Properties

Label 210.2.u.b.187.2
Level $210$
Weight $2$
Character 210.187
Analytic conductor $1.677$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [210,2,Mod(73,210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(210, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("210.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 210.u (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,12,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.67685844245\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 187.2
Root \(-0.424637 - 3.22544i\) of defining polynomial
Character \(\chi\) \(=\) 210.187
Dual form 210.2.u.b.73.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{2} +(0.258819 - 0.965926i) q^{3} +(0.866025 - 0.500000i) q^{4} +(2.23435 - 0.0876265i) q^{5} +1.00000i q^{6} +(-0.703686 - 2.55046i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.866025 - 0.500000i) q^{9} +(-2.13554 + 0.662933i) q^{10} +(0.989376 + 1.71365i) q^{11} +(-0.258819 - 0.965926i) q^{12} +(-2.19222 - 2.19222i) q^{13} +(1.33981 + 2.28142i) q^{14} +(0.493652 - 2.18090i) q^{15} +(0.500000 - 0.866025i) q^{16} +(4.44599 + 1.19130i) q^{17} +(0.965926 + 0.258819i) q^{18} +(2.10939 - 3.65357i) q^{19} +(1.89119 - 1.19306i) q^{20} +(-2.64568 + 0.0196015i) q^{21} +(-1.39919 - 1.39919i) q^{22} +(-1.52249 - 5.68202i) q^{23} +(0.500000 + 0.866025i) q^{24} +(4.98464 - 0.391577i) q^{25} +(2.68491 + 1.55013i) q^{26} +(-0.707107 + 0.707107i) q^{27} +(-1.88464 - 1.85692i) q^{28} +8.94996i q^{29} +(0.0876265 + 2.23435i) q^{30} +(-1.50157 + 0.866930i) q^{31} +(-0.258819 + 0.965926i) q^{32} +(1.91133 - 0.512139i) q^{33} -4.60282 q^{34} +(-1.79577 - 5.63695i) q^{35} -1.00000 q^{36} +(2.67747 - 0.717425i) q^{37} +(-1.09190 + 4.07503i) q^{38} +(-2.68491 + 1.55013i) q^{39} +(-1.51796 + 1.64189i) q^{40} +6.55691i q^{41} +(2.55046 - 0.703686i) q^{42} +(-6.33724 + 6.33724i) q^{43} +(1.71365 + 0.989376i) q^{44} +(-1.97882 - 1.04129i) q^{45} +(2.94123 + 5.09436i) q^{46} +(1.57366 + 5.87298i) q^{47} +(-0.707107 - 0.707107i) q^{48} +(-6.00965 + 3.58944i) q^{49} +(-4.71345 + 1.66835i) q^{50} +(2.30141 - 3.98616i) q^{51} +(-2.99462 - 0.802407i) q^{52} +(-11.0441 - 2.95926i) q^{53} +(0.500000 - 0.866025i) q^{54} +(2.36077 + 3.74220i) q^{55} +(2.30103 + 1.30586i) q^{56} +(-2.98313 - 2.98313i) q^{57} +(-2.31642 - 8.64500i) q^{58} +(-2.10351 - 3.64339i) q^{59} +(-0.662933 - 2.13554i) q^{60} +(9.63018 + 5.55999i) q^{61} +(1.22602 - 1.22602i) q^{62} +(-0.665818 + 2.56060i) q^{63} -1.00000i q^{64} +(-5.09028 - 4.70608i) q^{65} +(-1.71365 + 0.989376i) q^{66} +(1.42665 - 5.32434i) q^{67} +(4.44599 - 1.19130i) q^{68} -5.88246 q^{69} +(3.19353 + 4.98010i) q^{70} -3.86002 q^{71} +(0.965926 - 0.258819i) q^{72} +(-3.93920 + 14.7013i) q^{73} +(-2.40055 + 1.38596i) q^{74} +(0.911886 - 4.91614i) q^{75} -4.21878i q^{76} +(3.67438 - 3.72923i) q^{77} +(2.19222 - 2.19222i) q^{78} +(2.21282 + 1.27757i) q^{79} +(1.04129 - 1.97882i) q^{80} +(0.500000 + 0.866025i) q^{81} +(-1.69705 - 6.33349i) q^{82} +(9.52969 + 9.52969i) q^{83} +(-2.28142 + 1.33981i) q^{84} +(10.0383 + 2.27219i) q^{85} +(4.48111 - 7.76151i) q^{86} +(8.64500 + 2.31642i) q^{87} +(-1.91133 - 0.512139i) q^{88} +(3.09593 - 5.36231i) q^{89} +(2.18090 + 0.493652i) q^{90} +(-4.04852 + 7.13378i) q^{91} +(-4.15953 - 4.15953i) q^{92} +(0.448756 + 1.67478i) q^{93} +(-3.04008 - 5.26557i) q^{94} +(4.39297 - 8.34821i) q^{95} +(0.866025 + 0.500000i) q^{96} +(-1.48031 + 1.48031i) q^{97} +(4.87586 - 5.02254i) q^{98} -1.97875i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{5} - 4 q^{7} + 4 q^{10} + 4 q^{11} + 16 q^{13} - 16 q^{14} + 4 q^{15} + 8 q^{16} + 12 q^{17} + 8 q^{19} + 8 q^{20} + 8 q^{21} + 4 q^{22} - 40 q^{23} + 8 q^{24} + 16 q^{25} - 12 q^{26} - 4 q^{28}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 + 0.258819i −0.683013 + 0.183013i
\(3\) 0.258819 0.965926i 0.149429 0.557678i
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 2.23435 0.0876265i 0.999232 0.0391878i
\(6\) 1.00000i 0.408248i
\(7\) −0.703686 2.55046i −0.265968 0.963982i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) −0.866025 0.500000i −0.288675 0.166667i
\(10\) −2.13554 + 0.662933i −0.675316 + 0.209638i
\(11\) 0.989376 + 1.71365i 0.298308 + 0.516685i 0.975749 0.218892i \(-0.0702443\pi\)
−0.677441 + 0.735577i \(0.736911\pi\)
\(12\) −0.258819 0.965926i −0.0747146 0.278839i
\(13\) −2.19222 2.19222i −0.608011 0.608011i 0.334415 0.942426i \(-0.391461\pi\)
−0.942426 + 0.334415i \(0.891461\pi\)
\(14\) 1.33981 + 2.28142i 0.358081 + 0.609736i
\(15\) 0.493652 2.18090i 0.127460 0.563105i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 4.44599 + 1.19130i 1.07831 + 0.288932i 0.753903 0.656985i \(-0.228169\pi\)
0.324407 + 0.945918i \(0.394835\pi\)
\(18\) 0.965926 + 0.258819i 0.227671 + 0.0610042i
\(19\) 2.10939 3.65357i 0.483928 0.838188i −0.515902 0.856648i \(-0.672543\pi\)
0.999830 + 0.0184602i \(0.00587639\pi\)
\(20\) 1.89119 1.19306i 0.422883 0.266777i
\(21\) −2.64568 + 0.0196015i −0.577334 + 0.00427740i
\(22\) −1.39919 1.39919i −0.298308 0.298308i
\(23\) −1.52249 5.68202i −0.317462 1.18478i −0.921676 0.387961i \(-0.873179\pi\)
0.604214 0.796822i \(-0.293487\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 4.98464 0.391577i 0.996929 0.0783154i
\(26\) 2.68491 + 1.55013i 0.526553 + 0.304006i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −1.88464 1.85692i −0.356163 0.350924i
\(29\) 8.94996i 1.66197i 0.556298 + 0.830983i \(0.312221\pi\)
−0.556298 + 0.830983i \(0.687779\pi\)
\(30\) 0.0876265 + 2.23435i 0.0159983 + 0.407935i
\(31\) −1.50157 + 0.866930i −0.269689 + 0.155705i −0.628747 0.777610i \(-0.716432\pi\)
0.359057 + 0.933316i \(0.383098\pi\)
\(32\) −0.258819 + 0.965926i −0.0457532 + 0.170753i
\(33\) 1.91133 0.512139i 0.332720 0.0891519i
\(34\) −4.60282 −0.789378
\(35\) −1.79577 5.63695i −0.303540 0.952819i
\(36\) −1.00000 −0.166667
\(37\) 2.67747 0.717425i 0.440173 0.117944i −0.0319248 0.999490i \(-0.510164\pi\)
0.472097 + 0.881546i \(0.343497\pi\)
\(38\) −1.09190 + 4.07503i −0.177130 + 0.661058i
\(39\) −2.68491 + 1.55013i −0.429929 + 0.248220i
\(40\) −1.51796 + 1.64189i −0.240011 + 0.259605i
\(41\) 6.55691i 1.02402i 0.858980 + 0.512008i \(0.171098\pi\)
−0.858980 + 0.512008i \(0.828902\pi\)
\(42\) 2.55046 0.703686i 0.393544 0.108581i
\(43\) −6.33724 + 6.33724i −0.966421 + 0.966421i −0.999454 0.0330335i \(-0.989483\pi\)
0.0330335 + 0.999454i \(0.489483\pi\)
\(44\) 1.71365 + 0.989376i 0.258342 + 0.149154i
\(45\) −1.97882 1.04129i −0.294985 0.155226i
\(46\) 2.94123 + 5.09436i 0.433661 + 0.751122i
\(47\) 1.57366 + 5.87298i 0.229542 + 0.856663i 0.980534 + 0.196351i \(0.0629091\pi\)
−0.750992 + 0.660312i \(0.770424\pi\)
\(48\) −0.707107 0.707107i −0.102062 0.102062i
\(49\) −6.00965 + 3.58944i −0.858522 + 0.512777i
\(50\) −4.71345 + 1.66835i −0.666582 + 0.235941i
\(51\) 2.30141 3.98616i 0.322262 0.558174i
\(52\) −2.99462 0.802407i −0.415280 0.111274i
\(53\) −11.0441 2.95926i −1.51702 0.406485i −0.598263 0.801300i \(-0.704142\pi\)
−0.918761 + 0.394814i \(0.870809\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) 2.36077 + 3.74220i 0.318327 + 0.504598i
\(56\) 2.30103 + 1.30586i 0.307487 + 0.174503i
\(57\) −2.98313 2.98313i −0.395125 0.395125i
\(58\) −2.31642 8.64500i −0.304161 1.13514i
\(59\) −2.10351 3.64339i −0.273854 0.474329i 0.695991 0.718050i \(-0.254965\pi\)
−0.969845 + 0.243721i \(0.921632\pi\)
\(60\) −0.662933 2.13554i −0.0855843 0.275697i
\(61\) 9.63018 + 5.55999i 1.23302 + 0.711883i 0.967658 0.252266i \(-0.0811759\pi\)
0.265360 + 0.964149i \(0.414509\pi\)
\(62\) 1.22602 1.22602i 0.155705 0.155705i
\(63\) −0.665818 + 2.56060i −0.0838852 + 0.322606i
\(64\) 1.00000i 0.125000i
\(65\) −5.09028 4.70608i −0.631371 0.583718i
\(66\) −1.71365 + 0.989376i −0.210936 + 0.121784i
\(67\) 1.42665 5.32434i 0.174294 0.650472i −0.822377 0.568942i \(-0.807353\pi\)
0.996671 0.0815298i \(-0.0259806\pi\)
\(68\) 4.44599 1.19130i 0.539155 0.144466i
\(69\) −5.88246 −0.708165
\(70\) 3.19353 + 4.98010i 0.381700 + 0.595236i
\(71\) −3.86002 −0.458100 −0.229050 0.973415i \(-0.573562\pi\)
−0.229050 + 0.973415i \(0.573562\pi\)
\(72\) 0.965926 0.258819i 0.113835 0.0305021i
\(73\) −3.93920 + 14.7013i −0.461048 + 1.72066i 0.208621 + 0.977997i \(0.433103\pi\)
−0.669669 + 0.742660i \(0.733564\pi\)
\(74\) −2.40055 + 1.38596i −0.279058 + 0.161114i
\(75\) 0.911886 4.91614i 0.105296 0.567667i
\(76\) 4.21878i 0.483928i
\(77\) 3.67438 3.72923i 0.418734 0.424985i
\(78\) 2.19222 2.19222i 0.248220 0.248220i
\(79\) 2.21282 + 1.27757i 0.248962 + 0.143738i 0.619289 0.785163i \(-0.287421\pi\)
−0.370327 + 0.928901i \(0.620754\pi\)
\(80\) 1.04129 1.97882i 0.116420 0.221239i
\(81\) 0.500000 + 0.866025i 0.0555556 + 0.0962250i
\(82\) −1.69705 6.33349i −0.187408 0.699416i
\(83\) 9.52969 + 9.52969i 1.04602 + 1.04602i 0.998889 + 0.0471311i \(0.0150078\pi\)
0.0471311 + 0.998889i \(0.484992\pi\)
\(84\) −2.28142 + 1.33981i −0.248924 + 0.146186i
\(85\) 10.0383 + 2.27219i 1.08880 + 0.246454i
\(86\) 4.48111 7.76151i 0.483210 0.836945i
\(87\) 8.64500 + 2.31642i 0.926841 + 0.248346i
\(88\) −1.91133 0.512139i −0.203748 0.0545942i
\(89\) 3.09593 5.36231i 0.328168 0.568404i −0.653980 0.756512i \(-0.726902\pi\)
0.982148 + 0.188108i \(0.0602354\pi\)
\(90\) 2.18090 + 0.493652i 0.229887 + 0.0520355i
\(91\) −4.04852 + 7.13378i −0.424400 + 0.747824i
\(92\) −4.15953 4.15953i −0.433661 0.433661i
\(93\) 0.448756 + 1.67478i 0.0465339 + 0.173667i
\(94\) −3.04008 5.26557i −0.313560 0.543102i
\(95\) 4.39297 8.34821i 0.450709 0.856508i
\(96\) 0.866025 + 0.500000i 0.0883883 + 0.0510310i
\(97\) −1.48031 + 1.48031i −0.150303 + 0.150303i −0.778253 0.627951i \(-0.783894\pi\)
0.627951 + 0.778253i \(0.283894\pi\)
\(98\) 4.87586 5.02254i 0.492537 0.507354i
\(99\) 1.97875i 0.198872i
\(100\) 4.12104 2.83144i 0.412104 0.283144i
\(101\) −8.70112 + 5.02360i −0.865794 + 0.499866i −0.865948 0.500134i \(-0.833284\pi\)
0.000154194 1.00000i \(0.499951\pi\)
\(102\) −1.19130 + 4.44599i −0.117956 + 0.440218i
\(103\) 4.81790 1.29095i 0.474722 0.127201i −0.0135219 0.999909i \(-0.504304\pi\)
0.488244 + 0.872707i \(0.337638\pi\)
\(104\) 3.10026 0.304006
\(105\) −5.90966 + 0.275628i −0.576723 + 0.0268986i
\(106\) 11.4337 1.11054
\(107\) −5.84351 + 1.56576i −0.564913 + 0.151368i −0.529963 0.848021i \(-0.677794\pi\)
−0.0349507 + 0.999389i \(0.511127\pi\)
\(108\) −0.258819 + 0.965926i −0.0249049 + 0.0929463i
\(109\) 8.44287 4.87449i 0.808680 0.466892i −0.0378171 0.999285i \(-0.512040\pi\)
0.846497 + 0.532393i \(0.178707\pi\)
\(110\) −3.24889 3.00367i −0.309769 0.286389i
\(111\) 2.77192i 0.263099i
\(112\) −2.56060 0.665818i −0.241954 0.0629139i
\(113\) 6.02504 6.02504i 0.566788 0.566788i −0.364439 0.931227i \(-0.618739\pi\)
0.931227 + 0.364439i \(0.118739\pi\)
\(114\) 3.65357 + 2.10939i 0.342189 + 0.197563i
\(115\) −3.89968 12.5622i −0.363647 1.17143i
\(116\) 4.47498 + 7.75089i 0.415491 + 0.719652i
\(117\) 0.802407 + 2.99462i 0.0741826 + 0.276853i
\(118\) 2.97481 + 2.97481i 0.273854 + 0.273854i
\(119\) −0.0902224 12.1776i −0.00827067 1.11632i
\(120\) 1.19306 + 1.89119i 0.108911 + 0.172641i
\(121\) 3.54227 6.13539i 0.322024 0.557763i
\(122\) −10.7411 2.87806i −0.972451 0.260567i
\(123\) 6.33349 + 1.69705i 0.571071 + 0.153018i
\(124\) −0.866930 + 1.50157i −0.0778527 + 0.134845i
\(125\) 11.1031 1.31171i 0.993094 0.117323i
\(126\) −0.0196015 2.64568i −0.00174624 0.235696i
\(127\) −8.92770 8.92770i −0.792205 0.792205i 0.189647 0.981852i \(-0.439266\pi\)
−0.981852 + 0.189647i \(0.939266\pi\)
\(128\) 0.258819 + 0.965926i 0.0228766 + 0.0853766i
\(129\) 4.48111 + 7.76151i 0.394540 + 0.683363i
\(130\) 6.13485 + 3.22827i 0.538062 + 0.283138i
\(131\) −4.43543 2.56080i −0.387526 0.223738i 0.293562 0.955940i \(-0.405159\pi\)
−0.681087 + 0.732202i \(0.738493\pi\)
\(132\) 1.39919 1.39919i 0.121784 0.121784i
\(133\) −10.8026 2.80894i −0.936707 0.243566i
\(134\) 5.51217i 0.476179i
\(135\) −1.51796 + 1.64189i −0.130645 + 0.141311i
\(136\) −3.98616 + 2.30141i −0.341811 + 0.197344i
\(137\) −2.99773 + 11.1877i −0.256114 + 0.955829i 0.711354 + 0.702834i \(0.248082\pi\)
−0.967468 + 0.252995i \(0.918584\pi\)
\(138\) 5.68202 1.52249i 0.483686 0.129603i
\(139\) 2.87054 0.243476 0.121738 0.992562i \(-0.461153\pi\)
0.121738 + 0.992562i \(0.461153\pi\)
\(140\) −4.37366 3.98386i −0.369641 0.336698i
\(141\) 6.08016 0.512042
\(142\) 3.72849 0.999046i 0.312888 0.0838381i
\(143\) 1.58776 5.92562i 0.132776 0.495525i
\(144\) −0.866025 + 0.500000i −0.0721688 + 0.0416667i
\(145\) 0.784254 + 19.9973i 0.0651288 + 1.66069i
\(146\) 15.2199i 1.25961i
\(147\) 1.91172 + 6.73389i 0.157676 + 0.555402i
\(148\) 1.96004 1.96004i 0.161114 0.161114i
\(149\) −13.4924 7.78982i −1.10534 0.638167i −0.167720 0.985835i \(-0.553640\pi\)
−0.937618 + 0.347668i \(0.886974\pi\)
\(150\) 0.391577 + 4.98464i 0.0319721 + 0.406994i
\(151\) −10.5953 18.3516i −0.862232 1.49343i −0.869769 0.493459i \(-0.835732\pi\)
0.00753703 0.999972i \(-0.497601\pi\)
\(152\) 1.09190 + 4.07503i 0.0885649 + 0.330529i
\(153\) −3.25469 3.25469i −0.263126 0.263126i
\(154\) −2.58398 + 4.55316i −0.208223 + 0.366904i
\(155\) −3.27906 + 2.06860i −0.263381 + 0.166154i
\(156\) −1.55013 + 2.68491i −0.124110 + 0.214965i
\(157\) 14.6660 + 3.92974i 1.17047 + 0.313627i 0.791141 0.611633i \(-0.209487\pi\)
0.379332 + 0.925261i \(0.376154\pi\)
\(158\) −2.46808 0.661320i −0.196350 0.0526118i
\(159\) −5.71685 + 9.90187i −0.453375 + 0.785269i
\(160\) −0.493652 + 2.18090i −0.0390266 + 0.172415i
\(161\) −13.4204 + 7.88141i −1.05767 + 0.621142i
\(162\) −0.707107 0.707107i −0.0555556 0.0555556i
\(163\) 5.77762 + 21.5624i 0.452538 + 1.68890i 0.695225 + 0.718792i \(0.255305\pi\)
−0.242687 + 0.970105i \(0.578029\pi\)
\(164\) 3.27845 + 5.67845i 0.256004 + 0.443412i
\(165\) 4.22570 1.31178i 0.328970 0.102122i
\(166\) −11.6714 6.73851i −0.905880 0.523010i
\(167\) −6.91224 + 6.91224i −0.534885 + 0.534885i −0.922022 0.387137i \(-0.873464\pi\)
0.387137 + 0.922022i \(0.373464\pi\)
\(168\) 1.85692 1.88464i 0.143264 0.145403i
\(169\) 3.38837i 0.260644i
\(170\) −10.2843 + 0.403330i −0.788771 + 0.0309340i
\(171\) −3.65357 + 2.10939i −0.279396 + 0.161309i
\(172\) −2.31959 + 8.65684i −0.176867 + 0.660078i
\(173\) −4.37334 + 1.17183i −0.332499 + 0.0890928i −0.421206 0.906965i \(-0.638393\pi\)
0.0887072 + 0.996058i \(0.471726\pi\)
\(174\) −8.94996 −0.678495
\(175\) −4.50632 12.4376i −0.340646 0.940192i
\(176\) 1.97875 0.149154
\(177\) −4.06367 + 1.08886i −0.305444 + 0.0818436i
\(178\) −1.60257 + 5.98088i −0.120118 + 0.448286i
\(179\) 1.79084 1.03394i 0.133853 0.0772803i −0.431578 0.902076i \(-0.642043\pi\)
0.565431 + 0.824795i \(0.308710\pi\)
\(180\) −2.23435 + 0.0876265i −0.166539 + 0.00653130i
\(181\) 6.13199i 0.455787i 0.973686 + 0.227894i \(0.0731839\pi\)
−0.973686 + 0.227894i \(0.926816\pi\)
\(182\) 2.06421 7.93854i 0.153010 0.588444i
\(183\) 7.86301 7.86301i 0.581250 0.581250i
\(184\) 5.09436 + 2.94123i 0.375561 + 0.216830i
\(185\) 5.91953 1.83760i 0.435212 0.135103i
\(186\) −0.866930 1.50157i −0.0635664 0.110100i
\(187\) 2.35728 + 8.79751i 0.172382 + 0.643337i
\(188\) 4.29932 + 4.29932i 0.313560 + 0.313560i
\(189\) 2.30103 + 1.30586i 0.167375 + 0.0949876i
\(190\) −2.08261 + 9.20073i −0.151088 + 0.667491i
\(191\) 8.08306 14.0003i 0.584869 1.01302i −0.410022 0.912075i \(-0.634479\pi\)
0.994892 0.100948i \(-0.0321876\pi\)
\(192\) −0.965926 0.258819i −0.0697097 0.0186787i
\(193\) −21.0484 5.63991i −1.51510 0.405969i −0.596973 0.802261i \(-0.703630\pi\)
−0.918125 + 0.396292i \(0.870297\pi\)
\(194\) 1.04674 1.81300i 0.0751514 0.130166i
\(195\) −5.86319 + 3.69881i −0.419872 + 0.264877i
\(196\) −3.40979 + 6.11337i −0.243557 + 0.436669i
\(197\) −0.628120 0.628120i −0.0447517 0.0447517i 0.684377 0.729129i \(-0.260074\pi\)
−0.729129 + 0.684377i \(0.760074\pi\)
\(198\) 0.512139 + 1.91133i 0.0363961 + 0.135832i
\(199\) −4.81248 8.33546i −0.341147 0.590885i 0.643499 0.765447i \(-0.277482\pi\)
−0.984646 + 0.174563i \(0.944149\pi\)
\(200\) −3.24779 + 3.80156i −0.229653 + 0.268811i
\(201\) −4.77368 2.75608i −0.336709 0.194399i
\(202\) 7.10444 7.10444i 0.499866 0.499866i
\(203\) 22.8265 6.29796i 1.60210 0.442030i
\(204\) 4.60282i 0.322262i
\(205\) 0.574559 + 14.6504i 0.0401289 + 1.02323i
\(206\) −4.31961 + 2.49393i −0.300962 + 0.173760i
\(207\) −1.52249 + 5.68202i −0.105821 + 0.394928i
\(208\) −2.99462 + 0.802407i −0.207640 + 0.0556369i
\(209\) 8.34793 0.577439
\(210\) 5.63695 1.79577i 0.388987 0.123920i
\(211\) 11.2669 0.775648 0.387824 0.921733i \(-0.373227\pi\)
0.387824 + 0.921733i \(0.373227\pi\)
\(212\) −11.0441 + 2.95926i −0.758512 + 0.203243i
\(213\) −0.999046 + 3.72849i −0.0684535 + 0.255472i
\(214\) 5.23915 3.02482i 0.358141 0.206773i
\(215\) −13.6043 + 14.7149i −0.927807 + 1.00355i
\(216\) 1.00000i 0.0680414i
\(217\) 3.26770 + 3.21964i 0.221826 + 0.218563i
\(218\) −6.89357 + 6.89357i −0.466892 + 0.466892i
\(219\) 13.1808 + 7.60995i 0.890677 + 0.514233i
\(220\) 3.91559 + 2.06045i 0.263989 + 0.138916i
\(221\) −7.13498 12.3581i −0.479951 0.831299i
\(222\) 0.717425 + 2.67747i 0.0481504 + 0.179700i
\(223\) −13.1718 13.1718i −0.882048 0.882048i 0.111694 0.993743i \(-0.464372\pi\)
−0.993743 + 0.111694i \(0.964372\pi\)
\(224\) 2.64568 0.0196015i 0.176772 0.00130968i
\(225\) −4.51262 2.15321i −0.300841 0.143547i
\(226\) −4.26035 + 7.37914i −0.283394 + 0.490853i
\(227\) 25.9971 + 6.96589i 1.72549 + 0.462343i 0.979135 0.203210i \(-0.0651373\pi\)
0.746351 + 0.665552i \(0.231804\pi\)
\(228\) −4.07503 1.09190i −0.269876 0.0723130i
\(229\) 13.4452 23.2878i 0.888486 1.53890i 0.0468199 0.998903i \(-0.485091\pi\)
0.841666 0.539999i \(-0.181575\pi\)
\(230\) 7.01814 + 11.1249i 0.462762 + 0.733551i
\(231\) −2.65116 4.51437i −0.174434 0.297024i
\(232\) −6.32858 6.32858i −0.415491 0.415491i
\(233\) −0.238436 0.889853i −0.0156204 0.0582962i 0.957676 0.287849i \(-0.0929402\pi\)
−0.973296 + 0.229553i \(0.926274\pi\)
\(234\) −1.55013 2.68491i −0.101335 0.175518i
\(235\) 4.03074 + 12.9844i 0.262936 + 0.847009i
\(236\) −3.64339 2.10351i −0.237164 0.136927i
\(237\) 1.80676 1.80676i 0.117362 0.117362i
\(238\) 3.23894 + 11.7393i 0.209949 + 0.760946i
\(239\) 25.3432i 1.63931i 0.572856 + 0.819656i \(0.305836\pi\)
−0.572856 + 0.819656i \(0.694164\pi\)
\(240\) −1.64189 1.51796i −0.105983 0.0979841i
\(241\) 18.2905 10.5600i 1.17819 0.680230i 0.222597 0.974911i \(-0.428547\pi\)
0.955596 + 0.294681i \(0.0952134\pi\)
\(242\) −1.83361 + 6.84314i −0.117869 + 0.439894i
\(243\) 0.965926 0.258819i 0.0619642 0.0166032i
\(244\) 11.1200 0.711883
\(245\) −13.1131 + 8.54667i −0.837768 + 0.546027i
\(246\) −6.55691 −0.418053
\(247\) −12.6337 + 3.38518i −0.803861 + 0.215394i
\(248\) 0.448756 1.67478i 0.0284960 0.106349i
\(249\) 11.6714 6.73851i 0.739648 0.427036i
\(250\) −10.3853 + 4.14071i −0.656824 + 0.261882i
\(251\) 2.70623i 0.170816i 0.996346 + 0.0854078i \(0.0272193\pi\)
−0.996346 + 0.0854078i \(0.972781\pi\)
\(252\) 0.703686 + 2.55046i 0.0443280 + 0.160664i
\(253\) 8.23068 8.23068i 0.517458 0.517458i
\(254\) 10.9342 + 6.31283i 0.686070 + 0.396102i
\(255\) 4.79287 9.10815i 0.300141 0.570374i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.21737 23.2035i −0.387829 1.44740i −0.833660 0.552279i \(-0.813758\pi\)
0.445831 0.895117i \(-0.352908\pi\)
\(258\) −6.33724 6.33724i −0.394540 0.394540i
\(259\) −3.71385 6.32392i −0.230768 0.392949i
\(260\) −6.76135 1.53045i −0.419321 0.0949145i
\(261\) 4.47498 7.75089i 0.276994 0.479768i
\(262\) 4.94708 + 1.32557i 0.305632 + 0.0818938i
\(263\) −0.821351 0.220080i −0.0506467 0.0135707i 0.233407 0.972379i \(-0.425013\pi\)
−0.284053 + 0.958808i \(0.591679\pi\)
\(264\) −0.989376 + 1.71365i −0.0608919 + 0.105468i
\(265\) −24.9357 5.64426i −1.53179 0.346724i
\(266\) 11.1615 0.0826946i 0.684359 0.00507033i
\(267\) −4.37831 4.37831i −0.267948 0.267948i
\(268\) −1.42665 5.32434i −0.0871468 0.325236i
\(269\) −5.82171 10.0835i −0.354956 0.614802i 0.632154 0.774842i \(-0.282171\pi\)
−0.987110 + 0.160041i \(0.948837\pi\)
\(270\) 1.04129 1.97882i 0.0633708 0.120427i
\(271\) −20.2171 11.6724i −1.22810 0.709046i −0.261471 0.965211i \(-0.584208\pi\)
−0.966633 + 0.256165i \(0.917541\pi\)
\(272\) 3.25469 3.25469i 0.197344 0.197344i
\(273\) 5.84287 + 5.75693i 0.353627 + 0.348425i
\(274\) 11.5824i 0.699715i
\(275\) 5.60271 + 8.15452i 0.337856 + 0.491736i
\(276\) −5.09436 + 2.94123i −0.306644 + 0.177041i
\(277\) 2.44577 9.12775i 0.146952 0.548433i −0.852708 0.522387i \(-0.825042\pi\)
0.999661 0.0260462i \(-0.00829171\pi\)
\(278\) −2.77273 + 0.742949i −0.166297 + 0.0445591i
\(279\) 1.73386 0.103804
\(280\) 5.25573 + 2.71613i 0.314090 + 0.162320i
\(281\) −11.7320 −0.699871 −0.349935 0.936774i \(-0.613796\pi\)
−0.349935 + 0.936774i \(0.613796\pi\)
\(282\) −5.87298 + 1.57366i −0.349731 + 0.0937101i
\(283\) 0.944117 3.52349i 0.0561219 0.209450i −0.932171 0.362018i \(-0.882088\pi\)
0.988293 + 0.152568i \(0.0487544\pi\)
\(284\) −3.34287 + 1.93001i −0.198363 + 0.114525i
\(285\) −6.92676 6.40396i −0.410306 0.379338i
\(286\) 6.13465i 0.362750i
\(287\) 16.7231 4.61400i 0.987133 0.272356i
\(288\) 0.707107 0.707107i 0.0416667 0.0416667i
\(289\) 3.62517 + 2.09299i 0.213245 + 0.123117i
\(290\) −5.93323 19.1130i −0.348411 1.12235i
\(291\) 1.04674 + 1.81300i 0.0613609 + 0.106280i
\(292\) 3.93920 + 14.7013i 0.230524 + 0.860328i
\(293\) 8.62354 + 8.62354i 0.503793 + 0.503793i 0.912614 0.408822i \(-0.134060\pi\)
−0.408822 + 0.912614i \(0.634060\pi\)
\(294\) −3.58944 6.00965i −0.209340 0.350490i
\(295\) −5.01924 7.95628i −0.292231 0.463233i
\(296\) −1.38596 + 2.40055i −0.0805572 + 0.139529i
\(297\) −1.91133 0.512139i −0.110907 0.0297173i
\(298\) 15.0488 + 4.03231i 0.871752 + 0.233585i
\(299\) −9.11859 + 15.7939i −0.527341 + 0.913382i
\(300\) −1.66835 4.71345i −0.0963225 0.272131i
\(301\) 20.6223 + 11.7034i 1.18865 + 0.674575i
\(302\) 14.9840 + 14.9840i 0.862232 + 0.862232i
\(303\) 2.60040 + 9.70484i 0.149389 + 0.557529i
\(304\) −2.10939 3.65357i −0.120982 0.209547i
\(305\) 22.0044 + 11.5791i 1.25997 + 0.663017i
\(306\) 3.98616 + 2.30141i 0.227874 + 0.131563i
\(307\) −15.9933 + 15.9933i −0.912785 + 0.912785i −0.996490 0.0837060i \(-0.973324\pi\)
0.0837060 + 0.996490i \(0.473324\pi\)
\(308\) 1.31749 5.06680i 0.0750710 0.288708i
\(309\) 4.98786i 0.283750i
\(310\) 2.63194 2.84680i 0.149484 0.161687i
\(311\) 6.70522 3.87126i 0.380218 0.219519i −0.297695 0.954661i \(-0.596218\pi\)
0.677913 + 0.735142i \(0.262885\pi\)
\(312\) 0.802407 2.99462i 0.0454273 0.169537i
\(313\) 19.3623 5.18810i 1.09442 0.293249i 0.333929 0.942598i \(-0.391625\pi\)
0.760490 + 0.649349i \(0.224959\pi\)
\(314\) −15.1833 −0.856846
\(315\) −1.26329 + 5.77963i −0.0711786 + 0.325645i
\(316\) 2.55514 0.143738
\(317\) 2.87877 0.771364i 0.161688 0.0433241i −0.177067 0.984199i \(-0.556661\pi\)
0.338755 + 0.940875i \(0.389994\pi\)
\(318\) 2.95926 11.0441i 0.165947 0.619322i
\(319\) −15.3371 + 8.85488i −0.858713 + 0.495778i
\(320\) −0.0876265 2.23435i −0.00489847 0.124904i
\(321\) 6.04965i 0.337658i
\(322\) 10.9232 11.0863i 0.608728 0.617816i
\(323\) 13.7308 13.7308i 0.764004 0.764004i
\(324\) 0.866025 + 0.500000i 0.0481125 + 0.0277778i
\(325\) −11.7858 10.0690i −0.653761 0.558527i
\(326\) −11.1615 19.3323i −0.618179 1.07072i
\(327\) −2.52322 9.41680i −0.139535 0.520750i
\(328\) −4.63643 4.63643i −0.256004 0.256004i
\(329\) 13.8714 8.14629i 0.764756 0.449119i
\(330\) −3.74220 + 2.36077i −0.206001 + 0.129956i
\(331\) −13.9186 + 24.1077i −0.765035 + 1.32508i 0.175194 + 0.984534i \(0.443945\pi\)
−0.940228 + 0.340545i \(0.889388\pi\)
\(332\) 13.0178 + 3.48811i 0.714445 + 0.191435i
\(333\) −2.67747 0.717425i −0.146724 0.0393146i
\(334\) 4.88769 8.46573i 0.267442 0.463224i
\(335\) 2.72109 12.0215i 0.148669 0.656803i
\(336\) −1.30586 + 2.30103i −0.0712407 + 0.125531i
\(337\) −17.1567 17.1567i −0.934583 0.934583i 0.0634051 0.997988i \(-0.479804\pi\)
−0.997988 + 0.0634051i \(0.979804\pi\)
\(338\) 0.876975 + 3.27292i 0.0477012 + 0.178023i
\(339\) −4.26035 7.37914i −0.231390 0.400780i
\(340\) 9.82950 3.05136i 0.533080 0.165483i
\(341\) −2.97123 1.71544i −0.160901 0.0928963i
\(342\) 2.98313 2.98313i 0.161309 0.161309i
\(343\) 13.3836 + 12.8015i 0.722647 + 0.691217i
\(344\) 8.96222i 0.483210i
\(345\) −13.1435 + 0.515460i −0.707621 + 0.0277514i
\(346\) 3.92103 2.26381i 0.210796 0.121703i
\(347\) −6.48156 + 24.1895i −0.347948 + 1.29856i 0.541181 + 0.840906i \(0.317977\pi\)
−0.889130 + 0.457655i \(0.848689\pi\)
\(348\) 8.64500 2.31642i 0.463421 0.124173i
\(349\) 18.0130 0.964212 0.482106 0.876113i \(-0.339872\pi\)
0.482106 + 0.876113i \(0.339872\pi\)
\(350\) 7.57185 + 10.8474i 0.404732 + 0.579820i
\(351\) 3.10026 0.165480
\(352\) −1.91133 + 0.512139i −0.101874 + 0.0272971i
\(353\) 1.96651 7.33911i 0.104667 0.390621i −0.893641 0.448784i \(-0.851857\pi\)
0.998307 + 0.0581623i \(0.0185241\pi\)
\(354\) 3.64339 2.10351i 0.193644 0.111800i
\(355\) −8.62463 + 0.338240i −0.457748 + 0.0179519i
\(356\) 6.19187i 0.328168i
\(357\) −11.7860 3.06464i −0.623781 0.162198i
\(358\) −1.46221 + 1.46221i −0.0772803 + 0.0772803i
\(359\) 2.84638 + 1.64336i 0.150226 + 0.0867332i 0.573229 0.819395i \(-0.305691\pi\)
−0.423003 + 0.906128i \(0.639024\pi\)
\(360\) 2.13554 0.662933i 0.112553 0.0349396i
\(361\) 0.600927 + 1.04084i 0.0316277 + 0.0547808i
\(362\) −1.58708 5.92305i −0.0834149 0.311309i
\(363\) −5.00952 5.00952i −0.262932 0.262932i
\(364\) 0.0607699 + 8.20230i 0.00318521 + 0.429917i
\(365\) −7.51333 + 33.1930i −0.393266 + 1.73740i
\(366\) −5.55999 + 9.63018i −0.290625 + 0.503377i
\(367\) −3.13693 0.840538i −0.163746 0.0438757i 0.176014 0.984388i \(-0.443679\pi\)
−0.339761 + 0.940512i \(0.610346\pi\)
\(368\) −5.68202 1.52249i −0.296196 0.0793654i
\(369\) 3.27845 5.67845i 0.170669 0.295608i
\(370\) −5.24222 + 3.30707i −0.272530 + 0.171926i
\(371\) 0.224118 + 30.2499i 0.0116356 + 1.57050i
\(372\) 1.22602 + 1.22602i 0.0635664 + 0.0635664i
\(373\) −4.08060 15.2290i −0.211286 0.788529i −0.987441 0.157987i \(-0.949500\pi\)
0.776156 0.630542i \(-0.217167\pi\)
\(374\) −4.55392 7.88763i −0.235478 0.407860i
\(375\) 1.60669 11.0643i 0.0829691 0.571358i
\(376\) −5.26557 3.04008i −0.271551 0.156780i
\(377\) 19.6203 19.6203i 1.01049 1.01049i
\(378\) −2.56060 0.665818i −0.131703 0.0342460i
\(379\) 21.7428i 1.11685i 0.829555 + 0.558426i \(0.188594\pi\)
−0.829555 + 0.558426i \(0.811406\pi\)
\(380\) −0.369678 9.42624i −0.0189641 0.483556i
\(381\) −10.9342 + 6.31283i −0.560174 + 0.323416i
\(382\) −4.18410 + 15.6153i −0.214077 + 0.798946i
\(383\) −17.2784 + 4.62973i −0.882883 + 0.236568i −0.671651 0.740868i \(-0.734414\pi\)
−0.211233 + 0.977436i \(0.567748\pi\)
\(384\) 1.00000 0.0510310
\(385\) 7.88307 8.65438i 0.401759 0.441068i
\(386\) 21.7909 1.10913
\(387\) 8.65684 2.31959i 0.440052 0.117912i
\(388\) −0.541831 + 2.02214i −0.0275073 + 0.102659i
\(389\) −4.36130 + 2.51800i −0.221127 + 0.127667i −0.606472 0.795105i \(-0.707416\pi\)
0.385345 + 0.922772i \(0.374082\pi\)
\(390\) 4.70608 5.09028i 0.238302 0.257756i
\(391\) 27.0759i 1.36929i
\(392\) 1.71135 6.78758i 0.0864362 0.342825i
\(393\) −3.62152 + 3.62152i −0.182681 + 0.182681i
\(394\) 0.769287 + 0.444148i 0.0387561 + 0.0223759i
\(395\) 5.05616 + 2.66064i 0.254403 + 0.133871i
\(396\) −0.989376 1.71365i −0.0497180 0.0861142i
\(397\) −3.81880 14.2520i −0.191660 0.715285i −0.993106 0.117218i \(-0.962602\pi\)
0.801446 0.598067i \(-0.204064\pi\)
\(398\) 6.80587 + 6.80587i 0.341147 + 0.341147i
\(399\) −5.50916 + 9.70753i −0.275803 + 0.485984i
\(400\) 2.15321 4.51262i 0.107660 0.225631i
\(401\) 4.34686 7.52897i 0.217072 0.375979i −0.736840 0.676067i \(-0.763683\pi\)
0.953911 + 0.300088i \(0.0970162\pi\)
\(402\) 5.32434 + 1.42665i 0.265554 + 0.0711550i
\(403\) 5.19226 + 1.39126i 0.258645 + 0.0693037i
\(404\) −5.02360 + 8.70112i −0.249933 + 0.432897i
\(405\) 1.19306 + 1.89119i 0.0592837 + 0.0939740i
\(406\) −20.4187 + 11.9913i −1.01336 + 0.595118i
\(407\) 3.87844 + 3.87844i 0.192247 + 0.192247i
\(408\) 1.19130 + 4.44599i 0.0589781 + 0.220109i
\(409\) 9.49095 + 16.4388i 0.469297 + 0.812847i 0.999384 0.0350966i \(-0.0111739\pi\)
−0.530087 + 0.847944i \(0.677841\pi\)
\(410\) −4.34679 14.0025i −0.214673 0.691535i
\(411\) 10.0306 + 5.79118i 0.494774 + 0.285658i
\(412\) 3.52695 3.52695i 0.173760 0.173760i
\(413\) −7.81209 + 7.92871i −0.384408 + 0.390147i
\(414\) 5.88246i 0.289107i
\(415\) 22.1277 + 20.4576i 1.08621 + 1.00423i
\(416\) 2.68491 1.55013i 0.131638 0.0760014i
\(417\) 0.742949 2.77273i 0.0363824 0.135781i
\(418\) −8.06348 + 2.16060i −0.394398 + 0.105679i
\(419\) −11.9171 −0.582188 −0.291094 0.956695i \(-0.594019\pi\)
−0.291094 + 0.956695i \(0.594019\pi\)
\(420\) −4.98010 + 3.19353i −0.243004 + 0.155828i
\(421\) 6.95263 0.338850 0.169425 0.985543i \(-0.445809\pi\)
0.169425 + 0.985543i \(0.445809\pi\)
\(422\) −10.8830 + 2.91610i −0.529778 + 0.141953i
\(423\) 1.57366 5.87298i 0.0765140 0.285554i
\(424\) 9.90187 5.71685i 0.480877 0.277635i
\(425\) 22.6281 + 4.19725i 1.09763 + 0.203597i
\(426\) 3.86002i 0.187018i
\(427\) 7.40388 28.4738i 0.358299 1.37795i
\(428\) −4.27775 + 4.27775i −0.206773 + 0.206773i
\(429\) −5.31277 3.06733i −0.256503 0.148092i
\(430\) 9.33225 17.7346i 0.450041 0.855238i
\(431\) −3.12392 5.41078i −0.150474 0.260628i 0.780928 0.624621i \(-0.214747\pi\)
−0.931402 + 0.363993i \(0.881413\pi\)
\(432\) 0.258819 + 0.965926i 0.0124524 + 0.0464731i
\(433\) −15.1544 15.1544i −0.728274 0.728274i 0.242002 0.970276i \(-0.422196\pi\)
−0.970276 + 0.242002i \(0.922196\pi\)
\(434\) −3.98966 2.26419i −0.191510 0.108684i
\(435\) 19.5189 + 4.41816i 0.935861 + 0.211835i
\(436\) 4.87449 8.44287i 0.233446 0.404340i
\(437\) −23.9712 6.42307i −1.14670 0.307257i
\(438\) −14.7013 3.93920i −0.702455 0.188222i
\(439\) −16.3729 + 28.3588i −0.781438 + 1.35349i 0.149666 + 0.988737i \(0.452180\pi\)
−0.931104 + 0.364753i \(0.881153\pi\)
\(440\) −4.31545 0.976815i −0.205731 0.0465678i
\(441\) 6.99923 0.103719i 0.333297 0.00493899i
\(442\) 10.0904 + 10.0904i 0.479951 + 0.479951i
\(443\) 7.95895 + 29.7032i 0.378141 + 1.41124i 0.848701 + 0.528874i \(0.177385\pi\)
−0.470559 + 0.882368i \(0.655948\pi\)
\(444\) −1.38596 2.40055i −0.0657747 0.113925i
\(445\) 6.44752 12.2526i 0.305642 0.580828i
\(446\) 16.1321 + 9.31386i 0.763876 + 0.441024i
\(447\) −11.0165 + 11.0165i −0.521061 + 0.521061i
\(448\) −2.55046 + 0.703686i −0.120498 + 0.0332460i
\(449\) 16.8713i 0.796207i 0.917341 + 0.398103i \(0.130331\pi\)
−0.917341 + 0.398103i \(0.869669\pi\)
\(450\) 4.91614 + 0.911886i 0.231749 + 0.0429867i
\(451\) −11.2362 + 6.48725i −0.529094 + 0.305473i
\(452\) 2.20532 8.23036i 0.103729 0.387123i
\(453\) −20.4685 + 5.48452i −0.961695 + 0.257685i
\(454\) −26.9142 −1.26314
\(455\) −8.42071 + 16.2941i −0.394769 + 0.763881i
\(456\) 4.21878 0.197563
\(457\) −19.1714 + 5.13696i −0.896800 + 0.240297i −0.677641 0.735393i \(-0.736998\pi\)
−0.219158 + 0.975689i \(0.570331\pi\)
\(458\) −6.95976 + 25.9742i −0.325208 + 1.21369i
\(459\) −3.98616 + 2.30141i −0.186058 + 0.107421i
\(460\) −9.65833 8.92936i −0.450322 0.416333i
\(461\) 15.7775i 0.734830i 0.930057 + 0.367415i \(0.119757\pi\)
−0.930057 + 0.367415i \(0.880243\pi\)
\(462\) 3.72923 + 3.67438i 0.173500 + 0.170948i
\(463\) 4.48617 4.48617i 0.208490 0.208490i −0.595135 0.803625i \(-0.702902\pi\)
0.803625 + 0.595135i \(0.202902\pi\)
\(464\) 7.75089 + 4.47498i 0.359826 + 0.207746i
\(465\) 1.14943 + 3.70272i 0.0533037 + 0.171710i
\(466\) 0.460622 + 0.797821i 0.0213379 + 0.0369583i
\(467\) −4.51639 16.8554i −0.208994 0.779975i −0.988195 0.153201i \(-0.951042\pi\)
0.779201 0.626774i \(-0.215625\pi\)
\(468\) 2.19222 + 2.19222i 0.101335 + 0.101335i
\(469\) −14.5834 + 0.108047i −0.673400 + 0.00498914i
\(470\) −7.25401 11.4987i −0.334602 0.530397i
\(471\) 7.59167 13.1492i 0.349806 0.605881i
\(472\) 4.06367 + 1.08886i 0.187046 + 0.0501187i
\(473\) −17.1297 4.58990i −0.787626 0.211044i
\(474\) −1.27757 + 2.21282i −0.0586808 + 0.101638i
\(475\) 9.08391 19.0378i 0.416799 0.873512i
\(476\) −6.16693 10.5010i −0.282661 0.481312i
\(477\) 8.08484 + 8.08484i 0.370180 + 0.370180i
\(478\) −6.55929 24.4796i −0.300015 1.11967i
\(479\) −15.8748 27.4960i −0.725339 1.25632i −0.958834 0.283966i \(-0.908350\pi\)
0.233495 0.972358i \(-0.424984\pi\)
\(480\) 1.97882 + 1.04129i 0.0903202 + 0.0475281i
\(481\) −7.44233 4.29683i −0.339341 0.195919i
\(482\) −14.9341 + 14.9341i −0.680230 + 0.680230i
\(483\) 4.13940 + 15.0030i 0.188349 + 0.682658i
\(484\) 7.08454i 0.322024i
\(485\) −3.17782 + 3.43725i −0.144297 + 0.156077i
\(486\) −0.866025 + 0.500000i −0.0392837 + 0.0226805i
\(487\) −7.74077 + 28.8890i −0.350768 + 1.30908i 0.534960 + 0.844878i \(0.320327\pi\)
−0.885727 + 0.464206i \(0.846340\pi\)
\(488\) −10.7411 + 2.87806i −0.486225 + 0.130284i
\(489\) 22.3230 1.00948
\(490\) 10.4543 11.6494i 0.472276 0.526265i
\(491\) 1.57179 0.0709340 0.0354670 0.999371i \(-0.488708\pi\)
0.0354670 + 0.999371i \(0.488708\pi\)
\(492\) 6.33349 1.69705i 0.285536 0.0765090i
\(493\) −10.6621 + 39.7914i −0.480196 + 1.79211i
\(494\) 11.3270 6.53967i 0.509628 0.294234i
\(495\) −0.173391 4.42123i −0.00779336 0.198719i
\(496\) 1.73386i 0.0778527i
\(497\) 2.71624 + 9.84480i 0.121840 + 0.441600i
\(498\) −9.52969 + 9.52969i −0.427036 + 0.427036i
\(499\) −12.3491 7.12977i −0.552823 0.319172i 0.197437 0.980316i \(-0.436738\pi\)
−0.750260 + 0.661143i \(0.770072\pi\)
\(500\) 8.95974 6.68753i 0.400692 0.299076i
\(501\) 4.88769 + 8.46573i 0.218366 + 0.378221i
\(502\) −0.700423 2.61401i −0.0312614 0.116669i
\(503\) −28.7896 28.7896i −1.28367 1.28367i −0.938566 0.345100i \(-0.887845\pi\)
−0.345100 0.938566i \(-0.612155\pi\)
\(504\) −1.33981 2.28142i −0.0596801 0.101623i
\(505\) −19.0012 + 11.9869i −0.845540 + 0.533411i
\(506\) −5.81997 + 10.0805i −0.258729 + 0.448132i
\(507\) −3.27292 0.876975i −0.145355 0.0389478i
\(508\) −12.1955 3.26776i −0.541086 0.144984i
\(509\) −7.30942 + 12.6603i −0.323984 + 0.561157i −0.981306 0.192453i \(-0.938356\pi\)
0.657322 + 0.753610i \(0.271689\pi\)
\(510\) −2.27219 + 10.0383i −0.100614 + 0.444502i
\(511\) 40.2670 0.298333i 1.78131 0.0131975i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 1.09190 + 4.07503i 0.0482086 + 0.179917i
\(514\) 12.0110 + 20.8037i 0.529784 + 0.917612i
\(515\) 10.6518 3.30662i 0.469373 0.145707i
\(516\) 7.76151 + 4.48111i 0.341681 + 0.197270i
\(517\) −8.50729 + 8.50729i −0.374150 + 0.374150i
\(518\) 5.22406 + 5.14722i 0.229532 + 0.226156i
\(519\) 4.52762i 0.198740i
\(520\) 6.92707 0.271665i 0.303772 0.0119133i
\(521\) −13.3153 + 7.68757i −0.583352 + 0.336798i −0.762464 0.647030i \(-0.776011\pi\)
0.179112 + 0.983829i \(0.442677\pi\)
\(522\) −2.31642 + 8.64500i −0.101387 + 0.378381i
\(523\) 22.6178 6.06041i 0.989006 0.265003i 0.272173 0.962248i \(-0.412258\pi\)
0.716833 + 0.697245i \(0.245591\pi\)
\(524\) −5.12160 −0.223738
\(525\) −13.1801 + 1.13369i −0.575226 + 0.0494784i
\(526\) 0.850325 0.0370759
\(527\) −7.70872 + 2.06555i −0.335797 + 0.0899766i
\(528\) 0.512139 1.91133i 0.0222880 0.0831799i
\(529\) −10.0488 + 5.80167i −0.436904 + 0.252247i
\(530\) 25.5469 1.00190i 1.10969 0.0435195i
\(531\) 4.20702i 0.182569i
\(532\) −10.7598 + 2.96870i −0.466498 + 0.128709i
\(533\) 14.3742 14.3742i 0.622614 0.622614i
\(534\) 5.36231 + 3.09593i 0.232050 + 0.133974i
\(535\) −12.9192 + 4.01051i −0.558548 + 0.173390i
\(536\) 2.75608 + 4.77368i 0.119045 + 0.206191i
\(537\) −0.535206 1.99742i −0.0230959 0.0861949i
\(538\) 8.23314 + 8.23314i 0.354956 + 0.354956i
\(539\) −12.0969 6.74714i −0.521048 0.290620i
\(540\) −0.493652 + 2.18090i −0.0212434 + 0.0938508i
\(541\) −3.98437 + 6.90113i −0.171301 + 0.296703i −0.938875 0.344258i \(-0.888131\pi\)
0.767574 + 0.640961i \(0.221464\pi\)
\(542\) 22.5493 + 6.04206i 0.968575 + 0.259529i
\(543\) 5.92305 + 1.58708i 0.254182 + 0.0681080i
\(544\) −2.30141 + 3.98616i −0.0986722 + 0.170905i
\(545\) 18.4372 11.6311i 0.789763 0.498224i
\(546\) −7.13378 4.04852i −0.305298 0.173261i
\(547\) −5.88082 5.88082i −0.251446 0.251446i 0.570117 0.821563i \(-0.306898\pi\)
−0.821563 + 0.570117i \(0.806898\pi\)
\(548\) 2.99773 + 11.1877i 0.128057 + 0.477915i
\(549\) −5.55999 9.63018i −0.237294 0.411006i
\(550\) −7.52235 6.42657i −0.320754 0.274030i
\(551\) 32.6994 + 18.8790i 1.39304 + 0.804272i
\(552\) 4.15953 4.15953i 0.177041 0.177041i
\(553\) 1.70126 6.54271i 0.0723450 0.278224i
\(554\) 9.44974i 0.401481i
\(555\) −0.242893 6.19343i −0.0103103 0.262897i
\(556\) 2.48596 1.43527i 0.105428 0.0608689i
\(557\) 6.78443 25.3198i 0.287466 1.07284i −0.659553 0.751658i \(-0.729254\pi\)
0.947019 0.321178i \(-0.104079\pi\)
\(558\) −1.67478 + 0.448756i −0.0708991 + 0.0189974i
\(559\) 27.7852 1.17519
\(560\) −5.77963 1.26329i −0.244234 0.0533840i
\(561\) 9.10785 0.384534
\(562\) 11.3322 3.03646i 0.478020 0.128085i
\(563\) 0.226316 0.844624i 0.00953810 0.0355967i −0.960993 0.276573i \(-0.910801\pi\)
0.970531 + 0.240977i \(0.0774678\pi\)
\(564\) 5.26557 3.04008i 0.221721 0.128010i
\(565\) 12.9341 13.9900i 0.544141 0.588564i
\(566\) 3.64779i 0.153328i
\(567\) 1.85692 1.88464i 0.0779832 0.0791473i
\(568\) 2.72944 2.72944i 0.114525 0.114525i
\(569\) −28.5877 16.5051i −1.19846 0.691929i −0.238246 0.971205i \(-0.576572\pi\)
−0.960211 + 0.279275i \(0.909906\pi\)
\(570\) 8.34821 + 4.39297i 0.349668 + 0.184001i
\(571\) −2.39594 4.14989i −0.100267 0.173668i 0.811528 0.584314i \(-0.198636\pi\)
−0.911795 + 0.410646i \(0.865303\pi\)
\(572\) −1.58776 5.92562i −0.0663878 0.247763i
\(573\) −11.4312 11.4312i −0.477544 0.477544i
\(574\) −14.9591 + 8.78504i −0.624380 + 0.366680i
\(575\) −9.81403 27.7267i −0.409273 1.15628i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 31.5375 + 8.45046i 1.31293 + 0.351797i 0.846323 0.532670i \(-0.178811\pi\)
0.466602 + 0.884467i \(0.345478\pi\)
\(578\) −4.04335 1.08341i −0.168181 0.0450640i
\(579\) −10.8955 + 18.8715i −0.452800 + 0.784272i
\(580\) 10.6779 + 16.9261i 0.443374 + 0.702817i
\(581\) 17.5992 31.0110i 0.730136 1.28655i
\(582\) −1.48031 1.48031i −0.0613609 0.0613609i
\(583\) −5.85564 21.8535i −0.242516 0.905081i
\(584\) −7.60995 13.1808i −0.314902 0.545426i
\(585\) 2.05527 + 6.62073i 0.0849748 + 0.273733i
\(586\) −10.5616 6.09777i −0.436297 0.251896i
\(587\) −6.03856 + 6.03856i −0.249238 + 0.249238i −0.820658 0.571420i \(-0.806393\pi\)
0.571420 + 0.820658i \(0.306393\pi\)
\(588\) 5.02254 + 4.87586i 0.207126 + 0.201077i
\(589\) 7.31479i 0.301401i
\(590\) 6.90745 + 6.38610i 0.284375 + 0.262912i
\(591\) −0.769287 + 0.444148i −0.0316442 + 0.0182698i
\(592\) 0.717425 2.67747i 0.0294860 0.110043i
\(593\) 3.93171 1.05350i 0.161456 0.0432620i −0.177186 0.984177i \(-0.556699\pi\)
0.338642 + 0.940915i \(0.390033\pi\)
\(594\) 1.97875 0.0811892
\(595\) −1.26867 27.2011i −0.0520103 1.11514i
\(596\) −15.5796 −0.638167
\(597\) −9.29699 + 2.49112i −0.380501 + 0.101955i
\(598\) 4.72013 17.6158i 0.193020 0.720362i
\(599\) 29.5547 17.0634i 1.20757 0.697193i 0.245345 0.969436i \(-0.421099\pi\)
0.962229 + 0.272243i \(0.0877654\pi\)
\(600\) 2.83144 + 4.12104i 0.115593 + 0.168241i
\(601\) 9.99405i 0.407666i 0.979006 + 0.203833i \(0.0653399\pi\)
−0.979006 + 0.203833i \(0.934660\pi\)
\(602\) −22.9487 5.96721i −0.935318 0.243205i
\(603\) −3.89769 + 3.89769i −0.158726 + 0.158726i
\(604\) −18.3516 10.5953i −0.746715 0.431116i
\(605\) 7.37705 14.0190i 0.299920 0.569954i
\(606\) −5.02360 8.70112i −0.204070 0.353459i
\(607\) 4.73109 + 17.6567i 0.192029 + 0.716662i 0.993016 + 0.117980i \(0.0376419\pi\)
−0.800987 + 0.598682i \(0.795691\pi\)
\(608\) 2.98313 + 2.98313i 0.120982 + 0.120982i
\(609\) −0.175433 23.6787i −0.00710890 0.959510i
\(610\) −24.2515 5.48939i −0.981915 0.222259i
\(611\) 9.42504 16.3247i 0.381296 0.660425i
\(612\) −4.44599 1.19130i −0.179718 0.0481554i
\(613\) 28.8155 + 7.72109i 1.16385 + 0.311852i 0.788501 0.615033i \(-0.210857\pi\)
0.375346 + 0.926885i \(0.377524\pi\)
\(614\) 11.3090 19.5877i 0.456392 0.790495i
\(615\) 14.2999 + 3.23683i 0.576629 + 0.130521i
\(616\) 0.0387866 + 5.23514i 0.00156276 + 0.210930i
\(617\) −35.0246 35.0246i −1.41004 1.41004i −0.759317 0.650721i \(-0.774467\pi\)
−0.650721 0.759317i \(-0.725533\pi\)
\(618\) 1.29095 + 4.81790i 0.0519298 + 0.193805i
\(619\) 5.75770 + 9.97263i 0.231422 + 0.400834i 0.958227 0.286010i \(-0.0923290\pi\)
−0.726805 + 0.686844i \(0.758996\pi\)
\(620\) −1.80545 + 3.43099i −0.0725086 + 0.137792i
\(621\) 5.09436 + 2.94123i 0.204430 + 0.118028i
\(622\) −5.47479 + 5.47479i −0.219519 + 0.219519i
\(623\) −15.8549 4.12266i −0.635214 0.165171i
\(624\) 3.10026i 0.124110i
\(625\) 24.6933 3.90374i 0.987733 0.156150i
\(626\) −17.3597 + 10.0226i −0.693834 + 0.400585i
\(627\) 2.16060 8.06348i 0.0862862 0.322024i
\(628\) 14.6660 3.92974i 0.585237 0.156814i
\(629\) 12.7586 0.508720
\(630\) −0.275628 5.90966i −0.0109813 0.235446i
\(631\) 18.4477 0.734390 0.367195 0.930144i \(-0.380318\pi\)
0.367195 + 0.930144i \(0.380318\pi\)
\(632\) −2.46808 + 0.661320i −0.0981749 + 0.0263059i
\(633\) 2.91610 10.8830i 0.115905 0.432562i
\(634\) −2.58104 + 1.49016i −0.102506 + 0.0591819i
\(635\) −20.7299 19.1653i −0.822641 0.760552i
\(636\) 11.4337i 0.453375i
\(637\) 21.0433 + 5.30563i 0.833765 + 0.210217i
\(638\) 12.5227 12.5227i 0.495778 0.495778i
\(639\) 3.34287 + 1.93001i 0.132242 + 0.0763499i
\(640\) 0.662933 + 2.13554i 0.0262047 + 0.0844145i
\(641\) 9.74229 + 16.8741i 0.384797 + 0.666488i 0.991741 0.128256i \(-0.0409380\pi\)
−0.606944 + 0.794745i \(0.707605\pi\)
\(642\) −1.56576 5.84351i −0.0617958 0.230625i
\(643\) 28.2707 + 28.2707i 1.11489 + 1.11489i 0.992480 + 0.122408i \(0.0390615\pi\)
0.122408 + 0.992480i \(0.460938\pi\)
\(644\) −7.68169 + 13.5357i −0.302701 + 0.533381i
\(645\) 10.6925 + 16.9493i 0.421016 + 0.667377i
\(646\) −9.70916 + 16.8168i −0.382002 + 0.661647i
\(647\) −24.0797 6.45214i −0.946672 0.253660i −0.247722 0.968831i \(-0.579682\pi\)
−0.698949 + 0.715171i \(0.746349\pi\)
\(648\) −0.965926 0.258819i −0.0379452 0.0101674i
\(649\) 4.16233 7.20937i 0.163386 0.282992i
\(650\) 13.9903 + 6.67550i 0.548744 + 0.261835i
\(651\) 3.95567 2.32305i 0.155035 0.0910476i
\(652\) 15.7848 + 15.7848i 0.618179 + 0.618179i
\(653\) −12.8743 48.0477i −0.503812 1.88025i −0.473666 0.880705i \(-0.657070\pi\)
−0.0301458 0.999546i \(-0.509597\pi\)
\(654\) 4.87449 + 8.44287i 0.190608 + 0.330142i
\(655\) −10.1347 5.33306i −0.395996 0.208380i
\(656\) 5.67845 + 3.27845i 0.221706 + 0.128002i
\(657\) 10.7621 10.7621i 0.419869 0.419869i
\(658\) −11.2903 + 11.4589i −0.440144 + 0.446714i
\(659\) 39.5644i 1.54121i −0.637312 0.770606i \(-0.719954\pi\)
0.637312 0.770606i \(-0.280046\pi\)
\(660\) 3.00367 3.24889i 0.116918 0.126463i
\(661\) −1.74995 + 1.01033i −0.0680651 + 0.0392974i −0.533646 0.845708i \(-0.679179\pi\)
0.465581 + 0.885005i \(0.345845\pi\)
\(662\) 7.20479 26.8886i 0.280022 1.04506i
\(663\) −13.7837 + 3.69334i −0.535315 + 0.143437i
\(664\) −13.4770 −0.523010
\(665\) −24.3830 5.32957i −0.945532 0.206672i
\(666\) 2.77192 0.107410
\(667\) 50.8539 13.6263i 1.96907 0.527611i
\(668\) −2.53005 + 9.44229i −0.0978907 + 0.365333i
\(669\) −16.1321 + 9.31386i −0.623702 + 0.360095i
\(670\) 0.483012 + 12.3161i 0.0186604 + 0.475813i
\(671\) 22.0037i 0.849442i
\(672\) 0.665818 2.56060i 0.0256845 0.0987774i
\(673\) −19.7775 + 19.7775i −0.762366 + 0.762366i −0.976750 0.214383i \(-0.931226\pi\)
0.214383 + 0.976750i \(0.431226\pi\)
\(674\) 21.0125 + 12.1316i 0.809372 + 0.467291i
\(675\) −3.24779 + 3.80156i −0.125007 + 0.146322i
\(676\) −1.69419 2.93442i −0.0651610 0.112862i
\(677\) −4.44120 16.5748i −0.170689 0.637021i −0.997246 0.0741672i \(-0.976370\pi\)
0.826557 0.562854i \(-0.190297\pi\)
\(678\) 6.02504 + 6.02504i 0.231390 + 0.231390i
\(679\) 4.81714 + 2.73379i 0.184865 + 0.104913i
\(680\) −8.70482 + 5.49145i −0.333815 + 0.210588i
\(681\) 13.4571 23.3083i 0.515676 0.893177i
\(682\) 3.31398 + 0.887978i 0.126899 + 0.0340024i
\(683\) −0.487181 0.130540i −0.0186414 0.00499496i 0.249486 0.968378i \(-0.419738\pi\)
−0.268128 + 0.963383i \(0.586405\pi\)
\(684\) −2.10939 + 3.65357i −0.0806546 + 0.139698i
\(685\) −5.71765 + 25.2599i −0.218460 + 0.965131i
\(686\) −16.2409 8.90138i −0.620079 0.339856i
\(687\) −19.0144 19.0144i −0.725445 0.725445i
\(688\) 2.31959 + 8.65684i 0.0884336 + 0.330039i
\(689\) 17.7237 + 30.6984i 0.675220 + 1.16952i
\(690\) 12.5622 3.89968i 0.478235 0.148458i
\(691\) 13.5396 + 7.81710i 0.515071 + 0.297376i 0.734916 0.678158i \(-0.237222\pi\)
−0.219845 + 0.975535i \(0.570555\pi\)
\(692\) −3.20151 + 3.20151i −0.121703 + 0.121703i
\(693\) −5.04672 + 1.39242i −0.191709 + 0.0528937i
\(694\) 25.0428i 0.950613i
\(695\) 6.41378 0.251535i 0.243289 0.00954127i
\(696\) −7.75089 + 4.47498i −0.293797 + 0.169624i
\(697\) −7.81123 + 29.1519i −0.295871 + 1.10421i
\(698\) −17.3992 + 4.66210i −0.658569 + 0.176463i
\(699\) −0.921244 −0.0348447
\(700\) −10.1214 8.51809i −0.382552 0.321953i
\(701\) 8.02724 0.303185 0.151592 0.988443i \(-0.451560\pi\)
0.151592 + 0.988443i \(0.451560\pi\)
\(702\) −2.99462 + 0.802407i −0.113025 + 0.0302849i
\(703\) 3.02666 11.2956i 0.114153 0.426023i
\(704\) 1.71365 0.989376i 0.0645856 0.0372885i
\(705\) 13.5852 0.532783i 0.511648 0.0200658i
\(706\) 7.59800i 0.285955i
\(707\) 18.9353 + 18.6568i 0.712136 + 0.701661i
\(708\) −2.97481 + 2.97481i −0.111800 + 0.111800i
\(709\) −11.8457 6.83914i −0.444876 0.256849i 0.260788 0.965396i \(-0.416018\pi\)
−0.705664 + 0.708547i \(0.749351\pi\)
\(710\) 8.24321 2.55893i 0.309362 0.0960350i
\(711\) −1.27757 2.21282i −0.0479127 0.0829872i
\(712\) 1.60257 + 5.98088i 0.0600590 + 0.224143i
\(713\) 7.21204 + 7.21204i 0.270093 + 0.270093i
\(714\) 12.1776 0.0902224i 0.455735 0.00337649i
\(715\) 3.02838 13.3790i 0.113255 0.500348i
\(716\) 1.03394 1.79084i 0.0386401 0.0669267i
\(717\) 24.4796 + 6.55929i 0.914208 + 0.244961i
\(718\) −3.17473 0.850665i −0.118480 0.0317465i
\(719\) 10.5235 18.2273i 0.392462 0.679764i −0.600312 0.799766i \(-0.704957\pi\)
0.992774 + 0.120002i \(0.0382901\pi\)
\(720\) −1.89119 + 1.19306i −0.0704805 + 0.0444628i
\(721\) −6.68281 11.3794i −0.248881 0.423792i
\(722\) −0.849839 0.849839i −0.0316277 0.0316277i
\(723\) −5.46626 20.4004i −0.203292 0.758698i
\(724\) 3.06600 + 5.31046i 0.113947 + 0.197362i
\(725\) 3.50460 + 44.6124i 0.130157 + 1.65686i
\(726\) 6.13539 + 3.54227i 0.227706 + 0.131466i
\(727\) 11.2251 11.2251i 0.416317 0.416317i −0.467615 0.883932i \(-0.654887\pi\)
0.883932 + 0.467615i \(0.154887\pi\)
\(728\) −2.18161 7.90708i −0.0808559 0.293056i
\(729\) 1.00000i 0.0370370i
\(730\) −1.33367 34.0066i −0.0493612 1.25864i
\(731\) −35.7248 + 20.6258i −1.32133 + 0.762871i
\(732\) 2.87806 10.7411i 0.106376 0.397001i
\(733\) 27.7719 7.44145i 1.02578 0.274856i 0.293570 0.955938i \(-0.405157\pi\)
0.732208 + 0.681081i \(0.238490\pi\)
\(734\) 3.24759 0.119871
\(735\) 4.86152 + 14.8784i 0.179320 + 0.548797i
\(736\) 5.88246 0.216830
\(737\) 10.5356 2.82300i 0.388082 0.103986i
\(738\) −1.69705 + 6.33349i −0.0624694 + 0.233139i
\(739\) −36.3593 + 20.9921i −1.33750 + 0.772205i −0.986436 0.164147i \(-0.947513\pi\)
−0.351063 + 0.936352i \(0.614180\pi\)
\(740\) 4.20767 4.55117i 0.154677 0.167304i
\(741\) 13.0793i 0.480482i
\(742\) −8.04573 29.1611i −0.295368 1.07054i
\(743\) 8.63799 8.63799i 0.316897 0.316897i −0.530677 0.847574i \(-0.678062\pi\)
0.847574 + 0.530677i \(0.178062\pi\)
\(744\) −1.50157 0.866930i −0.0550501 0.0317832i
\(745\) −30.8293 16.2229i −1.12950 0.594361i
\(746\) 7.88312 + 13.6540i 0.288622 + 0.499907i
\(747\) −3.48811 13.0178i −0.127623 0.476297i
\(748\) 6.44022 + 6.44022i 0.235478 + 0.235478i
\(749\) 8.10541 + 13.8018i 0.296165 + 0.504307i
\(750\) 1.31171 + 11.1031i 0.0478968 + 0.405429i
\(751\) −15.8723 + 27.4916i −0.579188 + 1.00318i 0.416384 + 0.909189i \(0.363297\pi\)
−0.995573 + 0.0939948i \(0.970036\pi\)
\(752\) 5.87298 + 1.57366i 0.214166 + 0.0573855i
\(753\) 2.61401 + 0.700423i 0.0952600 + 0.0255248i
\(754\) −13.8736 + 24.0298i −0.505247 + 0.875114i
\(755\) −25.2817 40.0754i −0.920094 1.45849i
\(756\) 2.64568 0.0196015i 0.0962224 0.000712901i
\(757\) −9.81959 9.81959i −0.356899 0.356899i 0.505770 0.862669i \(-0.331209\pi\)
−0.862669 + 0.505770i \(0.831209\pi\)
\(758\) −5.62744 21.0019i −0.204398 0.762824i
\(759\) −5.81997 10.0805i −0.211251 0.365898i
\(760\) 2.79677 + 9.00937i 0.101450 + 0.326804i
\(761\) 27.6636 + 15.9716i 1.00280 + 0.578970i 0.909077 0.416628i \(-0.136788\pi\)
0.0937278 + 0.995598i \(0.470122\pi\)
\(762\) 8.92770 8.92770i 0.323416 0.323416i
\(763\) −18.3733 18.1031i −0.665158 0.655375i
\(764\) 16.1661i 0.584869i
\(765\) −7.55731 6.98692i −0.273235 0.252612i
\(766\) 15.4914 8.94394i 0.559726 0.323158i
\(767\) −3.37574 + 12.5985i −0.121891 + 0.454904i
\(768\) −0.965926 + 0.258819i −0.0348548 + 0.00933933i
\(769\) 26.3715 0.950981 0.475490 0.879721i \(-0.342271\pi\)
0.475490 + 0.879721i \(0.342271\pi\)
\(770\) −5.37454 + 10.3998i −0.193685 + 0.374782i
\(771\) −24.0221 −0.865133
\(772\) −21.0484 + 5.63991i −0.757549 + 0.202985i
\(773\) −11.9120 + 44.4561i −0.428444 + 1.59898i 0.327841 + 0.944733i \(0.393679\pi\)
−0.756285 + 0.654242i \(0.772988\pi\)
\(774\) −7.76151 + 4.48111i −0.278982 + 0.161070i
\(775\) −7.14531 + 4.90932i −0.256667 + 0.176348i
\(776\) 2.09348i 0.0751514i
\(777\) −7.06965 + 1.95056i −0.253622 + 0.0699759i
\(778\) 3.56098 3.56098i 0.127667 0.127667i
\(779\) 23.9561 + 13.8311i 0.858318 + 0.495550i
\(780\) −3.22827 + 6.13485i −0.115591 + 0.219663i
\(781\) −3.81901 6.61472i −0.136655 0.236693i
\(782\) 7.00777 + 26.1533i 0.250597 + 0.935241i
\(783\) −6.32858 6.32858i −0.226165 0.226165i
\(784\) 0.103719 + 6.99923i 0.00370424 + 0.249973i
\(785\) 33.1133 + 7.49528i 1.18186 + 0.267518i
\(786\) 2.56080 4.43543i 0.0913407 0.158207i
\(787\) −10.9433 2.93226i −0.390088 0.104524i 0.0584437 0.998291i \(-0.481386\pi\)
−0.448532 + 0.893767i \(0.648053\pi\)
\(788\) −0.858028 0.229908i −0.0305660 0.00819013i
\(789\) −0.425163 + 0.736403i −0.0151362 + 0.0262167i
\(790\) −5.57250 1.26135i −0.198261 0.0448768i
\(791\) −19.6063 11.1269i −0.697121 0.395626i
\(792\) 1.39919 + 1.39919i 0.0497180 + 0.0497180i
\(793\) −8.92274 33.3001i −0.316856 1.18252i
\(794\) 7.37735 + 12.7780i 0.261813 + 0.453473i
\(795\) −11.9058 + 22.6252i −0.422254 + 0.802433i
\(796\) −8.33546 4.81248i −0.295442 0.170574i
\(797\) −24.7239 + 24.7239i −0.875767 + 0.875767i −0.993093 0.117327i \(-0.962568\pi\)
0.117327 + 0.993093i \(0.462568\pi\)
\(798\) 2.80894 10.8026i 0.0994356 0.382409i
\(799\) 27.9859i 0.990070i
\(800\) −0.911886 + 4.91614i −0.0322401 + 0.173812i
\(801\) −5.36231 + 3.09593i −0.189468 + 0.109389i
\(802\) −2.25010 + 8.39748i −0.0794537 + 0.296525i
\(803\) −29.0902 + 7.79470i −1.02657 + 0.275069i
\(804\) −5.51217 −0.194399
\(805\) −29.2952 + 18.7858i −1.03252 + 0.662113i
\(806\) −5.37542 −0.189341
\(807\) −11.2467 + 3.01354i −0.395902 + 0.106082i
\(808\) 2.60040 9.70484i 0.0914819 0.341415i
\(809\) −5.02215 + 2.89954i −0.176569 + 0.101942i −0.585680 0.810542i \(-0.699172\pi\)
0.409110 + 0.912485i \(0.365839\pi\)
\(810\) −1.64189 1.51796i −0.0576900 0.0533358i
\(811\) 28.8064i 1.01153i −0.862671 0.505765i \(-0.831210\pi\)
0.862671 0.505765i \(-0.168790\pi\)
\(812\) 16.6193 16.8674i 0.583224 0.591931i
\(813\) −16.5072 + 16.5072i −0.578934 + 0.578934i
\(814\) −4.75009 2.74247i −0.166491 0.0961235i
\(815\) 14.7987 + 47.6717i 0.518375 + 1.66987i
\(816\) −2.30141 3.98616i −0.0805655 0.139544i
\(817\) 9.78586 + 36.5213i 0.342364 + 1.27772i
\(818\) −13.4222 13.4222i −0.469297 0.469297i
\(819\) 7.07301 4.15378i 0.247151 0.145145i
\(820\) 7.82280 + 12.4004i 0.273184 + 0.433039i
\(821\) −2.25899 + 3.91269i −0.0788395 + 0.136554i −0.902749 0.430167i \(-0.858455\pi\)
0.823910 + 0.566721i \(0.191788\pi\)
\(822\) −11.1877 2.99773i −0.390216 0.104558i
\(823\) 21.6187 + 5.79271i 0.753580 + 0.201921i 0.615105 0.788445i \(-0.289113\pi\)
0.138474 + 0.990366i \(0.455780\pi\)
\(824\) −2.49393 + 4.31961i −0.0868802 + 0.150481i
\(825\) 9.32675 3.30126i 0.324716 0.114935i
\(826\) 5.49380 9.68047i 0.191154 0.336827i
\(827\) 22.5410 + 22.5410i 0.783826 + 0.783826i 0.980474 0.196648i \(-0.0630057\pi\)
−0.196648 + 0.980474i \(0.563006\pi\)
\(828\) 1.52249 + 5.68202i 0.0529103 + 0.197464i
\(829\) −3.61347 6.25871i −0.125501 0.217374i 0.796428 0.604734i \(-0.206720\pi\)
−0.921929 + 0.387360i \(0.873387\pi\)
\(830\) −26.6686 14.0335i −0.925679 0.487109i
\(831\) −8.18372 4.72487i −0.283890 0.163904i
\(832\) −2.19222 + 2.19222i −0.0760014 + 0.0760014i
\(833\) −30.9949 + 8.79930i −1.07391 + 0.304878i
\(834\) 2.87054i 0.0993985i
\(835\) −14.8387 + 16.0501i −0.513513 + 0.555435i
\(836\) 7.22952 4.17397i 0.250038 0.144360i
\(837\) 0.448756 1.67478i 0.0155113 0.0578889i
\(838\) 11.5110 3.08437i 0.397642 0.106548i
\(839\) −5.52622 −0.190786 −0.0953932 0.995440i \(-0.530411\pi\)
−0.0953932 + 0.995440i \(0.530411\pi\)
\(840\) 3.98386 4.37366i 0.137456 0.150905i
\(841\) −51.1018 −1.76213
\(842\) −6.71572 + 1.79947i −0.231439 + 0.0620139i
\(843\) −3.03646 + 11.3322i −0.104581 + 0.390302i
\(844\) 9.75746 5.63347i 0.335866 0.193912i
\(845\) −0.296911 7.57081i −0.0102141 0.260444i
\(846\) 6.08016i 0.209040i
\(847\) −18.1407 4.71702i −0.623321 0.162079i
\(848\) −8.08484 + 8.08484i −0.277635 + 0.277635i
\(849\) −3.15908 1.82389i −0.108419 0.0625959i
\(850\) −22.9434 + 1.80236i −0.786953 + 0.0618204i
\(851\) −8.15284 14.1211i −0.279476 0.484066i
\(852\) 0.999046 + 3.72849i 0.0342267 + 0.127736i
\(853\) 10.4649 + 10.4649i 0.358313 + 0.358313i 0.863191 0.504878i \(-0.168462\pi\)
−0.504878 + 0.863191i \(0.668462\pi\)
\(854\) 0.217968 + 29.4199i 0.00745873 + 1.00673i
\(855\) −7.97853 + 5.03327i −0.272860 + 0.172134i
\(856\) 3.02482 5.23915i 0.103386 0.179070i
\(857\) 2.07640 + 0.556370i 0.0709286 + 0.0190053i 0.294109 0.955772i \(-0.404977\pi\)
−0.223180 + 0.974777i \(0.571644\pi\)
\(858\) 5.92562 + 1.58776i 0.202297 + 0.0542054i
\(859\) 3.59455 6.22594i 0.122644 0.212426i −0.798165 0.602439i \(-0.794196\pi\)
0.920810 + 0.390012i \(0.127529\pi\)
\(860\) −4.42421 + 19.5457i −0.150864 + 0.666502i
\(861\) −0.128525 17.3475i −0.00438013 0.591200i
\(862\) 4.41788 + 4.41788i 0.150474 + 0.150474i
\(863\) 10.4926 + 39.1589i 0.357172 + 1.33298i 0.877729 + 0.479157i \(0.159057\pi\)
−0.520557 + 0.853827i \(0.674276\pi\)
\(864\) −0.500000 0.866025i −0.0170103 0.0294628i
\(865\) −9.66889 + 3.00151i −0.328752 + 0.102054i
\(866\) 18.5603 + 10.7158i 0.630704 + 0.364137i
\(867\) 2.95994 2.95994i 0.100525 0.100525i
\(868\) 4.43973 + 1.15444i 0.150694 + 0.0391841i
\(869\) 5.05600i 0.171513i
\(870\) −19.9973 + 0.784254i −0.677974 + 0.0265887i
\(871\) −14.7997 + 8.54458i −0.501467 + 0.289522i
\(872\) −2.52322 + 9.41680i −0.0854471 + 0.318893i
\(873\) 2.02214 0.541831i 0.0684391 0.0183382i
\(874\) 24.8168 0.839442
\(875\) −11.1586 27.3950i −0.377228 0.926120i
\(876\) 15.2199 0.514233
\(877\) 49.3516 13.2237i 1.66648 0.446533i 0.702325 0.711857i \(-0.252145\pi\)
0.964159 + 0.265324i \(0.0854788\pi\)
\(878\) 8.47526 31.6301i 0.286026 1.06746i
\(879\) 10.5616 6.09777i 0.356235 0.205673i
\(880\) 4.42123 0.173391i 0.149040 0.00584502i
\(881\) 27.9972i 0.943251i −0.881799 0.471625i \(-0.843667\pi\)
0.881799 0.471625i \(-0.156333\pi\)
\(882\) −6.73389 + 1.91172i −0.226742 + 0.0643709i
\(883\) 4.66131 4.66131i 0.156865 0.156865i −0.624311 0.781176i \(-0.714620\pi\)
0.781176 + 0.624311i \(0.214620\pi\)
\(884\) −12.3581 7.13498i −0.415650 0.239975i
\(885\) −8.98425 + 2.78898i −0.302002 + 0.0937504i
\(886\) −15.3755 26.6312i −0.516550 0.894692i
\(887\) −3.60517 13.4547i −0.121050 0.451763i 0.878619 0.477524i \(-0.158466\pi\)
−0.999668 + 0.0257610i \(0.991799\pi\)
\(888\) 1.96004 + 1.96004i 0.0657747 + 0.0657747i
\(889\) −16.4874 + 29.0520i −0.552970 + 0.974372i
\(890\) −3.05663 + 13.5038i −0.102458 + 0.452649i
\(891\) −0.989376 + 1.71365i −0.0331454 + 0.0574094i
\(892\) −17.9930 4.82121i −0.602450 0.161426i
\(893\) 24.7768 + 6.63894i 0.829126 + 0.222164i
\(894\) 7.78982 13.4924i 0.260531 0.451252i
\(895\) 3.91075 2.46711i 0.130722 0.0824663i
\(896\) 2.28142 1.33981i 0.0762170 0.0447601i
\(897\) 12.8956 + 12.8956i 0.430573 + 0.430573i
\(898\) −4.36662 16.2964i −0.145716 0.543819i
\(899\) −7.75899 13.4390i −0.258777 0.448215i
\(900\) −4.98464 + 0.391577i −0.166155 + 0.0130526i
\(901\) −45.5766 26.3136i −1.51838 0.876634i
\(902\) 9.17435 9.17435i 0.305473 0.305473i
\(903\) 16.6421 16.8905i 0.553814 0.562082i
\(904\) 8.52069i 0.283394i
\(905\) 0.537325 + 13.7010i 0.0178613 + 0.455437i
\(906\) 18.3516 10.5953i 0.609690 0.352005i
\(907\) 6.98519 26.0691i 0.231939 0.865610i −0.747565 0.664188i \(-0.768777\pi\)
0.979505 0.201421i \(-0.0645560\pi\)
\(908\) 25.9971 6.96589i 0.862743 0.231171i
\(909\) 10.0472 0.333244
\(910\) 3.91655 17.9184i 0.129832 0.593988i
\(911\) −15.5364 −0.514744 −0.257372 0.966312i \(-0.582857\pi\)
−0.257372 + 0.966312i \(0.582857\pi\)
\(912\) −4.07503 + 1.09190i −0.134938 + 0.0361565i
\(913\) −6.90211 + 25.7590i −0.228426 + 0.852499i
\(914\) 17.1886 9.92384i 0.568548 0.328251i
\(915\) 16.8797 18.2577i 0.558026 0.603582i
\(916\) 26.8905i 0.888486i
\(917\) −3.41005 + 13.1144i −0.112610 + 0.433075i
\(918\) 3.25469 3.25469i 0.107421 0.107421i
\(919\) −32.7915 18.9322i −1.08169 0.624515i −0.150339 0.988634i \(-0.548037\pi\)
−0.931352 + 0.364120i \(0.881370\pi\)
\(920\) 11.6403 + 6.12534i 0.383770 + 0.201946i
\(921\) 11.3090 + 19.5877i 0.372643 + 0.645436i
\(922\) −4.08351 15.2399i −0.134483 0.501898i
\(923\) 8.46199 + 8.46199i 0.278530 + 0.278530i
\(924\) −4.55316 2.58398i −0.149788 0.0850068i
\(925\) 13.0653 4.62454i 0.429584 0.152054i
\(926\) −3.17220 + 5.49441i −0.104245 + 0.180558i
\(927\) −4.81790 1.29095i −0.158241 0.0424005i
\(928\) −8.64500 2.31642i −0.283786 0.0760402i
\(929\) −8.75685 + 15.1673i −0.287303 + 0.497624i −0.973165 0.230108i \(-0.926092\pi\)
0.685862 + 0.727732i \(0.259425\pi\)
\(930\) −2.06860 3.27906i −0.0678322 0.107525i
\(931\) 0.437567 + 29.5283i 0.0143407 + 0.967749i
\(932\) −0.651418 0.651418i −0.0213379 0.0213379i
\(933\) −2.00391 7.47870i −0.0656051 0.244842i
\(934\) 8.72500 + 15.1121i 0.285491 + 0.494484i
\(935\) 6.03790 + 19.4502i 0.197460 + 0.636088i
\(936\) −2.68491 1.55013i −0.0877589 0.0506676i
\(937\) −2.68964 + 2.68964i −0.0878666 + 0.0878666i −0.749674 0.661807i \(-0.769790\pi\)
0.661807 + 0.749674i \(0.269790\pi\)
\(938\) 14.0585 3.87883i 0.459028 0.126648i
\(939\) 20.0453i 0.654153i
\(940\) 9.98293 + 9.22946i 0.325607 + 0.301032i
\(941\) 28.0634 16.2024i 0.914839 0.528183i 0.0328543 0.999460i \(-0.489540\pi\)
0.881985 + 0.471277i \(0.156207\pi\)
\(942\) −3.92974 + 14.6660i −0.128038 + 0.477844i
\(943\) 37.2565 9.98284i 1.21324 0.325086i
\(944\) −4.20702 −0.136927
\(945\) 5.25573 + 2.71613i 0.170969 + 0.0883556i
\(946\) 17.7340 0.576582
\(947\) 37.0654 9.93164i 1.20446 0.322735i 0.399876 0.916569i \(-0.369053\pi\)
0.804587 + 0.593834i \(0.202386\pi\)
\(948\) 0.661320 2.46808i 0.0214787 0.0801595i
\(949\) 40.8640 23.5928i 1.32650 0.765856i
\(950\) −3.84705 + 20.7402i −0.124815 + 0.672899i
\(951\) 2.98032i 0.0966436i
\(952\) 8.67465 + 8.54706i 0.281147 + 0.277012i
\(953\) 12.2232 12.2232i 0.395949 0.395949i −0.480853 0.876801i \(-0.659673\pi\)
0.876801 + 0.480853i \(0.159673\pi\)
\(954\) −9.90187 5.71685i −0.320585 0.185090i
\(955\) 16.8336 31.9898i 0.544722 1.03517i
\(956\) 12.6716 + 21.9478i 0.409828 + 0.709843i
\(957\) 4.58362 + 17.1063i 0.148167 + 0.552969i
\(958\) 22.4504 + 22.4504i 0.725339 + 0.725339i
\(959\) 30.6432 0.227032i 0.989520 0.00733124i
\(960\) −2.18090 0.493652i −0.0703881 0.0159325i
\(961\) −13.9969 + 24.2433i −0.451512 + 0.782041i
\(962\) 8.30084 + 2.22420i 0.267630 + 0.0717112i
\(963\) 5.84351 + 1.56576i 0.188304 + 0.0504560i
\(964\) 10.5600 18.2905i 0.340115 0.589096i
\(965\) −47.5237 10.7571i −1.52984 0.346284i
\(966\) −7.88141 13.4204i −0.253580 0.431794i
\(967\) 24.7551 + 24.7551i 0.796071 + 0.796071i 0.982474 0.186402i \(-0.0596827\pi\)
−0.186402 + 0.982474i \(0.559683\pi\)
\(968\) 1.83361 + 6.84314i 0.0589346 + 0.219947i
\(969\) −9.70916 16.8168i −0.311903 0.540232i
\(970\) 2.17991 4.14261i 0.0699927 0.133011i
\(971\) 8.84412 + 5.10615i 0.283821 + 0.163864i 0.635152 0.772387i \(-0.280937\pi\)
−0.351331 + 0.936251i \(0.614271\pi\)
\(972\) 0.707107 0.707107i 0.0226805 0.0226805i
\(973\) −2.01996 7.32118i −0.0647568 0.234706i
\(974\) 29.9080i 0.958316i
\(975\) −12.7763 + 8.77820i −0.409169 + 0.281127i
\(976\) 9.63018 5.55999i 0.308254 0.177971i
\(977\) −4.14558 + 15.4715i −0.132629 + 0.494977i −0.999996 0.00269080i \(-0.999143\pi\)
0.867368 + 0.497668i \(0.165810\pi\)
\(978\) −21.5624 + 5.77762i −0.689489 + 0.184748i
\(979\) 12.2522 0.391581
\(980\) −7.08298 + 13.9582i −0.226257 + 0.445878i
\(981\) −9.74899 −0.311261
\(982\) −1.51824 + 0.406810i −0.0484488 + 0.0129818i
\(983\) 1.97394 7.36683i 0.0629588 0.234965i −0.927275 0.374380i \(-0.877855\pi\)
0.990234 + 0.139415i \(0.0445221\pi\)
\(984\) −5.67845 + 3.27845i −0.181022 + 0.104513i
\(985\) −1.45848 1.34840i −0.0464711 0.0429636i
\(986\) 41.1951i 1.31192i
\(987\) −4.27852 15.5072i −0.136187 0.493599i
\(988\) −9.24849 + 9.24849i −0.294234 + 0.294234i
\(989\) 45.6568 + 26.3599i 1.45180 + 0.838198i
\(990\) 1.31178 + 4.22570i 0.0416911 + 0.134302i
\(991\) −25.4379 44.0597i −0.808060 1.39960i −0.914206 0.405251i \(-0.867184\pi\)
0.106145 0.994351i \(-0.466149\pi\)
\(992\) −0.448756 1.67478i −0.0142480 0.0531743i
\(993\) 19.6839 + 19.6839i 0.624648 + 0.624648i
\(994\) −5.17171 8.80633i −0.164037 0.279320i
\(995\) −11.4832 18.2026i −0.364041 0.577062i
\(996\) 6.73851 11.6714i 0.213518 0.369824i
\(997\) −39.3361 10.5401i −1.24579 0.333808i −0.425080 0.905156i \(-0.639754\pi\)
−0.820708 + 0.571348i \(0.806421\pi\)
\(998\) 13.7737 + 3.69064i 0.435997 + 0.116825i
\(999\) −1.38596 + 2.40055i −0.0438498 + 0.0759500i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 210.2.u.b.187.2 yes 16
3.2 odd 2 630.2.bv.b.397.3 16
5.2 odd 4 1050.2.bc.h.943.2 16
5.3 odd 4 210.2.u.a.103.3 16
5.4 even 2 1050.2.bc.g.607.4 16
7.2 even 3 1470.2.m.e.97.6 16
7.3 odd 6 210.2.u.a.157.3 yes 16
7.5 odd 6 1470.2.m.d.97.7 16
15.8 even 4 630.2.bv.a.523.2 16
21.17 even 6 630.2.bv.a.577.2 16
35.3 even 12 inner 210.2.u.b.73.2 yes 16
35.17 even 12 1050.2.bc.g.493.4 16
35.23 odd 12 1470.2.m.d.1273.7 16
35.24 odd 6 1050.2.bc.h.157.2 16
35.33 even 12 1470.2.m.e.1273.6 16
105.38 odd 12 630.2.bv.b.73.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.u.a.103.3 16 5.3 odd 4
210.2.u.a.157.3 yes 16 7.3 odd 6
210.2.u.b.73.2 yes 16 35.3 even 12 inner
210.2.u.b.187.2 yes 16 1.1 even 1 trivial
630.2.bv.a.523.2 16 15.8 even 4
630.2.bv.a.577.2 16 21.17 even 6
630.2.bv.b.73.3 16 105.38 odd 12
630.2.bv.b.397.3 16 3.2 odd 2
1050.2.bc.g.493.4 16 35.17 even 12
1050.2.bc.g.607.4 16 5.4 even 2
1050.2.bc.h.157.2 16 35.24 odd 6
1050.2.bc.h.943.2 16 5.2 odd 4
1470.2.m.d.97.7 16 7.5 odd 6
1470.2.m.d.1273.7 16 35.23 odd 12
1470.2.m.e.97.6 16 7.2 even 3
1470.2.m.e.1273.6 16 35.33 even 12