Properties

Label 208.10.k
Level $208$
Weight $10$
Character orbit 208.k
Rep. character $\chi_{208}(31,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $126$
Sturm bound $280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Sturm bound: \(280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(208, [\chi])\).

Total New Old
Modular forms 516 126 390
Cusp forms 492 126 366
Eisenstein series 24 0 24

Trace form

\( 126 q - 2154 q^{5} - 826686 q^{9} - 2037960 q^{21} - 14622282 q^{37} + 16573410 q^{41} + 70661970 q^{45} - 267036804 q^{53} - 108220152 q^{57} - 1411456260 q^{61} - 311713806 q^{65} + 40567614 q^{73} + 5423886846 q^{81}+ \cdots - 3531554106 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(208, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(208, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(208, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)