Properties

Label 208.12.a.h
Level $208$
Weight $12$
Character orbit 208.a
Self dual yes
Analytic conductor $159.815$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,12,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-476,0,3312] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(159.815381556\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 13546x^{4} + 130998x^{3} + 49403509x^{2} - 776207317x - 22123683244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 79) q^{3} + ( - \beta_{5} + \beta_{3} - 3 \beta_1 + 551) q^{5} + (10 \beta_{5} + 3 \beta_{4} + \cdots + 680) q^{7} + ( - 33 \beta_{5} + 36 \beta_{4} + \cdots + 146014) q^{9} + (11 \beta_{5} + 11 \beta_{4} + \cdots - 45902) q^{11}+ \cdots + ( - 2792295 \beta_{5} + \cdots + 39228088526) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 476 q^{3} + 3312 q^{5} + 4176 q^{7} + 876218 q^{9} - 275060 q^{11} - 2227758 q^{13} - 5951652 q^{15} + 18470848 q^{17} - 2382612 q^{19} - 67640772 q^{21} - 25001944 q^{23} - 14063202 q^{25} - 77250908 q^{27}+ \cdots + 235408311580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 13546x^{4} + 130998x^{3} + 49403509x^{2} - 776207317x - 22123683244 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 5015 \nu^{5} - 381698 \nu^{4} + 44872104 \nu^{3} + 2440298814 \nu^{2} - 98328943649 \nu - 1235017116236 ) / 1004386560 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4549 \nu^{5} + 297830 \nu^{4} - 39656088 \nu^{3} - 3039388314 \nu^{2} + 39945266179 \nu + 6280883551844 ) / 1004386560 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 6577 \nu^{5} + 792034 \nu^{4} + 65534952 \nu^{3} - 5983758270 \nu^{2} - 55389247015 \nu + 3844299707116 ) / 1004386560 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -635\nu^{5} + 6954\nu^{4} + 7372588\nu^{3} - 11836302\nu^{2} - 20834395553\nu - 163220197772 ) / 83698880 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2591\nu^{5} + 192406\nu^{4} - 18750180\nu^{3} - 1230092514\nu^{2} + 23290422389\nu + 899339899948 ) / 62774160 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - 4\beta_{4} + 2\beta_{3} - 3\beta_{2} + 9\beta _1 + 45 ) / 256 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -29\beta_{5} + 132\beta_{4} - 74\beta_{3} - 121\beta_{2} - 453\beta _1 + 1155767 ) / 256 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 9693\beta_{5} - 24340\beta_{4} + 12378\beta_{3} - 18423\beta_{2} + 84165\beta _1 - 15011143 ) / 256 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -313101\beta_{5} + 1291428\beta_{4} - 504714\beta_{3} - 593673\beta_{2} - 4427061\beta _1 + 7204755815 ) / 256 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 76841021 \beta_{5} - 173417204 \beta_{4} + 73945210 \beta_{3} - 119713719 \beta_{2} + \cdots - 184206340935 ) / 256 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−89.6176
36.5093
76.0571
−79.8045
−15.2405
73.0961
0 −827.494 0 7679.45 0 6800.32 0 507599. 0
1.2 0 −469.277 0 4406.29 0 −63013.3 0 43074.3 0
1.3 0 −468.466 0 −69.9037 0 80037.3 0 42313.3 0
1.4 0 19.0788 0 −11885.7 0 62220.3 0 −176783. 0
1.5 0 573.204 0 −3613.82 0 −14401.4 0 151416. 0
1.6 0 696.954 0 6795.70 0 −67467.4 0 308598. 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.12.a.h 6
4.b odd 2 1 13.12.a.b 6
12.b even 2 1 117.12.a.d 6
52.b odd 2 1 169.12.a.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.12.a.b 6 4.b odd 2 1
117.12.a.d 6 12.b even 2 1
169.12.a.c 6 52.b odd 2 1
208.12.a.h 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 476 T_{3}^{5} - 856262 T_{3}^{4} - 361565820 T_{3}^{3} + 173969650341 T_{3}^{2} + \cdots - 13\!\cdots\!12 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 13\!\cdots\!12 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 69\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 20\!\cdots\!96 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 18\!\cdots\!92 \) Copy content Toggle raw display
$13$ \( (T + 371293)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 14\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 20\!\cdots\!84 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 21\!\cdots\!88 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 82\!\cdots\!12 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 54\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 36\!\cdots\!32 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 89\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 38\!\cdots\!60 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 46\!\cdots\!20 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 24\!\cdots\!72 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 28\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 32\!\cdots\!92 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 12\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 32\!\cdots\!16 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 73\!\cdots\!68 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 25\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 50\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
show more
show less