Defining parameters
Level: | \( N \) | \(=\) | \( 208 = 2^{4} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 208.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(280\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(208, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 516 | 128 | 388 |
Cusp forms | 492 | 124 | 368 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(208, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{10}^{\mathrm{old}}(208, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(208, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)