Properties

Label 208.10.i
Level $208$
Weight $10$
Character orbit 208.i
Rep. character $\chi_{208}(81,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $124$
Sturm bound $280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(208, [\chi])\).

Total New Old
Modular forms 516 128 388
Cusp forms 492 124 368
Eisenstein series 24 4 20

Trace form

\( 124 q + 163 q^{3} + 714 q^{5} - 1025 q^{7} - 393661 q^{9} + q^{11} + 43077 q^{13} + 19684 q^{15} + 50998 q^{17} - 670139 q^{19} + 39362 q^{21} - 1679045 q^{23} + 46173378 q^{25} - 2217374 q^{27} - 531720 q^{29}+ \cdots - 4366285948 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(208, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(208, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(208, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)