Properties

Label 2075.4.a.l.1.7
Level $2075$
Weight $4$
Character 2075.1
Self dual yes
Analytic conductor $122.429$
Analytic rank $0$
Dimension $47$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2075,4,Mod(1,2075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2075.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2075 = 5^{2} \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [47,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.428963262\)
Analytic rank: \(0\)
Dimension: \(47\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 2075.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.52319 q^{2} +6.73619 q^{3} +12.4592 q^{4} -30.4691 q^{6} +5.86549 q^{7} -20.1699 q^{8} +18.3763 q^{9} -65.4392 q^{11} +83.9277 q^{12} +56.9013 q^{13} -26.5307 q^{14} -8.44158 q^{16} +46.3849 q^{17} -83.1194 q^{18} -122.840 q^{19} +39.5111 q^{21} +295.994 q^{22} -81.3605 q^{23} -135.868 q^{24} -257.375 q^{26} -58.0909 q^{27} +73.0794 q^{28} +196.716 q^{29} +32.9330 q^{31} +199.542 q^{32} -440.811 q^{33} -209.808 q^{34} +228.954 q^{36} -141.312 q^{37} +555.626 q^{38} +383.298 q^{39} +360.968 q^{41} -178.716 q^{42} -296.066 q^{43} -815.322 q^{44} +368.009 q^{46} +453.133 q^{47} -56.8641 q^{48} -308.596 q^{49} +312.458 q^{51} +708.945 q^{52} -727.330 q^{53} +262.756 q^{54} -118.306 q^{56} -827.471 q^{57} -889.785 q^{58} -188.286 q^{59} +815.194 q^{61} -148.962 q^{62} +107.786 q^{63} -835.033 q^{64} +1993.87 q^{66} +1022.81 q^{67} +577.920 q^{68} -548.060 q^{69} -432.215 q^{71} -370.648 q^{72} +515.790 q^{73} +639.182 q^{74} -1530.48 q^{76} -383.833 q^{77} -1733.73 q^{78} +1025.94 q^{79} -887.472 q^{81} -1632.73 q^{82} -83.0000 q^{83} +492.277 q^{84} +1339.16 q^{86} +1325.12 q^{87} +1319.90 q^{88} +405.444 q^{89} +333.754 q^{91} -1013.69 q^{92} +221.843 q^{93} -2049.61 q^{94} +1344.15 q^{96} -260.768 q^{97} +1395.84 q^{98} -1202.53 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 47 q + q^{2} - 6 q^{3} + 229 q^{4} + 9 q^{6} - 6 q^{7} + 39 q^{8} + 531 q^{9} + 90 q^{11} + 6 q^{12} + 50 q^{13} + 115 q^{14} + 1149 q^{16} - 68 q^{17} + 8 q^{18} + 344 q^{19} + 625 q^{21} + 402 q^{22}+ \cdots + 13991 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.52319 −1.59919 −0.799594 0.600541i \(-0.794952\pi\)
−0.799594 + 0.600541i \(0.794952\pi\)
\(3\) 6.73619 1.29638 0.648191 0.761478i \(-0.275526\pi\)
0.648191 + 0.761478i \(0.275526\pi\)
\(4\) 12.4592 1.55740
\(5\) 0 0
\(6\) −30.4691 −2.07316
\(7\) 5.86549 0.316707 0.158353 0.987383i \(-0.449381\pi\)
0.158353 + 0.987383i \(0.449381\pi\)
\(8\) −20.1699 −0.891392
\(9\) 18.3763 0.680604
\(10\) 0 0
\(11\) −65.4392 −1.79370 −0.896849 0.442338i \(-0.854149\pi\)
−0.896849 + 0.442338i \(0.854149\pi\)
\(12\) 83.9277 2.01899
\(13\) 56.9013 1.21397 0.606983 0.794714i \(-0.292379\pi\)
0.606983 + 0.794714i \(0.292379\pi\)
\(14\) −26.5307 −0.506474
\(15\) 0 0
\(16\) −8.44158 −0.131900
\(17\) 46.3849 0.661764 0.330882 0.943672i \(-0.392654\pi\)
0.330882 + 0.943672i \(0.392654\pi\)
\(18\) −83.1194 −1.08841
\(19\) −122.840 −1.48323 −0.741614 0.670827i \(-0.765939\pi\)
−0.741614 + 0.670827i \(0.765939\pi\)
\(20\) 0 0
\(21\) 39.5111 0.410573
\(22\) 295.994 2.86846
\(23\) −81.3605 −0.737602 −0.368801 0.929508i \(-0.620232\pi\)
−0.368801 + 0.929508i \(0.620232\pi\)
\(24\) −135.868 −1.15558
\(25\) 0 0
\(26\) −257.375 −1.94136
\(27\) −58.0909 −0.414059
\(28\) 73.0794 0.493240
\(29\) 196.716 1.25963 0.629816 0.776744i \(-0.283130\pi\)
0.629816 + 0.776744i \(0.283130\pi\)
\(30\) 0 0
\(31\) 32.9330 0.190805 0.0954024 0.995439i \(-0.469586\pi\)
0.0954024 + 0.995439i \(0.469586\pi\)
\(32\) 199.542 1.10232
\(33\) −440.811 −2.32531
\(34\) −209.808 −1.05829
\(35\) 0 0
\(36\) 228.954 1.05997
\(37\) −141.312 −0.627881 −0.313940 0.949443i \(-0.601649\pi\)
−0.313940 + 0.949443i \(0.601649\pi\)
\(38\) 555.626 2.37196
\(39\) 383.298 1.57376
\(40\) 0 0
\(41\) 360.968 1.37497 0.687485 0.726198i \(-0.258715\pi\)
0.687485 + 0.726198i \(0.258715\pi\)
\(42\) −178.716 −0.656583
\(43\) −296.066 −1.04999 −0.524995 0.851105i \(-0.675933\pi\)
−0.524995 + 0.851105i \(0.675933\pi\)
\(44\) −815.322 −2.79351
\(45\) 0 0
\(46\) 368.009 1.17956
\(47\) 453.133 1.40630 0.703152 0.711040i \(-0.251775\pi\)
0.703152 + 0.711040i \(0.251775\pi\)
\(48\) −56.8641 −0.170992
\(49\) −308.596 −0.899697
\(50\) 0 0
\(51\) 312.458 0.857898
\(52\) 708.945 1.89064
\(53\) −727.330 −1.88503 −0.942514 0.334167i \(-0.891545\pi\)
−0.942514 + 0.334167i \(0.891545\pi\)
\(54\) 262.756 0.662159
\(55\) 0 0
\(56\) −118.306 −0.282310
\(57\) −827.471 −1.92283
\(58\) −889.785 −2.01439
\(59\) −188.286 −0.415470 −0.207735 0.978185i \(-0.566609\pi\)
−0.207735 + 0.978185i \(0.566609\pi\)
\(60\) 0 0
\(61\) 815.194 1.71106 0.855532 0.517750i \(-0.173230\pi\)
0.855532 + 0.517750i \(0.173230\pi\)
\(62\) −148.962 −0.305133
\(63\) 107.786 0.215552
\(64\) −835.033 −1.63092
\(65\) 0 0
\(66\) 1993.87 3.71862
\(67\) 1022.81 1.86503 0.932513 0.361137i \(-0.117611\pi\)
0.932513 + 0.361137i \(0.117611\pi\)
\(68\) 577.920 1.03063
\(69\) −548.060 −0.956213
\(70\) 0 0
\(71\) −432.215 −0.722458 −0.361229 0.932477i \(-0.617643\pi\)
−0.361229 + 0.932477i \(0.617643\pi\)
\(72\) −370.648 −0.606684
\(73\) 515.790 0.826968 0.413484 0.910511i \(-0.364312\pi\)
0.413484 + 0.910511i \(0.364312\pi\)
\(74\) 639.182 1.00410
\(75\) 0 0
\(76\) −1530.48 −2.30998
\(77\) −383.833 −0.568076
\(78\) −1733.73 −2.51674
\(79\) 1025.94 1.46111 0.730554 0.682855i \(-0.239262\pi\)
0.730554 + 0.682855i \(0.239262\pi\)
\(80\) 0 0
\(81\) −887.472 −1.21738
\(82\) −1632.73 −2.19884
\(83\) −83.0000 −0.109764
\(84\) 492.277 0.639427
\(85\) 0 0
\(86\) 1339.16 1.67913
\(87\) 1325.12 1.63296
\(88\) 1319.90 1.59889
\(89\) 405.444 0.482887 0.241444 0.970415i \(-0.422379\pi\)
0.241444 + 0.970415i \(0.422379\pi\)
\(90\) 0 0
\(91\) 333.754 0.384472
\(92\) −1013.69 −1.14874
\(93\) 221.843 0.247356
\(94\) −2049.61 −2.24894
\(95\) 0 0
\(96\) 1344.15 1.42903
\(97\) −260.768 −0.272959 −0.136479 0.990643i \(-0.543579\pi\)
−0.136479 + 0.990643i \(0.543579\pi\)
\(98\) 1395.84 1.43878
\(99\) −1202.53 −1.22080
\(100\) 0 0
\(101\) −1207.14 −1.18926 −0.594628 0.804001i \(-0.702701\pi\)
−0.594628 + 0.804001i \(0.702701\pi\)
\(102\) −1413.30 −1.37194
\(103\) 344.234 0.329305 0.164652 0.986352i \(-0.447350\pi\)
0.164652 + 0.986352i \(0.447350\pi\)
\(104\) −1147.69 −1.08212
\(105\) 0 0
\(106\) 3289.85 3.01451
\(107\) −113.688 −0.102717 −0.0513583 0.998680i \(-0.516355\pi\)
−0.0513583 + 0.998680i \(0.516355\pi\)
\(108\) −723.767 −0.644857
\(109\) 1173.05 1.03081 0.515405 0.856947i \(-0.327642\pi\)
0.515405 + 0.856947i \(0.327642\pi\)
\(110\) 0 0
\(111\) −951.907 −0.813973
\(112\) −49.5140 −0.0417735
\(113\) 1704.59 1.41907 0.709534 0.704671i \(-0.248905\pi\)
0.709534 + 0.704671i \(0.248905\pi\)
\(114\) 3742.81 3.07496
\(115\) 0 0
\(116\) 2450.93 1.96175
\(117\) 1045.63 0.826230
\(118\) 851.651 0.664414
\(119\) 272.070 0.209585
\(120\) 0 0
\(121\) 2951.29 2.21735
\(122\) −3687.27 −2.73631
\(123\) 2431.55 1.78249
\(124\) 410.320 0.297160
\(125\) 0 0
\(126\) −487.536 −0.344708
\(127\) 1974.36 1.37949 0.689747 0.724050i \(-0.257722\pi\)
0.689747 + 0.724050i \(0.257722\pi\)
\(128\) 2180.67 1.50583
\(129\) −1994.35 −1.36119
\(130\) 0 0
\(131\) 1244.80 0.830217 0.415108 0.909772i \(-0.363744\pi\)
0.415108 + 0.909772i \(0.363744\pi\)
\(132\) −5492.16 −3.62145
\(133\) −720.514 −0.469748
\(134\) −4626.38 −2.98253
\(135\) 0 0
\(136\) −935.578 −0.589891
\(137\) −1369.41 −0.853992 −0.426996 0.904253i \(-0.640428\pi\)
−0.426996 + 0.904253i \(0.640428\pi\)
\(138\) 2478.98 1.52916
\(139\) 841.810 0.513679 0.256839 0.966454i \(-0.417319\pi\)
0.256839 + 0.966454i \(0.417319\pi\)
\(140\) 0 0
\(141\) 3052.39 1.82311
\(142\) 1954.99 1.15535
\(143\) −3723.57 −2.17749
\(144\) −155.125 −0.0897714
\(145\) 0 0
\(146\) −2333.01 −1.32248
\(147\) −2078.76 −1.16635
\(148\) −1760.64 −0.977863
\(149\) 2959.53 1.62721 0.813603 0.581420i \(-0.197503\pi\)
0.813603 + 0.581420i \(0.197503\pi\)
\(150\) 0 0
\(151\) 1852.29 0.998258 0.499129 0.866528i \(-0.333653\pi\)
0.499129 + 0.866528i \(0.333653\pi\)
\(152\) 2477.66 1.32214
\(153\) 852.383 0.450399
\(154\) 1736.15 0.908460
\(155\) 0 0
\(156\) 4775.59 2.45098
\(157\) 3242.63 1.64835 0.824173 0.566338i \(-0.191640\pi\)
0.824173 + 0.566338i \(0.191640\pi\)
\(158\) −4640.53 −2.33659
\(159\) −4899.44 −2.44371
\(160\) 0 0
\(161\) −477.220 −0.233604
\(162\) 4014.20 1.94682
\(163\) 3916.00 1.88175 0.940873 0.338760i \(-0.110008\pi\)
0.940873 + 0.338760i \(0.110008\pi\)
\(164\) 4497.39 2.14138
\(165\) 0 0
\(166\) 375.425 0.175534
\(167\) −995.910 −0.461472 −0.230736 0.973016i \(-0.574113\pi\)
−0.230736 + 0.973016i \(0.574113\pi\)
\(168\) −796.934 −0.365981
\(169\) 1040.75 0.473716
\(170\) 0 0
\(171\) −2257.34 −1.00949
\(172\) −3688.75 −1.63526
\(173\) 177.521 0.0780152 0.0390076 0.999239i \(-0.487580\pi\)
0.0390076 + 0.999239i \(0.487580\pi\)
\(174\) −5993.77 −2.61142
\(175\) 0 0
\(176\) 552.410 0.236588
\(177\) −1268.33 −0.538607
\(178\) −1833.90 −0.772228
\(179\) −2552.45 −1.06581 −0.532903 0.846176i \(-0.678899\pi\)
−0.532903 + 0.846176i \(0.678899\pi\)
\(180\) 0 0
\(181\) −4589.91 −1.88489 −0.942446 0.334360i \(-0.891480\pi\)
−0.942446 + 0.334360i \(0.891480\pi\)
\(182\) −1509.63 −0.614842
\(183\) 5491.30 2.21819
\(184\) 1641.03 0.657492
\(185\) 0 0
\(186\) −1003.44 −0.395568
\(187\) −3035.39 −1.18700
\(188\) 5645.69 2.19018
\(189\) −340.732 −0.131135
\(190\) 0 0
\(191\) 1116.49 0.422964 0.211482 0.977382i \(-0.432171\pi\)
0.211482 + 0.977382i \(0.432171\pi\)
\(192\) −5624.94 −2.11430
\(193\) 2539.65 0.947192 0.473596 0.880742i \(-0.342956\pi\)
0.473596 + 0.880742i \(0.342956\pi\)
\(194\) 1179.50 0.436512
\(195\) 0 0
\(196\) −3844.87 −1.40119
\(197\) −4980.87 −1.80138 −0.900690 0.434462i \(-0.856939\pi\)
−0.900690 + 0.434462i \(0.856939\pi\)
\(198\) 5439.27 1.95228
\(199\) −226.366 −0.0806366 −0.0403183 0.999187i \(-0.512837\pi\)
−0.0403183 + 0.999187i \(0.512837\pi\)
\(200\) 0 0
\(201\) 6889.88 2.41778
\(202\) 5460.11 1.90184
\(203\) 1153.84 0.398934
\(204\) 3892.98 1.33609
\(205\) 0 0
\(206\) −1557.04 −0.526620
\(207\) −1495.11 −0.502015
\(208\) −480.336 −0.160122
\(209\) 8038.52 2.66046
\(210\) 0 0
\(211\) 5290.15 1.72601 0.863007 0.505192i \(-0.168578\pi\)
0.863007 + 0.505192i \(0.168578\pi\)
\(212\) −9061.97 −2.93575
\(213\) −2911.49 −0.936581
\(214\) 514.234 0.164263
\(215\) 0 0
\(216\) 1171.69 0.369089
\(217\) 193.168 0.0604292
\(218\) −5305.94 −1.64846
\(219\) 3474.46 1.07207
\(220\) 0 0
\(221\) 2639.36 0.803360
\(222\) 4305.65 1.30170
\(223\) −6063.77 −1.82090 −0.910448 0.413624i \(-0.864263\pi\)
−0.910448 + 0.413624i \(0.864263\pi\)
\(224\) 1170.41 0.349113
\(225\) 0 0
\(226\) −7710.20 −2.26936
\(227\) −5046.09 −1.47542 −0.737711 0.675116i \(-0.764093\pi\)
−0.737711 + 0.675116i \(0.764093\pi\)
\(228\) −10309.6 −2.99462
\(229\) 265.451 0.0766003 0.0383002 0.999266i \(-0.487806\pi\)
0.0383002 + 0.999266i \(0.487806\pi\)
\(230\) 0 0
\(231\) −2585.57 −0.736443
\(232\) −3967.75 −1.12283
\(233\) −2146.70 −0.603585 −0.301792 0.953374i \(-0.597585\pi\)
−0.301792 + 0.953374i \(0.597585\pi\)
\(234\) −4729.60 −1.32130
\(235\) 0 0
\(236\) −2345.89 −0.647054
\(237\) 6910.94 1.89415
\(238\) −1230.62 −0.335166
\(239\) −1713.91 −0.463864 −0.231932 0.972732i \(-0.574505\pi\)
−0.231932 + 0.972732i \(0.574505\pi\)
\(240\) 0 0
\(241\) 5516.40 1.47445 0.737225 0.675647i \(-0.236136\pi\)
0.737225 + 0.675647i \(0.236136\pi\)
\(242\) −13349.2 −3.54596
\(243\) −4409.73 −1.16413
\(244\) 10156.7 2.66481
\(245\) 0 0
\(246\) −10998.4 −2.85053
\(247\) −6989.72 −1.80059
\(248\) −664.256 −0.170082
\(249\) −559.104 −0.142296
\(250\) 0 0
\(251\) −3896.23 −0.979792 −0.489896 0.871781i \(-0.662965\pi\)
−0.489896 + 0.871781i \(0.662965\pi\)
\(252\) 1342.93 0.335701
\(253\) 5324.17 1.32303
\(254\) −8930.39 −2.20607
\(255\) 0 0
\(256\) −3183.34 −0.777182
\(257\) 5029.31 1.22070 0.610350 0.792132i \(-0.291029\pi\)
0.610350 + 0.792132i \(0.291029\pi\)
\(258\) 9020.84 2.17679
\(259\) −828.866 −0.198854
\(260\) 0 0
\(261\) 3614.92 0.857310
\(262\) −5630.45 −1.32767
\(263\) −6106.31 −1.43168 −0.715839 0.698265i \(-0.753956\pi\)
−0.715839 + 0.698265i \(0.753956\pi\)
\(264\) 8891.11 2.07277
\(265\) 0 0
\(266\) 3259.02 0.751216
\(267\) 2731.15 0.626006
\(268\) 12743.5 2.90460
\(269\) 860.994 0.195151 0.0975757 0.995228i \(-0.468891\pi\)
0.0975757 + 0.995228i \(0.468891\pi\)
\(270\) 0 0
\(271\) −5692.97 −1.27610 −0.638050 0.769995i \(-0.720259\pi\)
−0.638050 + 0.769995i \(0.720259\pi\)
\(272\) −391.562 −0.0872865
\(273\) 2248.23 0.498422
\(274\) 6194.12 1.36569
\(275\) 0 0
\(276\) −6828.40 −1.48921
\(277\) −555.413 −0.120475 −0.0602375 0.998184i \(-0.519186\pi\)
−0.0602375 + 0.998184i \(0.519186\pi\)
\(278\) −3807.66 −0.821469
\(279\) 605.187 0.129862
\(280\) 0 0
\(281\) −1313.68 −0.278889 −0.139444 0.990230i \(-0.544532\pi\)
−0.139444 + 0.990230i \(0.544532\pi\)
\(282\) −13806.5 −2.91549
\(283\) 3620.37 0.760456 0.380228 0.924893i \(-0.375846\pi\)
0.380228 + 0.924893i \(0.375846\pi\)
\(284\) −5385.07 −1.12516
\(285\) 0 0
\(286\) 16842.4 3.48221
\(287\) 2117.26 0.435463
\(288\) 3666.84 0.750246
\(289\) −2761.44 −0.562068
\(290\) 0 0
\(291\) −1756.58 −0.353858
\(292\) 6426.34 1.28792
\(293\) 556.667 0.110993 0.0554963 0.998459i \(-0.482326\pi\)
0.0554963 + 0.998459i \(0.482326\pi\)
\(294\) 9402.63 1.86521
\(295\) 0 0
\(296\) 2850.25 0.559688
\(297\) 3801.42 0.742697
\(298\) −13386.5 −2.60221
\(299\) −4629.52 −0.895424
\(300\) 0 0
\(301\) −1736.57 −0.332539
\(302\) −8378.24 −1.59640
\(303\) −8131.52 −1.54173
\(304\) 1036.96 0.195637
\(305\) 0 0
\(306\) −3855.49 −0.720273
\(307\) −2266.06 −0.421273 −0.210636 0.977564i \(-0.567554\pi\)
−0.210636 + 0.977564i \(0.567554\pi\)
\(308\) −4782.26 −0.884723
\(309\) 2318.83 0.426905
\(310\) 0 0
\(311\) −68.4613 −0.0124826 −0.00624130 0.999981i \(-0.501987\pi\)
−0.00624130 + 0.999981i \(0.501987\pi\)
\(312\) −7731.08 −1.40284
\(313\) −1158.53 −0.209214 −0.104607 0.994514i \(-0.533358\pi\)
−0.104607 + 0.994514i \(0.533358\pi\)
\(314\) −14667.0 −2.63601
\(315\) 0 0
\(316\) 12782.4 2.27553
\(317\) 5008.05 0.887320 0.443660 0.896195i \(-0.353680\pi\)
0.443660 + 0.896195i \(0.353680\pi\)
\(318\) 22161.1 3.90796
\(319\) −12873.0 −2.25940
\(320\) 0 0
\(321\) −765.828 −0.133160
\(322\) 2158.55 0.373576
\(323\) −5697.90 −0.981547
\(324\) −11057.2 −1.89595
\(325\) 0 0
\(326\) −17712.8 −3.00926
\(327\) 7901.92 1.33632
\(328\) −7280.69 −1.22564
\(329\) 2657.85 0.445386
\(330\) 0 0
\(331\) 6572.56 1.09142 0.545710 0.837974i \(-0.316260\pi\)
0.545710 + 0.837974i \(0.316260\pi\)
\(332\) −1034.12 −0.170947
\(333\) −2596.80 −0.427338
\(334\) 4504.69 0.737981
\(335\) 0 0
\(336\) −333.536 −0.0541544
\(337\) 10274.9 1.66086 0.830431 0.557122i \(-0.188094\pi\)
0.830431 + 0.557122i \(0.188094\pi\)
\(338\) −4707.52 −0.757560
\(339\) 11482.5 1.83965
\(340\) 0 0
\(341\) −2155.11 −0.342246
\(342\) 10210.4 1.61436
\(343\) −3821.93 −0.601647
\(344\) 5971.61 0.935952
\(345\) 0 0
\(346\) −802.959 −0.124761
\(347\) 12524.4 1.93759 0.968797 0.247855i \(-0.0797256\pi\)
0.968797 + 0.247855i \(0.0797256\pi\)
\(348\) 16510.0 2.54318
\(349\) 135.155 0.0207298 0.0103649 0.999946i \(-0.496701\pi\)
0.0103649 + 0.999946i \(0.496701\pi\)
\(350\) 0 0
\(351\) −3305.45 −0.502654
\(352\) −13057.9 −1.97724
\(353\) −5754.61 −0.867669 −0.433835 0.900993i \(-0.642840\pi\)
−0.433835 + 0.900993i \(0.642840\pi\)
\(354\) 5736.89 0.861334
\(355\) 0 0
\(356\) 5051.52 0.752050
\(357\) 1832.72 0.271702
\(358\) 11545.2 1.70443
\(359\) −820.184 −0.120578 −0.0602892 0.998181i \(-0.519202\pi\)
−0.0602892 + 0.998181i \(0.519202\pi\)
\(360\) 0 0
\(361\) 8230.55 1.19996
\(362\) 20761.0 3.01430
\(363\) 19880.5 2.87453
\(364\) 4158.31 0.598777
\(365\) 0 0
\(366\) −24838.2 −3.54730
\(367\) 2135.79 0.303780 0.151890 0.988397i \(-0.451464\pi\)
0.151890 + 0.988397i \(0.451464\pi\)
\(368\) 686.811 0.0972895
\(369\) 6633.26 0.935810
\(370\) 0 0
\(371\) −4266.15 −0.597001
\(372\) 2763.99 0.385232
\(373\) 2760.94 0.383261 0.191630 0.981467i \(-0.438622\pi\)
0.191630 + 0.981467i \(0.438622\pi\)
\(374\) 13729.6 1.89824
\(375\) 0 0
\(376\) −9139.65 −1.25357
\(377\) 11193.4 1.52915
\(378\) 1541.19 0.209710
\(379\) 8327.71 1.12867 0.564334 0.825546i \(-0.309133\pi\)
0.564334 + 0.825546i \(0.309133\pi\)
\(380\) 0 0
\(381\) 13299.6 1.78835
\(382\) −5050.08 −0.676399
\(383\) 4449.55 0.593633 0.296816 0.954935i \(-0.404075\pi\)
0.296816 + 0.954935i \(0.404075\pi\)
\(384\) 14689.4 1.95213
\(385\) 0 0
\(386\) −11487.3 −1.51474
\(387\) −5440.59 −0.714627
\(388\) −3248.97 −0.425106
\(389\) −531.074 −0.0692199 −0.0346099 0.999401i \(-0.511019\pi\)
−0.0346099 + 0.999401i \(0.511019\pi\)
\(390\) 0 0
\(391\) −3773.90 −0.488118
\(392\) 6224.35 0.801982
\(393\) 8385.19 1.07628
\(394\) 22529.4 2.88075
\(395\) 0 0
\(396\) −14982.6 −1.90127
\(397\) 6459.58 0.816617 0.408309 0.912844i \(-0.366119\pi\)
0.408309 + 0.912844i \(0.366119\pi\)
\(398\) 1023.90 0.128953
\(399\) −4853.52 −0.608973
\(400\) 0 0
\(401\) 6989.37 0.870405 0.435202 0.900333i \(-0.356677\pi\)
0.435202 + 0.900333i \(0.356677\pi\)
\(402\) −31164.2 −3.86649
\(403\) 1873.93 0.231631
\(404\) −15040.0 −1.85215
\(405\) 0 0
\(406\) −5219.03 −0.637970
\(407\) 9247.36 1.12623
\(408\) −6302.24 −0.764723
\(409\) −1983.57 −0.239807 −0.119904 0.992786i \(-0.538259\pi\)
−0.119904 + 0.992786i \(0.538259\pi\)
\(410\) 0 0
\(411\) −9224.64 −1.10710
\(412\) 4288.89 0.512860
\(413\) −1104.39 −0.131582
\(414\) 6762.64 0.802816
\(415\) 0 0
\(416\) 11354.2 1.33818
\(417\) 5670.59 0.665924
\(418\) −36359.7 −4.25458
\(419\) 6092.50 0.710353 0.355177 0.934799i \(-0.384421\pi\)
0.355177 + 0.934799i \(0.384421\pi\)
\(420\) 0 0
\(421\) 3594.15 0.416076 0.208038 0.978121i \(-0.433292\pi\)
0.208038 + 0.978121i \(0.433292\pi\)
\(422\) −23928.3 −2.76022
\(423\) 8326.91 0.957136
\(424\) 14670.2 1.68030
\(425\) 0 0
\(426\) 13169.2 1.49777
\(427\) 4781.51 0.541905
\(428\) −1416.47 −0.159971
\(429\) −25082.7 −2.82286
\(430\) 0 0
\(431\) 6771.79 0.756812 0.378406 0.925640i \(-0.376472\pi\)
0.378406 + 0.925640i \(0.376472\pi\)
\(432\) 490.379 0.0546143
\(433\) −7698.42 −0.854417 −0.427208 0.904153i \(-0.640503\pi\)
−0.427208 + 0.904153i \(0.640503\pi\)
\(434\) −873.737 −0.0966376
\(435\) 0 0
\(436\) 14615.3 1.60539
\(437\) 9994.29 1.09403
\(438\) −15715.6 −1.71443
\(439\) 7802.65 0.848291 0.424146 0.905594i \(-0.360574\pi\)
0.424146 + 0.905594i \(0.360574\pi\)
\(440\) 0 0
\(441\) −5670.85 −0.612337
\(442\) −11938.3 −1.28472
\(443\) −11011.7 −1.18100 −0.590500 0.807038i \(-0.701069\pi\)
−0.590500 + 0.807038i \(0.701069\pi\)
\(444\) −11860.0 −1.26768
\(445\) 0 0
\(446\) 27427.5 2.91195
\(447\) 19935.9 2.10948
\(448\) −4897.88 −0.516525
\(449\) 7173.28 0.753960 0.376980 0.926221i \(-0.376963\pi\)
0.376980 + 0.926221i \(0.376963\pi\)
\(450\) 0 0
\(451\) −23621.5 −2.46628
\(452\) 21237.9 2.21006
\(453\) 12477.4 1.29412
\(454\) 22824.4 2.35948
\(455\) 0 0
\(456\) 16690.0 1.71399
\(457\) −7868.84 −0.805446 −0.402723 0.915322i \(-0.631936\pi\)
−0.402723 + 0.915322i \(0.631936\pi\)
\(458\) −1200.68 −0.122498
\(459\) −2694.54 −0.274010
\(460\) 0 0
\(461\) 9634.02 0.973321 0.486660 0.873591i \(-0.338215\pi\)
0.486660 + 0.873591i \(0.338215\pi\)
\(462\) 11695.0 1.17771
\(463\) 4248.25 0.426421 0.213211 0.977006i \(-0.431608\pi\)
0.213211 + 0.977006i \(0.431608\pi\)
\(464\) −1660.60 −0.166145
\(465\) 0 0
\(466\) 9709.95 0.965246
\(467\) −3925.28 −0.388951 −0.194476 0.980907i \(-0.562300\pi\)
−0.194476 + 0.980907i \(0.562300\pi\)
\(468\) 13027.8 1.28677
\(469\) 5999.31 0.590666
\(470\) 0 0
\(471\) 21843.0 2.13688
\(472\) 3797.70 0.370346
\(473\) 19374.3 1.88336
\(474\) −31259.5 −3.02910
\(475\) 0 0
\(476\) 3389.78 0.326408
\(477\) −13365.6 −1.28296
\(478\) 7752.33 0.741806
\(479\) −13728.7 −1.30957 −0.654783 0.755817i \(-0.727240\pi\)
−0.654783 + 0.755817i \(0.727240\pi\)
\(480\) 0 0
\(481\) −8040.85 −0.762227
\(482\) −24951.7 −2.35792
\(483\) −3214.64 −0.302839
\(484\) 36770.8 3.45331
\(485\) 0 0
\(486\) 19946.0 1.86167
\(487\) −19.3960 −0.00180476 −0.000902379 1.00000i \(-0.500287\pi\)
−0.000902379 1.00000i \(0.500287\pi\)
\(488\) −16442.4 −1.52523
\(489\) 26378.9 2.43946
\(490\) 0 0
\(491\) 13917.1 1.27916 0.639580 0.768724i \(-0.279108\pi\)
0.639580 + 0.768724i \(0.279108\pi\)
\(492\) 30295.3 2.77605
\(493\) 9124.67 0.833579
\(494\) 31615.8 2.87948
\(495\) 0 0
\(496\) −278.007 −0.0251671
\(497\) −2535.16 −0.228807
\(498\) 2528.93 0.227559
\(499\) −14102.7 −1.26518 −0.632591 0.774486i \(-0.718008\pi\)
−0.632591 + 0.774486i \(0.718008\pi\)
\(500\) 0 0
\(501\) −6708.64 −0.598244
\(502\) 17623.4 1.56687
\(503\) −13565.5 −1.20249 −0.601246 0.799064i \(-0.705329\pi\)
−0.601246 + 0.799064i \(0.705329\pi\)
\(504\) −2174.03 −0.192141
\(505\) 0 0
\(506\) −24082.2 −2.11578
\(507\) 7010.71 0.614116
\(508\) 24598.9 2.14843
\(509\) 18271.4 1.59109 0.795545 0.605895i \(-0.207185\pi\)
0.795545 + 0.605895i \(0.207185\pi\)
\(510\) 0 0
\(511\) 3025.36 0.261906
\(512\) −3046.58 −0.262970
\(513\) 7135.86 0.614144
\(514\) −22748.5 −1.95213
\(515\) 0 0
\(516\) −24848.1 −2.11992
\(517\) −29652.7 −2.52248
\(518\) 3749.11 0.318005
\(519\) 1195.81 0.101137
\(520\) 0 0
\(521\) 13617.3 1.14508 0.572539 0.819878i \(-0.305959\pi\)
0.572539 + 0.819878i \(0.305959\pi\)
\(522\) −16351.0 −1.37100
\(523\) 7770.59 0.649683 0.324841 0.945769i \(-0.394689\pi\)
0.324841 + 0.945769i \(0.394689\pi\)
\(524\) 15509.2 1.29298
\(525\) 0 0
\(526\) 27620.0 2.28952
\(527\) 1527.59 0.126268
\(528\) 3721.14 0.306708
\(529\) −5547.46 −0.455943
\(530\) 0 0
\(531\) −3459.99 −0.282770
\(532\) −8977.05 −0.731587
\(533\) 20539.6 1.66917
\(534\) −12353.5 −1.00110
\(535\) 0 0
\(536\) −20630.1 −1.66247
\(537\) −17193.8 −1.38169
\(538\) −3894.44 −0.312084
\(539\) 20194.3 1.61378
\(540\) 0 0
\(541\) 12848.5 1.02107 0.510536 0.859857i \(-0.329447\pi\)
0.510536 + 0.859857i \(0.329447\pi\)
\(542\) 25750.4 2.04072
\(543\) −30918.5 −2.44354
\(544\) 9255.73 0.729478
\(545\) 0 0
\(546\) −10169.2 −0.797070
\(547\) 2607.39 0.203810 0.101905 0.994794i \(-0.467506\pi\)
0.101905 + 0.994794i \(0.467506\pi\)
\(548\) −17061.8 −1.33001
\(549\) 14980.2 1.16456
\(550\) 0 0
\(551\) −24164.6 −1.86832
\(552\) 11054.3 0.852360
\(553\) 6017.65 0.462743
\(554\) 2512.24 0.192662
\(555\) 0 0
\(556\) 10488.3 0.800005
\(557\) 8799.57 0.669389 0.334695 0.942327i \(-0.391367\pi\)
0.334695 + 0.942327i \(0.391367\pi\)
\(558\) −2737.38 −0.207674
\(559\) −16846.5 −1.27465
\(560\) 0 0
\(561\) −20447.0 −1.53881
\(562\) 5942.03 0.445995
\(563\) 11831.0 0.885647 0.442823 0.896609i \(-0.353977\pi\)
0.442823 + 0.896609i \(0.353977\pi\)
\(564\) 38030.4 2.83931
\(565\) 0 0
\(566\) −16375.6 −1.21611
\(567\) −5205.46 −0.385553
\(568\) 8717.74 0.643993
\(569\) −1354.82 −0.0998193 −0.0499096 0.998754i \(-0.515893\pi\)
−0.0499096 + 0.998754i \(0.515893\pi\)
\(570\) 0 0
\(571\) 15591.7 1.14272 0.571358 0.820701i \(-0.306417\pi\)
0.571358 + 0.820701i \(0.306417\pi\)
\(572\) −46392.8 −3.39123
\(573\) 7520.87 0.548323
\(574\) −9576.75 −0.696386
\(575\) 0 0
\(576\) −15344.8 −1.11001
\(577\) 16372.8 1.18130 0.590649 0.806928i \(-0.298872\pi\)
0.590649 + 0.806928i \(0.298872\pi\)
\(578\) 12490.5 0.898853
\(579\) 17107.6 1.22792
\(580\) 0 0
\(581\) −486.836 −0.0347631
\(582\) 7945.36 0.565886
\(583\) 47595.9 3.38117
\(584\) −10403.4 −0.737152
\(585\) 0 0
\(586\) −2517.91 −0.177498
\(587\) 25181.6 1.77063 0.885313 0.464996i \(-0.153944\pi\)
0.885313 + 0.464996i \(0.153944\pi\)
\(588\) −25899.8 −1.81648
\(589\) −4045.48 −0.283007
\(590\) 0 0
\(591\) −33552.1 −2.33528
\(592\) 1192.90 0.0828173
\(593\) −6008.36 −0.416077 −0.208039 0.978121i \(-0.566708\pi\)
−0.208039 + 0.978121i \(0.566708\pi\)
\(594\) −17194.5 −1.18771
\(595\) 0 0
\(596\) 36873.4 2.53422
\(597\) −1524.85 −0.104536
\(598\) 20940.2 1.43195
\(599\) 1039.51 0.0709069 0.0354535 0.999371i \(-0.488712\pi\)
0.0354535 + 0.999371i \(0.488712\pi\)
\(600\) 0 0
\(601\) −5984.93 −0.406207 −0.203103 0.979157i \(-0.565103\pi\)
−0.203103 + 0.979157i \(0.565103\pi\)
\(602\) 7854.83 0.531792
\(603\) 18795.5 1.26934
\(604\) 23078.1 1.55469
\(605\) 0 0
\(606\) 36780.4 2.46551
\(607\) 3563.84 0.238306 0.119153 0.992876i \(-0.461982\pi\)
0.119153 + 0.992876i \(0.461982\pi\)
\(608\) −24511.6 −1.63500
\(609\) 7772.48 0.517170
\(610\) 0 0
\(611\) 25783.9 1.70721
\(612\) 10620.0 0.701453
\(613\) −16062.7 −1.05835 −0.529174 0.848514i \(-0.677498\pi\)
−0.529174 + 0.848514i \(0.677498\pi\)
\(614\) 10249.8 0.673695
\(615\) 0 0
\(616\) 7741.87 0.506378
\(617\) 9083.93 0.592715 0.296357 0.955077i \(-0.404228\pi\)
0.296357 + 0.955077i \(0.404228\pi\)
\(618\) −10488.5 −0.682701
\(619\) −4218.77 −0.273936 −0.136968 0.990575i \(-0.543736\pi\)
−0.136968 + 0.990575i \(0.543736\pi\)
\(620\) 0 0
\(621\) 4726.31 0.305411
\(622\) 309.663 0.0199620
\(623\) 2378.13 0.152934
\(624\) −3235.64 −0.207579
\(625\) 0 0
\(626\) 5240.24 0.334572
\(627\) 54149.0 3.44897
\(628\) 40400.7 2.56714
\(629\) −6554.75 −0.415509
\(630\) 0 0
\(631\) 11752.6 0.741464 0.370732 0.928740i \(-0.379107\pi\)
0.370732 + 0.928740i \(0.379107\pi\)
\(632\) −20693.1 −1.30242
\(633\) 35635.5 2.23757
\(634\) −22652.4 −1.41899
\(635\) 0 0
\(636\) −61043.2 −3.80585
\(637\) −17559.5 −1.09220
\(638\) 58226.9 3.61320
\(639\) −7942.52 −0.491708
\(640\) 0 0
\(641\) −7409.24 −0.456548 −0.228274 0.973597i \(-0.573308\pi\)
−0.228274 + 0.973597i \(0.573308\pi\)
\(642\) 3463.98 0.212948
\(643\) −17249.8 −1.05796 −0.528978 0.848635i \(-0.677425\pi\)
−0.528978 + 0.848635i \(0.677425\pi\)
\(644\) −5945.78 −0.363815
\(645\) 0 0
\(646\) 25772.7 1.56968
\(647\) 6716.44 0.408115 0.204057 0.978959i \(-0.434587\pi\)
0.204057 + 0.978959i \(0.434587\pi\)
\(648\) 17900.2 1.08516
\(649\) 12321.3 0.745227
\(650\) 0 0
\(651\) 1301.22 0.0783392
\(652\) 48790.3 2.93064
\(653\) −24217.5 −1.45130 −0.725652 0.688061i \(-0.758462\pi\)
−0.725652 + 0.688061i \(0.758462\pi\)
\(654\) −35741.9 −2.13703
\(655\) 0 0
\(656\) −3047.14 −0.181358
\(657\) 9478.31 0.562837
\(658\) −12022.0 −0.712256
\(659\) 2281.13 0.134841 0.0674205 0.997725i \(-0.478523\pi\)
0.0674205 + 0.997725i \(0.478523\pi\)
\(660\) 0 0
\(661\) 18590.7 1.09394 0.546969 0.837153i \(-0.315782\pi\)
0.546969 + 0.837153i \(0.315782\pi\)
\(662\) −29728.9 −1.74539
\(663\) 17779.2 1.04146
\(664\) 1674.10 0.0978429
\(665\) 0 0
\(666\) 11745.8 0.683394
\(667\) −16005.0 −0.929107
\(668\) −12408.3 −0.718698
\(669\) −40846.7 −2.36057
\(670\) 0 0
\(671\) −53345.7 −3.06913
\(672\) 7884.12 0.452584
\(673\) −12090.5 −0.692500 −0.346250 0.938142i \(-0.612545\pi\)
−0.346250 + 0.938142i \(0.612545\pi\)
\(674\) −46475.4 −2.65603
\(675\) 0 0
\(676\) 12967.0 0.737766
\(677\) −4092.55 −0.232333 −0.116166 0.993230i \(-0.537061\pi\)
−0.116166 + 0.993230i \(0.537061\pi\)
\(678\) −51937.4 −2.94195
\(679\) −1529.53 −0.0864478
\(680\) 0 0
\(681\) −33991.4 −1.91271
\(682\) 9747.97 0.547316
\(683\) 6612.31 0.370443 0.185222 0.982697i \(-0.440700\pi\)
0.185222 + 0.982697i \(0.440700\pi\)
\(684\) −28124.7 −1.57218
\(685\) 0 0
\(686\) 17287.3 0.962146
\(687\) 1788.13 0.0993032
\(688\) 2499.26 0.138493
\(689\) −41386.0 −2.28836
\(690\) 0 0
\(691\) 24193.9 1.33195 0.665975 0.745974i \(-0.268016\pi\)
0.665975 + 0.745974i \(0.268016\pi\)
\(692\) 2211.77 0.121501
\(693\) −7053.43 −0.386635
\(694\) −56650.2 −3.09858
\(695\) 0 0
\(696\) −26727.5 −1.45561
\(697\) 16743.5 0.909906
\(698\) −611.332 −0.0331508
\(699\) −14460.6 −0.782476
\(700\) 0 0
\(701\) −10638.9 −0.573220 −0.286610 0.958047i \(-0.592528\pi\)
−0.286610 + 0.958047i \(0.592528\pi\)
\(702\) 14951.1 0.803839
\(703\) 17358.7 0.931290
\(704\) 54643.9 2.92538
\(705\) 0 0
\(706\) 26029.2 1.38757
\(707\) −7080.46 −0.376645
\(708\) −15802.4 −0.838828
\(709\) 28206.6 1.49410 0.747052 0.664765i \(-0.231468\pi\)
0.747052 + 0.664765i \(0.231468\pi\)
\(710\) 0 0
\(711\) 18853.0 0.994435
\(712\) −8177.76 −0.430442
\(713\) −2679.45 −0.140738
\(714\) −8289.72 −0.434503
\(715\) 0 0
\(716\) −31801.6 −1.65989
\(717\) −11545.2 −0.601345
\(718\) 3709.85 0.192828
\(719\) −31730.6 −1.64583 −0.822914 0.568166i \(-0.807653\pi\)
−0.822914 + 0.568166i \(0.807653\pi\)
\(720\) 0 0
\(721\) 2019.10 0.104293
\(722\) −37228.3 −1.91897
\(723\) 37159.5 1.91145
\(724\) −57186.7 −2.93553
\(725\) 0 0
\(726\) −89923.1 −4.59691
\(727\) −20767.0 −1.05943 −0.529716 0.848175i \(-0.677701\pi\)
−0.529716 + 0.848175i \(0.677701\pi\)
\(728\) −6731.78 −0.342715
\(729\) −5743.03 −0.291776
\(730\) 0 0
\(731\) −13733.0 −0.694846
\(732\) 68417.4 3.45462
\(733\) 17354.9 0.874511 0.437256 0.899337i \(-0.355951\pi\)
0.437256 + 0.899337i \(0.355951\pi\)
\(734\) −9660.56 −0.485801
\(735\) 0 0
\(736\) −16234.8 −0.813076
\(737\) −66932.2 −3.34529
\(738\) −30003.5 −1.49654
\(739\) −30293.5 −1.50793 −0.753967 0.656912i \(-0.771862\pi\)
−0.753967 + 0.656912i \(0.771862\pi\)
\(740\) 0 0
\(741\) −47084.1 −2.33425
\(742\) 19296.6 0.954717
\(743\) −12672.7 −0.625731 −0.312865 0.949797i \(-0.601289\pi\)
−0.312865 + 0.949797i \(0.601289\pi\)
\(744\) −4474.55 −0.220491
\(745\) 0 0
\(746\) −12488.3 −0.612906
\(747\) −1525.23 −0.0747060
\(748\) −37818.6 −1.84864
\(749\) −666.839 −0.0325311
\(750\) 0 0
\(751\) −11849.2 −0.575745 −0.287872 0.957669i \(-0.592948\pi\)
−0.287872 + 0.957669i \(0.592948\pi\)
\(752\) −3825.16 −0.185491
\(753\) −26245.7 −1.27018
\(754\) −50629.9 −2.44540
\(755\) 0 0
\(756\) −4245.25 −0.204231
\(757\) 10176.3 0.488591 0.244295 0.969701i \(-0.421443\pi\)
0.244295 + 0.969701i \(0.421443\pi\)
\(758\) −37667.8 −1.80495
\(759\) 35864.6 1.71516
\(760\) 0 0
\(761\) −9435.81 −0.449472 −0.224736 0.974420i \(-0.572152\pi\)
−0.224736 + 0.974420i \(0.572152\pi\)
\(762\) −60156.8 −2.85991
\(763\) 6880.54 0.326464
\(764\) 13910.6 0.658725
\(765\) 0 0
\(766\) −20126.1 −0.949331
\(767\) −10713.7 −0.504366
\(768\) −21443.6 −1.00752
\(769\) 26037.0 1.22096 0.610480 0.792031i \(-0.290976\pi\)
0.610480 + 0.792031i \(0.290976\pi\)
\(770\) 0 0
\(771\) 33878.4 1.58249
\(772\) 31642.1 1.47516
\(773\) 603.106 0.0280624 0.0140312 0.999902i \(-0.495534\pi\)
0.0140312 + 0.999902i \(0.495534\pi\)
\(774\) 24608.8 1.14282
\(775\) 0 0
\(776\) 5259.66 0.243313
\(777\) −5583.40 −0.257791
\(778\) 2402.15 0.110696
\(779\) −44341.2 −2.03939
\(780\) 0 0
\(781\) 28283.8 1.29587
\(782\) 17070.1 0.780593
\(783\) −11427.4 −0.521562
\(784\) 2605.04 0.118670
\(785\) 0 0
\(786\) −37927.8 −1.72117
\(787\) −36411.6 −1.64922 −0.824609 0.565704i \(-0.808605\pi\)
−0.824609 + 0.565704i \(0.808605\pi\)
\(788\) −62057.7 −2.80547
\(789\) −41133.3 −1.85600
\(790\) 0 0
\(791\) 9998.28 0.449429
\(792\) 24254.9 1.08821
\(793\) 46385.6 2.07717
\(794\) −29217.9 −1.30592
\(795\) 0 0
\(796\) −2820.35 −0.125584
\(797\) 17099.3 0.759962 0.379981 0.924994i \(-0.375931\pi\)
0.379981 + 0.924994i \(0.375931\pi\)
\(798\) 21953.4 0.973862
\(799\) 21018.5 0.930641
\(800\) 0 0
\(801\) 7450.56 0.328655
\(802\) −31614.2 −1.39194
\(803\) −33752.9 −1.48333
\(804\) 85842.5 3.76546
\(805\) 0 0
\(806\) −8476.14 −0.370421
\(807\) 5799.82 0.252991
\(808\) 24347.9 1.06009
\(809\) 26965.2 1.17187 0.585936 0.810357i \(-0.300727\pi\)
0.585936 + 0.810357i \(0.300727\pi\)
\(810\) 0 0
\(811\) −5732.60 −0.248211 −0.124105 0.992269i \(-0.539606\pi\)
−0.124105 + 0.992269i \(0.539606\pi\)
\(812\) 14375.9 0.621301
\(813\) −38348.9 −1.65431
\(814\) −41827.6 −1.80105
\(815\) 0 0
\(816\) −2637.64 −0.113156
\(817\) 36368.6 1.55737
\(818\) 8972.05 0.383497
\(819\) 6133.16 0.261673
\(820\) 0 0
\(821\) 32257.0 1.37123 0.685613 0.727966i \(-0.259534\pi\)
0.685613 + 0.727966i \(0.259534\pi\)
\(822\) 41724.8 1.77046
\(823\) 22691.4 0.961085 0.480543 0.876971i \(-0.340440\pi\)
0.480543 + 0.876971i \(0.340440\pi\)
\(824\) −6943.16 −0.293540
\(825\) 0 0
\(826\) 4995.35 0.210424
\(827\) 26040.8 1.09495 0.547476 0.836821i \(-0.315589\pi\)
0.547476 + 0.836821i \(0.315589\pi\)
\(828\) −18627.9 −0.781839
\(829\) −20949.9 −0.877706 −0.438853 0.898559i \(-0.644615\pi\)
−0.438853 + 0.898559i \(0.644615\pi\)
\(830\) 0 0
\(831\) −3741.37 −0.156181
\(832\) −47514.4 −1.97989
\(833\) −14314.2 −0.595387
\(834\) −25649.2 −1.06494
\(835\) 0 0
\(836\) 100154. 4.14341
\(837\) −1913.11 −0.0790045
\(838\) −27557.5 −1.13599
\(839\) −19611.9 −0.807005 −0.403502 0.914979i \(-0.632207\pi\)
−0.403502 + 0.914979i \(0.632207\pi\)
\(840\) 0 0
\(841\) 14308.4 0.586673
\(842\) −16257.0 −0.665384
\(843\) −8849.22 −0.361546
\(844\) 65911.2 2.68810
\(845\) 0 0
\(846\) −37664.2 −1.53064
\(847\) 17310.8 0.702249
\(848\) 6139.81 0.248635
\(849\) 24387.5 0.985840
\(850\) 0 0
\(851\) 11497.2 0.463126
\(852\) −36274.9 −1.45863
\(853\) 3064.53 0.123010 0.0615050 0.998107i \(-0.480410\pi\)
0.0615050 + 0.998107i \(0.480410\pi\)
\(854\) −21627.7 −0.866609
\(855\) 0 0
\(856\) 2293.08 0.0915608
\(857\) 2117.85 0.0844160 0.0422080 0.999109i \(-0.486561\pi\)
0.0422080 + 0.999109i \(0.486561\pi\)
\(858\) 113454. 4.51428
\(859\) −8459.87 −0.336027 −0.168013 0.985785i \(-0.553735\pi\)
−0.168013 + 0.985785i \(0.553735\pi\)
\(860\) 0 0
\(861\) 14262.3 0.564525
\(862\) −30630.1 −1.21028
\(863\) 24613.9 0.970876 0.485438 0.874271i \(-0.338660\pi\)
0.485438 + 0.874271i \(0.338660\pi\)
\(864\) −11591.6 −0.456427
\(865\) 0 0
\(866\) 34821.4 1.36637
\(867\) −18601.6 −0.728655
\(868\) 2406.73 0.0941125
\(869\) −67136.8 −2.62078
\(870\) 0 0
\(871\) 58199.4 2.26408
\(872\) −23660.4 −0.918855
\(873\) −4791.95 −0.185777
\(874\) −45206.0 −1.74956
\(875\) 0 0
\(876\) 43289.1 1.66964
\(877\) −15233.0 −0.586523 −0.293262 0.956032i \(-0.594741\pi\)
−0.293262 + 0.956032i \(0.594741\pi\)
\(878\) −35292.8 −1.35658
\(879\) 3749.82 0.143889
\(880\) 0 0
\(881\) 3208.92 0.122714 0.0613571 0.998116i \(-0.480457\pi\)
0.0613571 + 0.998116i \(0.480457\pi\)
\(882\) 25650.3 0.979242
\(883\) 64.7286 0.00246692 0.00123346 0.999999i \(-0.499607\pi\)
0.00123346 + 0.999999i \(0.499607\pi\)
\(884\) 32884.4 1.25115
\(885\) 0 0
\(886\) 49808.1 1.88864
\(887\) 7670.60 0.290365 0.145182 0.989405i \(-0.453623\pi\)
0.145182 + 0.989405i \(0.453623\pi\)
\(888\) 19199.9 0.725569
\(889\) 11580.6 0.436895
\(890\) 0 0
\(891\) 58075.5 2.18361
\(892\) −75549.8 −2.83587
\(893\) −55662.7 −2.08587
\(894\) −90174.0 −3.37346
\(895\) 0 0
\(896\) 12790.7 0.476907
\(897\) −31185.3 −1.16081
\(898\) −32446.1 −1.20572
\(899\) 6478.47 0.240344
\(900\) 0 0
\(901\) −33737.1 −1.24744
\(902\) 106844. 3.94405
\(903\) −11697.9 −0.431097
\(904\) −34381.5 −1.26495
\(905\) 0 0
\(906\) −56437.5 −2.06955
\(907\) −49822.3 −1.82395 −0.911974 0.410248i \(-0.865442\pi\)
−0.911974 + 0.410248i \(0.865442\pi\)
\(908\) −62870.4 −2.29783
\(909\) −22182.7 −0.809412
\(910\) 0 0
\(911\) −37443.8 −1.36176 −0.680882 0.732393i \(-0.738403\pi\)
−0.680882 + 0.732393i \(0.738403\pi\)
\(912\) 6985.16 0.253620
\(913\) 5431.46 0.196884
\(914\) 35592.2 1.28806
\(915\) 0 0
\(916\) 3307.31 0.119298
\(917\) 7301.34 0.262935
\(918\) 12187.9 0.438193
\(919\) 21124.9 0.758265 0.379132 0.925342i \(-0.376222\pi\)
0.379132 + 0.925342i \(0.376222\pi\)
\(920\) 0 0
\(921\) −15264.6 −0.546130
\(922\) −43576.5 −1.55652
\(923\) −24593.6 −0.877040
\(924\) −32214.2 −1.14694
\(925\) 0 0
\(926\) −19215.7 −0.681928
\(927\) 6325.75 0.224126
\(928\) 39253.2 1.38852
\(929\) 44899.6 1.58569 0.792846 0.609423i \(-0.208599\pi\)
0.792846 + 0.609423i \(0.208599\pi\)
\(930\) 0 0
\(931\) 37907.8 1.33446
\(932\) −26746.3 −0.940025
\(933\) −461.169 −0.0161822
\(934\) 17754.8 0.622006
\(935\) 0 0
\(936\) −21090.3 −0.736495
\(937\) −18219.9 −0.635237 −0.317618 0.948219i \(-0.602883\pi\)
−0.317618 + 0.948219i \(0.602883\pi\)
\(938\) −27136.0 −0.944586
\(939\) −7804.08 −0.271221
\(940\) 0 0
\(941\) 11980.0 0.415022 0.207511 0.978233i \(-0.433464\pi\)
0.207511 + 0.978233i \(0.433464\pi\)
\(942\) −98800.0 −3.41728
\(943\) −29368.6 −1.01418
\(944\) 1589.43 0.0548003
\(945\) 0 0
\(946\) −87633.6 −3.01185
\(947\) −7091.81 −0.243350 −0.121675 0.992570i \(-0.538827\pi\)
−0.121675 + 0.992570i \(0.538827\pi\)
\(948\) 86105.0 2.94996
\(949\) 29349.1 1.00391
\(950\) 0 0
\(951\) 33735.2 1.15030
\(952\) −5487.63 −0.186822
\(953\) −47185.3 −1.60386 −0.801932 0.597415i \(-0.796194\pi\)
−0.801932 + 0.597415i \(0.796194\pi\)
\(954\) 60455.3 2.05169
\(955\) 0 0
\(956\) −21354.0 −0.722424
\(957\) −86714.8 −2.92904
\(958\) 62097.7 2.09424
\(959\) −8032.29 −0.270465
\(960\) 0 0
\(961\) −28706.4 −0.963594
\(962\) 36370.2 1.21894
\(963\) −2089.17 −0.0699093
\(964\) 68730.0 2.29631
\(965\) 0 0
\(966\) 14540.4 0.484297
\(967\) −3853.22 −0.128140 −0.0640700 0.997945i \(-0.520408\pi\)
−0.0640700 + 0.997945i \(0.520408\pi\)
\(968\) −59527.2 −1.97653
\(969\) −38382.1 −1.27246
\(970\) 0 0
\(971\) −3656.74 −0.120855 −0.0604276 0.998173i \(-0.519246\pi\)
−0.0604276 + 0.998173i \(0.519246\pi\)
\(972\) −54941.8 −1.81302
\(973\) 4937.63 0.162686
\(974\) 87.7318 0.00288615
\(975\) 0 0
\(976\) −6881.52 −0.225689
\(977\) −36862.1 −1.20709 −0.603543 0.797330i \(-0.706245\pi\)
−0.603543 + 0.797330i \(0.706245\pi\)
\(978\) −119317. −3.90115
\(979\) −26531.9 −0.866154
\(980\) 0 0
\(981\) 21556.4 0.701573
\(982\) −62949.4 −2.04562
\(983\) 7076.78 0.229618 0.114809 0.993388i \(-0.463374\pi\)
0.114809 + 0.993388i \(0.463374\pi\)
\(984\) −49044.2 −1.58889
\(985\) 0 0
\(986\) −41272.6 −1.33305
\(987\) 17903.8 0.577390
\(988\) −87086.5 −2.80424
\(989\) 24088.1 0.774475
\(990\) 0 0
\(991\) −47739.0 −1.53025 −0.765125 0.643881i \(-0.777323\pi\)
−0.765125 + 0.643881i \(0.777323\pi\)
\(992\) 6571.52 0.210329
\(993\) 44274.0 1.41490
\(994\) 11467.0 0.365906
\(995\) 0 0
\(996\) −6966.00 −0.221613
\(997\) −5961.03 −0.189356 −0.0946779 0.995508i \(-0.530182\pi\)
−0.0946779 + 0.995508i \(0.530182\pi\)
\(998\) 63789.3 2.02326
\(999\) 8208.96 0.259980
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2075.4.a.l.1.7 yes 47
5.4 even 2 2075.4.a.k.1.41 47
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2075.4.a.k.1.41 47 5.4 even 2
2075.4.a.l.1.7 yes 47 1.1 even 1 trivial