Properties

Label 208.12.a.d
Level $208$
Weight $12$
Character orbit 208.a
Self dual yes
Analytic conductor $159.815$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,12,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,694] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(159.815381556\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 679393x^{2} - 65654928x + 60501589200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{3} - \beta_{2} - 9 \beta_1 + 173) q^{5} + (4 \beta_{3} + \beta_{2} + 48 \beta_1 + 1463) q^{7} + (41 \beta_{3} + 13 \beta_{2} + \cdots + 162570) q^{9} + (4 \beta_{3} - 77 \beta_{2} + \cdots + 65413) q^{11}+ \cdots + (3935080 \beta_{3} + \cdots + 29448486105) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 694 q^{5} + 5844 q^{7} + 650198 q^{9} + 261644 q^{11} + 1485172 q^{13} - 11881816 q^{15} + 4832302 q^{17} - 2762436 q^{19} + 63022462 q^{21} - 26525496 q^{23} + 135765798 q^{25} + 196964784 q^{27}+ \cdots + 117786074260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 679393x^{2} - 65654928x + 60501589200 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -41\nu^{3} + 13644\nu^{2} + 18665879\nu - 2615930010 ) / 457074 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13\nu^{3} + 6822\nu^{2} - 7713301\nu - 2957773608 ) / 457074 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 41\beta_{3} + 13\beta_{2} + 161\beta _1 + 339717 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 13644\beta_{3} - 6822\beta_{2} + 508843\beta _1 + 49248018 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−667.100
−416.896
265.922
818.074
0 −667.100 0 −3756.22 0 −11669.8 0 267876. 0
1.2 0 −416.896 0 13888.3 0 −25219.0 0 −3344.54 0
1.3 0 265.922 0 1587.51 0 −17685.6 0 −106432. 0
1.4 0 818.074 0 −11025.6 0 60418.5 0 492099. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.12.a.d 4
4.b odd 2 1 26.12.a.d 4
12.b even 2 1 234.12.a.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.12.a.d 4 4.b odd 2 1
208.12.a.d 4 1.a even 1 1 trivial
234.12.a.l 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 679393T_{3}^{2} - 65654928T_{3} + 60501589200 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 60501589200 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 913101596252100 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 31\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 92\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T - 371293)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 23\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 40\!\cdots\!80 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 28\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 10\!\cdots\!80 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 24\!\cdots\!20 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 33\!\cdots\!88 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 48\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 18\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 15\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 53\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 22\!\cdots\!80 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 26\!\cdots\!60 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 35\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 16\!\cdots\!80 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 24\!\cdots\!52 \) Copy content Toggle raw display
show more
show less