
\(691\) 420.815 728.873i 0.608994 1.05481i −0.382412 0.923992i \(-0.624907\pi\)
0.991407 0.130817i \(-0.0417600\pi\)
\(692\) 246.040 + 246.040i 0.355550 + 0.355550i
\(693\) −6.97491 + 3.67617i −0.0100648 + 0.00530473i
\(694\) 174.098i 0.250862i
\(695\) 52.1033 + 710.956i 0.0749687 + 1.02296i
\(696\) −54.0130 93.5533i −0.0776049 0.134416i
\(697\) 622.759 2324.17i 0.893486 3.33453i
\(698\) 228.334 + 852.155i 0.327127 + 1.22085i
\(699\) 157.305i 0.225042i
\(700\) −320.174 141.382i −0.457391 0.201974i
\(701\) −161.172 −0.229917 −0.114959 0.993370i \(-0.536674\pi\)
−0.114959 + 0.993370i \(0.536674\pi\)
\(702\) −93.5704 + 25.0721i −0.133291 + 0.0357153i
\(703\) −44.1211 11.8222i −0.0627611 0.0168168i
\(704\) −2.60118 + 1.50179i −0.00369485 + 0.00213322i
\(705\) 102.246 7.49323i 0.145030 0.0106287i
\(706\) 745.843 1.05644
\(707\) 391.965 622.231i 0.554406 0.880101i
\(708\) −8.13116 + 8.13116i −0.0114847 + 0.0114847i
\(709\) 440.263 + 254.186i 0.620964 + 0.358514i 0.777244 0.629199i \(-0.216617\pi\)
−0.156280 + 0.987713i \(0.549950\pi\)
\(710\) −430.030 + 149.681i −0.605677 + 0.210818i
\(711\) −54.3643 94.1617i −0.0764617 0.132436i
\(712\) 160.190 42.9227i 0.224986 0.0602847i
\(713\) −1335.44 + 1335.44i −1.87299 + 1.87299i
\(714\) −515.021 + 116.932i −0.721317 + 0.163770i
\(715\) 24.3077 + 4.64067i 0.0339967 + 0.00649045i
\(716\) −22.8023 + 39.4948i −0.0318468 + 0.0551603i
\(717\) −137.690 + 513.867i −0.192036 + 0.716690i
\(718\) 63.4996 + 17.0147i 0.0884396 + 0.0236973i
\(719\) 437.657 + 252.681i 0.608702 + 0.351434i 0.772457 0.635067i \(-0.219027\pi\)
−0.163755 + 0.986501i \(0.552361\pi\)
\(720\) 49.6298 33.7176i 0.0689303 0.0468301i
\(721\) 797.306 738.101i 1.10583 1.02372i
\(722\) 305.229 + 305.229i 0.422755 + 0.422755i
\(723\) 39.6111 + 147.831i 0.0547871 + 0.204468i
\(724\) −403.059 + 232.706i −0.556711 + 0.321417i
\(725\) −80.3690 545.378i −0.110854 0.752246i
\(726\) 148.021 256.381i 0.203886 0.353142i
\(727\) 61.0414 + 61.0414i 0.0839634 + 0.0839634i 0.747841 0.663878i \(-0.231090\pi\)
−0.663878 + 0.747841i \(0.731090\pi\)
\(728\) −230.893 + 121.694i −0.317161 + 0.167162i
\(729\) 27.0000i 0.0370370i
\(730\) 85.3383 6.25412i 0.116902 0.00856729i
\(731\) 267.244 + 462.880i 0.365586 + 0.633214i
\(732\) 79.3886 296.282i 0.108454 0.404757i
\(733\) −5.84998 21.8324i −0.00798088 0.0297850i 0.961821 0.273681i \(-0.0882412\pi\)
−0.969801 + 0.243896i \(0.921575\pi\)
\(734\) 428.942i 0.584390i
\(735\) 301.238 298.882i 0.409848 0.406642i
\(736\) 225.131 0.305884
\(737\) −32.4659 + 8.69921i −0.0440514 + 0.0118035i
\(738\) −320.139 85.7810i −0.433793 0.116234i
\(739\) −170.468 + 98.4197i −0.230674 + 0.133180i −0.610883 0.791721i \(-0.709185\pi\)
0.380209 + 0.924901i \(0.375852\pi\)
\(740\) −39.9729 + 46.2952i −0.0540175 + 0.0625611i
\(741\) 170.515 0.230114
\(742\) 18.8167 + 35.7014i 0.0253594 + 0.0481151i
\(743\) −78.6647 + 78.6647i −0.105874 + 0.105874i −0.758060 0.652185i \(-0.773852\pi\)
0.652185 + 0.758060i \(0.273852\pi\)
\(744\) −201.334 116.240i −0.270610 0.156237i
\(745\) 564.909 + 273.191i 0.758267 + 0.366699i
\(746\) 216.009 + 374.138i 0.289556 + 0.501526i
\(747\) −386.977 + 103.690i −0.518041 + 0.138809i
\(748\) −16.3542 + 16.3542i −0.0218639 + 0.0218639i
\(749\) −604.054 652.507i −0.806481 0.871171i
\(750\) 298.842 66.6594i 0.398456 0.0888792i
\(751\) 184.597 319.732i 0.245802 0.425741i −0.716555 0.697531i \(-0.754282\pi\)
0.962357 + 0.271789i \(0.0876154\pi\)
\(752\) −12.2556 + 45.7386i −0.0162974 + 0.0608226i
\(753\) 234.570 + 62.8529i 0.311514 + 0.0834700i
\(754\) −356.014 205.544i −0.472166 0.272605i
\(755\) −395.200 581.705i −0.523444 0.770471i
\(756\) 16.1066 + 70.9407i 0.0213050 + 0.0938369i
\(757\) −193.004 193.004i −0.254958 0.254958i 0.568041 0.823000i \(-0.307701\pi\)
−0.823000 + 0.568041i \(0.807701\pi\)
\(758\) −221.291 825.870i −0.291941 1.08954i
\(759\) 22.4130 12.9402i 0.0295297 0.0170490i
\(760\) −99.7438 + 34.7179i −0.131242 + 0.0456814i
\(761\) −569.684 + 986.721i −0.748599 + 1.29661i 0.199896 + 0.979817i \(0.435940\pi\)
−0.948494 + 0.316794i \(0.897394\pi\)
\(762\) 117.566 + 117.566i 0.154286 + 0.154286i
\(763\) −271.138 170.799i −0.355358 0.223852i