Properties

Label 2075.4.a.k.1.9
Level $2075$
Weight $4$
Character 2075.1
Self dual yes
Analytic conductor $122.429$
Analytic rank $0$
Dimension $47$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2075,4,Mod(1,2075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2075.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2075 = 5^{2} \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [47,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.428963262\)
Analytic rank: \(0\)
Dimension: \(47\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 2075.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.98801 q^{2} +4.43436 q^{3} +7.90426 q^{4} -17.6843 q^{6} -8.84879 q^{7} +0.381800 q^{8} -7.33643 q^{9} +52.4531 q^{11} +35.0504 q^{12} +0.962152 q^{13} +35.2891 q^{14} -64.7567 q^{16} +58.2046 q^{17} +29.2578 q^{18} +9.69079 q^{19} -39.2387 q^{21} -209.184 q^{22} +123.399 q^{23} +1.69304 q^{24} -3.83708 q^{26} -152.260 q^{27} -69.9432 q^{28} +33.7436 q^{29} +156.530 q^{31} +255.196 q^{32} +232.596 q^{33} -232.121 q^{34} -57.9891 q^{36} -76.7974 q^{37} -38.6470 q^{38} +4.26653 q^{39} +520.080 q^{41} +156.485 q^{42} -276.957 q^{43} +414.603 q^{44} -492.118 q^{46} -90.8164 q^{47} -287.155 q^{48} -264.699 q^{49} +258.100 q^{51} +7.60510 q^{52} +546.939 q^{53} +607.216 q^{54} -3.37846 q^{56} +42.9725 q^{57} -134.570 q^{58} +176.031 q^{59} -272.420 q^{61} -624.246 q^{62} +64.9185 q^{63} -499.673 q^{64} -927.597 q^{66} -883.433 q^{67} +460.064 q^{68} +547.196 q^{69} -1021.85 q^{71} -2.80105 q^{72} +322.584 q^{73} +306.269 q^{74} +76.5986 q^{76} -464.147 q^{77} -17.0150 q^{78} +329.789 q^{79} -477.093 q^{81} -2074.09 q^{82} +83.0000 q^{83} -310.153 q^{84} +1104.51 q^{86} +149.631 q^{87} +20.0266 q^{88} +1574.67 q^{89} -8.51388 q^{91} +975.379 q^{92} +694.112 q^{93} +362.177 q^{94} +1131.63 q^{96} -317.276 q^{97} +1055.62 q^{98} -384.819 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 47 q - q^{2} + 6 q^{3} + 229 q^{4} + 9 q^{6} + 6 q^{7} - 39 q^{8} + 531 q^{9} + 90 q^{11} - 6 q^{12} - 50 q^{13} + 115 q^{14} + 1149 q^{16} + 68 q^{17} - 8 q^{18} + 344 q^{19} + 625 q^{21} - 402 q^{22}+ \cdots + 13991 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.98801 −1.40998 −0.704988 0.709219i \(-0.749048\pi\)
−0.704988 + 0.709219i \(0.749048\pi\)
\(3\) 4.43436 0.853393 0.426697 0.904395i \(-0.359677\pi\)
0.426697 + 0.904395i \(0.359677\pi\)
\(4\) 7.90426 0.988033
\(5\) 0 0
\(6\) −17.6843 −1.20326
\(7\) −8.84879 −0.477790 −0.238895 0.971045i \(-0.576785\pi\)
−0.238895 + 0.971045i \(0.576785\pi\)
\(8\) 0.381800 0.0168733
\(9\) −7.33643 −0.271720
\(10\) 0 0
\(11\) 52.4531 1.43775 0.718873 0.695141i \(-0.244658\pi\)
0.718873 + 0.695141i \(0.244658\pi\)
\(12\) 35.0504 0.843181
\(13\) 0.962152 0.0205271 0.0102636 0.999947i \(-0.496733\pi\)
0.0102636 + 0.999947i \(0.496733\pi\)
\(14\) 35.2891 0.673672
\(15\) 0 0
\(16\) −64.7567 −1.01182
\(17\) 58.2046 0.830393 0.415197 0.909732i \(-0.363713\pi\)
0.415197 + 0.909732i \(0.363713\pi\)
\(18\) 29.2578 0.383118
\(19\) 9.69079 0.117012 0.0585058 0.998287i \(-0.481366\pi\)
0.0585058 + 0.998287i \(0.481366\pi\)
\(20\) 0 0
\(21\) −39.2387 −0.407743
\(22\) −209.184 −2.02719
\(23\) 123.399 1.11872 0.559359 0.828926i \(-0.311047\pi\)
0.559359 + 0.828926i \(0.311047\pi\)
\(24\) 1.69304 0.0143996
\(25\) 0 0
\(26\) −3.83708 −0.0289428
\(27\) −152.260 −1.08528
\(28\) −69.9432 −0.472072
\(29\) 33.7436 0.216070 0.108035 0.994147i \(-0.465544\pi\)
0.108035 + 0.994147i \(0.465544\pi\)
\(30\) 0 0
\(31\) 156.530 0.906893 0.453447 0.891283i \(-0.350194\pi\)
0.453447 + 0.891283i \(0.350194\pi\)
\(32\) 255.196 1.40977
\(33\) 232.596 1.22696
\(34\) −232.121 −1.17083
\(35\) 0 0
\(36\) −57.9891 −0.268468
\(37\) −76.7974 −0.341228 −0.170614 0.985338i \(-0.554575\pi\)
−0.170614 + 0.985338i \(0.554575\pi\)
\(38\) −38.6470 −0.164984
\(39\) 4.26653 0.0175177
\(40\) 0 0
\(41\) 520.080 1.98104 0.990522 0.137356i \(-0.0438603\pi\)
0.990522 + 0.137356i \(0.0438603\pi\)
\(42\) 156.485 0.574907
\(43\) −276.957 −0.982223 −0.491111 0.871097i \(-0.663409\pi\)
−0.491111 + 0.871097i \(0.663409\pi\)
\(44\) 414.603 1.42054
\(45\) 0 0
\(46\) −492.118 −1.57736
\(47\) −90.8164 −0.281850 −0.140925 0.990020i \(-0.545008\pi\)
−0.140925 + 0.990020i \(0.545008\pi\)
\(48\) −287.155 −0.863484
\(49\) −264.699 −0.771717
\(50\) 0 0
\(51\) 258.100 0.708652
\(52\) 7.60510 0.0202815
\(53\) 546.939 1.41751 0.708754 0.705456i \(-0.249258\pi\)
0.708754 + 0.705456i \(0.249258\pi\)
\(54\) 607.216 1.53022
\(55\) 0 0
\(56\) −3.37846 −0.00806190
\(57\) 42.9725 0.0998569
\(58\) −134.570 −0.304653
\(59\) 176.031 0.388429 0.194214 0.980959i \(-0.437784\pi\)
0.194214 + 0.980959i \(0.437784\pi\)
\(60\) 0 0
\(61\) −272.420 −0.571800 −0.285900 0.958260i \(-0.592292\pi\)
−0.285900 + 0.958260i \(0.592292\pi\)
\(62\) −624.246 −1.27870
\(63\) 64.9185 0.129825
\(64\) −499.673 −0.975924
\(65\) 0 0
\(66\) −927.597 −1.72999
\(67\) −883.433 −1.61087 −0.805437 0.592682i \(-0.798069\pi\)
−0.805437 + 0.592682i \(0.798069\pi\)
\(68\) 460.064 0.820456
\(69\) 547.196 0.954706
\(70\) 0 0
\(71\) −1021.85 −1.70805 −0.854025 0.520232i \(-0.825845\pi\)
−0.854025 + 0.520232i \(0.825845\pi\)
\(72\) −2.80105 −0.00458481
\(73\) 322.584 0.517200 0.258600 0.965985i \(-0.416739\pi\)
0.258600 + 0.965985i \(0.416739\pi\)
\(74\) 306.269 0.481123
\(75\) 0 0
\(76\) 76.5986 0.115611
\(77\) −464.147 −0.686941
\(78\) −17.0150 −0.0246996
\(79\) 329.789 0.469672 0.234836 0.972035i \(-0.424545\pi\)
0.234836 + 0.972035i \(0.424545\pi\)
\(80\) 0 0
\(81\) −477.093 −0.654449
\(82\) −2074.09 −2.79322
\(83\) 83.0000 0.109764
\(84\) −310.153 −0.402863
\(85\) 0 0
\(86\) 1104.51 1.38491
\(87\) 149.631 0.184393
\(88\) 20.0266 0.0242596
\(89\) 1574.67 1.87545 0.937725 0.347380i \(-0.112929\pi\)
0.937725 + 0.347380i \(0.112929\pi\)
\(90\) 0 0
\(91\) −8.51388 −0.00980766
\(92\) 975.379 1.10533
\(93\) 694.112 0.773937
\(94\) 362.177 0.397401
\(95\) 0 0
\(96\) 1131.63 1.20309
\(97\) −317.276 −0.332108 −0.166054 0.986117i \(-0.553103\pi\)
−0.166054 + 0.986117i \(0.553103\pi\)
\(98\) 1055.62 1.08810
\(99\) −384.819 −0.390664
\(100\) 0 0
\(101\) 49.7506 0.0490136 0.0245068 0.999700i \(-0.492198\pi\)
0.0245068 + 0.999700i \(0.492198\pi\)
\(102\) −1029.31 −0.999183
\(103\) −369.753 −0.353717 −0.176859 0.984236i \(-0.556593\pi\)
−0.176859 + 0.984236i \(0.556593\pi\)
\(104\) 0.367349 0.000346361 0
\(105\) 0 0
\(106\) −2181.20 −1.99865
\(107\) −1235.42 −1.11619 −0.558096 0.829776i \(-0.688468\pi\)
−0.558096 + 0.829776i \(0.688468\pi\)
\(108\) −1203.50 −1.07229
\(109\) 446.389 0.392260 0.196130 0.980578i \(-0.437163\pi\)
0.196130 + 0.980578i \(0.437163\pi\)
\(110\) 0 0
\(111\) −340.548 −0.291201
\(112\) 573.019 0.483439
\(113\) 661.570 0.550755 0.275377 0.961336i \(-0.411197\pi\)
0.275377 + 0.961336i \(0.411197\pi\)
\(114\) −171.375 −0.140796
\(115\) 0 0
\(116\) 266.718 0.213484
\(117\) −7.05876 −0.00557763
\(118\) −702.014 −0.547675
\(119\) −515.040 −0.396753
\(120\) 0 0
\(121\) 1420.33 1.06712
\(122\) 1086.41 0.806224
\(123\) 2306.22 1.69061
\(124\) 1237.26 0.896040
\(125\) 0 0
\(126\) −258.896 −0.183050
\(127\) −190.871 −0.133363 −0.0666814 0.997774i \(-0.521241\pi\)
−0.0666814 + 0.997774i \(0.521241\pi\)
\(128\) −48.8668 −0.0337442
\(129\) −1228.13 −0.838222
\(130\) 0 0
\(131\) 1194.90 0.796937 0.398469 0.917182i \(-0.369542\pi\)
0.398469 + 0.917182i \(0.369542\pi\)
\(132\) 1838.50 1.21228
\(133\) −85.7518 −0.0559069
\(134\) 3523.14 2.27129
\(135\) 0 0
\(136\) 22.2225 0.0140115
\(137\) 1096.63 0.683878 0.341939 0.939722i \(-0.388916\pi\)
0.341939 + 0.939722i \(0.388916\pi\)
\(138\) −2182.23 −1.34611
\(139\) 2227.82 1.35944 0.679718 0.733474i \(-0.262102\pi\)
0.679718 + 0.733474i \(0.262102\pi\)
\(140\) 0 0
\(141\) −402.713 −0.240529
\(142\) 4075.16 2.40831
\(143\) 50.4679 0.0295128
\(144\) 475.083 0.274932
\(145\) 0 0
\(146\) −1286.47 −0.729239
\(147\) −1173.77 −0.658578
\(148\) −607.027 −0.337144
\(149\) 591.441 0.325186 0.162593 0.986693i \(-0.448014\pi\)
0.162593 + 0.986693i \(0.448014\pi\)
\(150\) 0 0
\(151\) 3631.82 1.95731 0.978653 0.205520i \(-0.0658886\pi\)
0.978653 + 0.205520i \(0.0658886\pi\)
\(152\) 3.69994 0.00197437
\(153\) −427.014 −0.225634
\(154\) 1851.02 0.968570
\(155\) 0 0
\(156\) 33.7238 0.0173081
\(157\) −1368.38 −0.695599 −0.347799 0.937569i \(-0.613071\pi\)
−0.347799 + 0.937569i \(0.613071\pi\)
\(158\) −1315.20 −0.662227
\(159\) 2425.33 1.20969
\(160\) 0 0
\(161\) −1091.93 −0.534512
\(162\) 1902.65 0.922757
\(163\) −3709.95 −1.78274 −0.891368 0.453281i \(-0.850253\pi\)
−0.891368 + 0.453281i \(0.850253\pi\)
\(164\) 4110.85 1.95734
\(165\) 0 0
\(166\) −331.005 −0.154765
\(167\) −4094.91 −1.89745 −0.948723 0.316110i \(-0.897623\pi\)
−0.948723 + 0.316110i \(0.897623\pi\)
\(168\) −14.9813 −0.00687997
\(169\) −2196.07 −0.999579
\(170\) 0 0
\(171\) −71.0958 −0.0317943
\(172\) −2189.14 −0.970468
\(173\) 3230.14 1.41956 0.709778 0.704425i \(-0.248795\pi\)
0.709778 + 0.704425i \(0.248795\pi\)
\(174\) −596.732 −0.259989
\(175\) 0 0
\(176\) −3396.69 −1.45475
\(177\) 780.585 0.331482
\(178\) −6279.82 −2.64434
\(179\) 2541.69 1.06131 0.530657 0.847587i \(-0.321945\pi\)
0.530657 + 0.847587i \(0.321945\pi\)
\(180\) 0 0
\(181\) 1652.46 0.678601 0.339300 0.940678i \(-0.389810\pi\)
0.339300 + 0.940678i \(0.389810\pi\)
\(182\) 33.9535 0.0138286
\(183\) −1208.01 −0.487970
\(184\) 47.1137 0.0188765
\(185\) 0 0
\(186\) −2768.13 −1.09123
\(187\) 3053.01 1.19390
\(188\) −717.837 −0.278477
\(189\) 1347.32 0.518534
\(190\) 0 0
\(191\) 3585.92 1.35847 0.679236 0.733919i \(-0.262311\pi\)
0.679236 + 0.733919i \(0.262311\pi\)
\(192\) −2215.73 −0.832847
\(193\) −3254.75 −1.21390 −0.606949 0.794741i \(-0.707607\pi\)
−0.606949 + 0.794741i \(0.707607\pi\)
\(194\) 1265.30 0.468264
\(195\) 0 0
\(196\) −2092.25 −0.762482
\(197\) −1456.19 −0.526646 −0.263323 0.964708i \(-0.584819\pi\)
−0.263323 + 0.964708i \(0.584819\pi\)
\(198\) 1534.66 0.550827
\(199\) 5103.56 1.81800 0.909000 0.416796i \(-0.136847\pi\)
0.909000 + 0.416796i \(0.136847\pi\)
\(200\) 0 0
\(201\) −3917.46 −1.37471
\(202\) −198.406 −0.0691080
\(203\) −298.590 −0.103236
\(204\) 2040.09 0.700172
\(205\) 0 0
\(206\) 1474.58 0.498733
\(207\) −905.309 −0.303977
\(208\) −62.3058 −0.0207699
\(209\) 508.312 0.168233
\(210\) 0 0
\(211\) −4576.00 −1.49301 −0.746505 0.665380i \(-0.768269\pi\)
−0.746505 + 0.665380i \(0.768269\pi\)
\(212\) 4323.15 1.40054
\(213\) −4531.26 −1.45764
\(214\) 4926.87 1.57380
\(215\) 0 0
\(216\) −58.1329 −0.0183122
\(217\) −1385.10 −0.433304
\(218\) −1780.21 −0.553077
\(219\) 1430.45 0.441375
\(220\) 0 0
\(221\) 56.0016 0.0170456
\(222\) 1358.11 0.410587
\(223\) −1949.48 −0.585413 −0.292706 0.956202i \(-0.594556\pi\)
−0.292706 + 0.956202i \(0.594556\pi\)
\(224\) −2258.18 −0.673576
\(225\) 0 0
\(226\) −2638.35 −0.776551
\(227\) 1886.41 0.551565 0.275782 0.961220i \(-0.411063\pi\)
0.275782 + 0.961220i \(0.411063\pi\)
\(228\) 339.666 0.0986619
\(229\) −5157.91 −1.48840 −0.744202 0.667954i \(-0.767170\pi\)
−0.744202 + 0.667954i \(0.767170\pi\)
\(230\) 0 0
\(231\) −2058.19 −0.586231
\(232\) 12.8833 0.00364581
\(233\) −4228.22 −1.18884 −0.594420 0.804155i \(-0.702618\pi\)
−0.594420 + 0.804155i \(0.702618\pi\)
\(234\) 28.1504 0.00786433
\(235\) 0 0
\(236\) 1391.40 0.383780
\(237\) 1462.40 0.400815
\(238\) 2053.99 0.559413
\(239\) −2363.15 −0.639580 −0.319790 0.947488i \(-0.603612\pi\)
−0.319790 + 0.947488i \(0.603612\pi\)
\(240\) 0 0
\(241\) 5839.13 1.56071 0.780355 0.625336i \(-0.215038\pi\)
0.780355 + 0.625336i \(0.215038\pi\)
\(242\) −5664.30 −1.50461
\(243\) 1995.42 0.526775
\(244\) −2153.28 −0.564957
\(245\) 0 0
\(246\) −9197.25 −2.38372
\(247\) 9.32401 0.00240191
\(248\) 59.7632 0.0153023
\(249\) 368.052 0.0936721
\(250\) 0 0
\(251\) −3673.23 −0.923714 −0.461857 0.886954i \(-0.652817\pi\)
−0.461857 + 0.886954i \(0.652817\pi\)
\(252\) 513.133 0.128271
\(253\) 6472.67 1.60843
\(254\) 761.197 0.188038
\(255\) 0 0
\(256\) 4192.27 1.02350
\(257\) 5757.67 1.39749 0.698743 0.715373i \(-0.253743\pi\)
0.698743 + 0.715373i \(0.253743\pi\)
\(258\) 4897.79 1.18187
\(259\) 679.564 0.163035
\(260\) 0 0
\(261\) −247.557 −0.0587104
\(262\) −4765.27 −1.12366
\(263\) −4166.66 −0.976910 −0.488455 0.872589i \(-0.662439\pi\)
−0.488455 + 0.872589i \(0.662439\pi\)
\(264\) 88.8051 0.0207029
\(265\) 0 0
\(266\) 341.979 0.0788274
\(267\) 6982.67 1.60050
\(268\) −6982.89 −1.59160
\(269\) −2790.13 −0.632406 −0.316203 0.948692i \(-0.602408\pi\)
−0.316203 + 0.948692i \(0.602408\pi\)
\(270\) 0 0
\(271\) 919.598 0.206131 0.103066 0.994675i \(-0.467135\pi\)
0.103066 + 0.994675i \(0.467135\pi\)
\(272\) −3769.14 −0.840212
\(273\) −37.7536 −0.00836979
\(274\) −4373.37 −0.964251
\(275\) 0 0
\(276\) 4325.18 0.943281
\(277\) 1601.53 0.347389 0.173695 0.984800i \(-0.444429\pi\)
0.173695 + 0.984800i \(0.444429\pi\)
\(278\) −8884.60 −1.91677
\(279\) −1148.37 −0.246421
\(280\) 0 0
\(281\) 5330.71 1.13168 0.565842 0.824514i \(-0.308551\pi\)
0.565842 + 0.824514i \(0.308551\pi\)
\(282\) 1606.02 0.339140
\(283\) 4816.61 1.01172 0.505862 0.862615i \(-0.331175\pi\)
0.505862 + 0.862615i \(0.331175\pi\)
\(284\) −8076.99 −1.68761
\(285\) 0 0
\(286\) −201.267 −0.0416124
\(287\) −4602.08 −0.946522
\(288\) −1872.23 −0.383063
\(289\) −1525.23 −0.310447
\(290\) 0 0
\(291\) −1406.91 −0.283419
\(292\) 2549.79 0.511010
\(293\) 3376.51 0.673234 0.336617 0.941642i \(-0.390717\pi\)
0.336617 + 0.941642i \(0.390717\pi\)
\(294\) 4681.02 0.928580
\(295\) 0 0
\(296\) −29.3212 −0.00575764
\(297\) −7986.52 −1.56035
\(298\) −2358.68 −0.458505
\(299\) 118.729 0.0229641
\(300\) 0 0
\(301\) 2450.74 0.469296
\(302\) −14483.7 −2.75975
\(303\) 220.612 0.0418279
\(304\) −627.544 −0.118395
\(305\) 0 0
\(306\) 1702.94 0.318139
\(307\) 2455.51 0.456493 0.228247 0.973603i \(-0.426701\pi\)
0.228247 + 0.973603i \(0.426701\pi\)
\(308\) −3668.74 −0.678720
\(309\) −1639.62 −0.301860
\(310\) 0 0
\(311\) 1162.36 0.211933 0.105967 0.994370i \(-0.466206\pi\)
0.105967 + 0.994370i \(0.466206\pi\)
\(312\) 1.62896 0.000295582 0
\(313\) −3780.35 −0.682677 −0.341338 0.939940i \(-0.610880\pi\)
−0.341338 + 0.939940i \(0.610880\pi\)
\(314\) 5457.14 0.980778
\(315\) 0 0
\(316\) 2606.74 0.464052
\(317\) 678.717 0.120254 0.0601270 0.998191i \(-0.480849\pi\)
0.0601270 + 0.998191i \(0.480849\pi\)
\(318\) −9672.24 −1.70564
\(319\) 1769.96 0.310654
\(320\) 0 0
\(321\) −5478.30 −0.952551
\(322\) 4354.65 0.753649
\(323\) 564.048 0.0971656
\(324\) −3771.07 −0.646617
\(325\) 0 0
\(326\) 14795.3 2.51361
\(327\) 1979.45 0.334752
\(328\) 198.566 0.0334268
\(329\) 803.615 0.134665
\(330\) 0 0
\(331\) −7990.08 −1.32681 −0.663406 0.748260i \(-0.730890\pi\)
−0.663406 + 0.748260i \(0.730890\pi\)
\(332\) 656.054 0.108451
\(333\) 563.419 0.0927182
\(334\) 16330.5 2.67535
\(335\) 0 0
\(336\) 2540.97 0.412564
\(337\) 3045.42 0.492269 0.246134 0.969236i \(-0.420840\pi\)
0.246134 + 0.969236i \(0.420840\pi\)
\(338\) 8757.98 1.40938
\(339\) 2933.64 0.470011
\(340\) 0 0
\(341\) 8210.51 1.30388
\(342\) 283.531 0.0448293
\(343\) 5377.40 0.846508
\(344\) −105.742 −0.0165734
\(345\) 0 0
\(346\) −12881.9 −2.00154
\(347\) 8796.74 1.36090 0.680452 0.732792i \(-0.261783\pi\)
0.680452 + 0.732792i \(0.261783\pi\)
\(348\) 1182.72 0.182186
\(349\) −2491.17 −0.382089 −0.191045 0.981581i \(-0.561187\pi\)
−0.191045 + 0.981581i \(0.561187\pi\)
\(350\) 0 0
\(351\) −146.497 −0.0222776
\(352\) 13385.8 2.02690
\(353\) 7917.03 1.19371 0.596857 0.802348i \(-0.296416\pi\)
0.596857 + 0.802348i \(0.296416\pi\)
\(354\) −3112.99 −0.467382
\(355\) 0 0
\(356\) 12446.6 1.85301
\(357\) −2283.87 −0.338587
\(358\) −10136.3 −1.49643
\(359\) 6736.53 0.990363 0.495182 0.868790i \(-0.335102\pi\)
0.495182 + 0.868790i \(0.335102\pi\)
\(360\) 0 0
\(361\) −6765.09 −0.986308
\(362\) −6590.05 −0.956811
\(363\) 6298.26 0.910669
\(364\) −67.2960 −0.00969029
\(365\) 0 0
\(366\) 4817.55 0.688026
\(367\) 10789.4 1.53461 0.767306 0.641281i \(-0.221597\pi\)
0.767306 + 0.641281i \(0.221597\pi\)
\(368\) −7990.92 −1.13194
\(369\) −3815.53 −0.538289
\(370\) 0 0
\(371\) −4839.75 −0.677270
\(372\) 5486.45 0.764675
\(373\) 2053.75 0.285092 0.142546 0.989788i \(-0.454471\pi\)
0.142546 + 0.989788i \(0.454471\pi\)
\(374\) −12175.5 −1.68336
\(375\) 0 0
\(376\) −34.6737 −0.00475574
\(377\) 32.4664 0.00443530
\(378\) −5373.13 −0.731121
\(379\) 4048.58 0.548711 0.274356 0.961628i \(-0.411535\pi\)
0.274356 + 0.961628i \(0.411535\pi\)
\(380\) 0 0
\(381\) −846.392 −0.113811
\(382\) −14300.7 −1.91541
\(383\) 5601.58 0.747330 0.373665 0.927564i \(-0.378101\pi\)
0.373665 + 0.927564i \(0.378101\pi\)
\(384\) −216.693 −0.0287971
\(385\) 0 0
\(386\) 12980.0 1.71157
\(387\) 2031.88 0.266889
\(388\) −2507.83 −0.328133
\(389\) 4603.99 0.600081 0.300040 0.953927i \(-0.403000\pi\)
0.300040 + 0.953927i \(0.403000\pi\)
\(390\) 0 0
\(391\) 7182.39 0.928975
\(392\) −101.062 −0.0130214
\(393\) 5298.61 0.680101
\(394\) 5807.31 0.742559
\(395\) 0 0
\(396\) −3041.71 −0.385989
\(397\) 5899.76 0.745845 0.372922 0.927863i \(-0.378356\pi\)
0.372922 + 0.927863i \(0.378356\pi\)
\(398\) −20353.1 −2.56334
\(399\) −380.254 −0.0477106
\(400\) 0 0
\(401\) −3806.44 −0.474026 −0.237013 0.971506i \(-0.576168\pi\)
−0.237013 + 0.971506i \(0.576168\pi\)
\(402\) 15622.9 1.93831
\(403\) 150.606 0.0186159
\(404\) 393.242 0.0484271
\(405\) 0 0
\(406\) 1190.78 0.145560
\(407\) −4028.27 −0.490599
\(408\) 98.5425 0.0119573
\(409\) −9086.49 −1.09853 −0.549264 0.835649i \(-0.685092\pi\)
−0.549264 + 0.835649i \(0.685092\pi\)
\(410\) 0 0
\(411\) 4862.85 0.583617
\(412\) −2922.63 −0.349484
\(413\) −1557.66 −0.185587
\(414\) 3610.39 0.428601
\(415\) 0 0
\(416\) 245.538 0.0289386
\(417\) 9878.98 1.16013
\(418\) −2027.16 −0.237204
\(419\) 8179.37 0.953671 0.476836 0.878992i \(-0.341784\pi\)
0.476836 + 0.878992i \(0.341784\pi\)
\(420\) 0 0
\(421\) 7592.19 0.878909 0.439455 0.898265i \(-0.355172\pi\)
0.439455 + 0.898265i \(0.355172\pi\)
\(422\) 18249.2 2.10511
\(423\) 666.268 0.0765841
\(424\) 208.821 0.0239180
\(425\) 0 0
\(426\) 18070.7 2.05524
\(427\) 2410.59 0.273200
\(428\) −9765.09 −1.10283
\(429\) 223.793 0.0251861
\(430\) 0 0
\(431\) 4847.63 0.541768 0.270884 0.962612i \(-0.412684\pi\)
0.270884 + 0.962612i \(0.412684\pi\)
\(432\) 9859.87 1.09811
\(433\) 11155.3 1.23808 0.619041 0.785359i \(-0.287521\pi\)
0.619041 + 0.785359i \(0.287521\pi\)
\(434\) 5523.82 0.610949
\(435\) 0 0
\(436\) 3528.37 0.387565
\(437\) 1195.83 0.130903
\(438\) −5704.67 −0.622328
\(439\) 11673.2 1.26910 0.634548 0.772883i \(-0.281186\pi\)
0.634548 + 0.772883i \(0.281186\pi\)
\(440\) 0 0
\(441\) 1941.95 0.209691
\(442\) −223.335 −0.0240339
\(443\) 749.078 0.0803380 0.0401690 0.999193i \(-0.487210\pi\)
0.0401690 + 0.999193i \(0.487210\pi\)
\(444\) −2691.78 −0.287717
\(445\) 0 0
\(446\) 7774.57 0.825418
\(447\) 2622.66 0.277512
\(448\) 4421.50 0.466287
\(449\) 4931.16 0.518298 0.259149 0.965837i \(-0.416558\pi\)
0.259149 + 0.965837i \(0.416558\pi\)
\(450\) 0 0
\(451\) 27279.8 2.84824
\(452\) 5229.23 0.544164
\(453\) 16104.8 1.67035
\(454\) −7523.02 −0.777693
\(455\) 0 0
\(456\) 16.4069 0.00168492
\(457\) 9351.22 0.957181 0.478590 0.878038i \(-0.341148\pi\)
0.478590 + 0.878038i \(0.341148\pi\)
\(458\) 20569.8 2.09861
\(459\) −8862.24 −0.901207
\(460\) 0 0
\(461\) 13291.2 1.34281 0.671404 0.741091i \(-0.265691\pi\)
0.671404 + 0.741091i \(0.265691\pi\)
\(462\) 8208.11 0.826571
\(463\) −17624.6 −1.76908 −0.884539 0.466467i \(-0.845527\pi\)
−0.884539 + 0.466467i \(0.845527\pi\)
\(464\) −2185.12 −0.218625
\(465\) 0 0
\(466\) 16862.2 1.67624
\(467\) 6703.38 0.664230 0.332115 0.943239i \(-0.392238\pi\)
0.332115 + 0.943239i \(0.392238\pi\)
\(468\) −55.7943 −0.00551088
\(469\) 7817.31 0.769659
\(470\) 0 0
\(471\) −6067.91 −0.593619
\(472\) 67.2086 0.00655408
\(473\) −14527.3 −1.41219
\(474\) −5832.08 −0.565140
\(475\) 0 0
\(476\) −4071.01 −0.392005
\(477\) −4012.58 −0.385165
\(478\) 9424.29 0.901792
\(479\) 7332.12 0.699401 0.349701 0.936862i \(-0.386283\pi\)
0.349701 + 0.936862i \(0.386283\pi\)
\(480\) 0 0
\(481\) −73.8908 −0.00700443
\(482\) −23286.5 −2.20056
\(483\) −4842.03 −0.456149
\(484\) 11226.7 1.05434
\(485\) 0 0
\(486\) −7957.77 −0.742740
\(487\) −15681.5 −1.45913 −0.729564 0.683913i \(-0.760277\pi\)
−0.729564 + 0.683913i \(0.760277\pi\)
\(488\) −104.010 −0.00964815
\(489\) −16451.3 −1.52137
\(490\) 0 0
\(491\) −8749.24 −0.804171 −0.402085 0.915602i \(-0.631715\pi\)
−0.402085 + 0.915602i \(0.631715\pi\)
\(492\) 18229.0 1.67038
\(493\) 1964.03 0.179423
\(494\) −37.1843 −0.00338664
\(495\) 0 0
\(496\) −10136.4 −0.917616
\(497\) 9042.15 0.816089
\(498\) −1467.80 −0.132075
\(499\) 16330.3 1.46502 0.732511 0.680755i \(-0.238348\pi\)
0.732511 + 0.680755i \(0.238348\pi\)
\(500\) 0 0
\(501\) −18158.3 −1.61927
\(502\) 14648.9 1.30241
\(503\) 12246.5 1.08558 0.542788 0.839870i \(-0.317369\pi\)
0.542788 + 0.839870i \(0.317369\pi\)
\(504\) 24.7859 0.00219058
\(505\) 0 0
\(506\) −25813.1 −2.26785
\(507\) −9738.19 −0.853034
\(508\) −1508.70 −0.131767
\(509\) −5589.79 −0.486764 −0.243382 0.969930i \(-0.578257\pi\)
−0.243382 + 0.969930i \(0.578257\pi\)
\(510\) 0 0
\(511\) −2854.48 −0.247113
\(512\) −16327.9 −1.40937
\(513\) −1475.52 −0.126990
\(514\) −22961.7 −1.97042
\(515\) 0 0
\(516\) −9707.45 −0.828191
\(517\) −4763.60 −0.405228
\(518\) −2710.11 −0.229876
\(519\) 14323.6 1.21144
\(520\) 0 0
\(521\) −5897.21 −0.495896 −0.247948 0.968773i \(-0.579756\pi\)
−0.247948 + 0.968773i \(0.579756\pi\)
\(522\) 987.263 0.0827803
\(523\) 18408.9 1.53913 0.769565 0.638568i \(-0.220473\pi\)
0.769565 + 0.638568i \(0.220473\pi\)
\(524\) 9444.80 0.787400
\(525\) 0 0
\(526\) 16616.7 1.37742
\(527\) 9110.79 0.753078
\(528\) −15062.2 −1.24147
\(529\) 3060.34 0.251528
\(530\) 0 0
\(531\) −1291.44 −0.105544
\(532\) −677.805 −0.0552379
\(533\) 500.396 0.0406652
\(534\) −27847.0 −2.25666
\(535\) 0 0
\(536\) −337.294 −0.0271808
\(537\) 11270.8 0.905718
\(538\) 11127.1 0.891678
\(539\) −13884.3 −1.10953
\(540\) 0 0
\(541\) 15499.8 1.23177 0.615885 0.787836i \(-0.288799\pi\)
0.615885 + 0.787836i \(0.288799\pi\)
\(542\) −3667.37 −0.290640
\(543\) 7327.62 0.579113
\(544\) 14853.6 1.17067
\(545\) 0 0
\(546\) 150.562 0.0118012
\(547\) 15497.4 1.21138 0.605688 0.795702i \(-0.292898\pi\)
0.605688 + 0.795702i \(0.292898\pi\)
\(548\) 8668.04 0.675694
\(549\) 1998.59 0.155369
\(550\) 0 0
\(551\) 327.002 0.0252827
\(552\) 208.919 0.0161091
\(553\) −2918.23 −0.224405
\(554\) −6386.94 −0.489811
\(555\) 0 0
\(556\) 17609.3 1.34317
\(557\) −1240.98 −0.0944025 −0.0472012 0.998885i \(-0.515030\pi\)
−0.0472012 + 0.998885i \(0.515030\pi\)
\(558\) 4579.73 0.347447
\(559\) −266.475 −0.0201622
\(560\) 0 0
\(561\) 13538.2 1.01886
\(562\) −21258.9 −1.59565
\(563\) 5459.99 0.408723 0.204362 0.978895i \(-0.434488\pi\)
0.204362 + 0.978895i \(0.434488\pi\)
\(564\) −3183.15 −0.237650
\(565\) 0 0
\(566\) −19208.7 −1.42651
\(567\) 4221.70 0.312689
\(568\) −390.143 −0.0288205
\(569\) 3868.41 0.285013 0.142506 0.989794i \(-0.454484\pi\)
0.142506 + 0.989794i \(0.454484\pi\)
\(570\) 0 0
\(571\) 20731.5 1.51942 0.759708 0.650264i \(-0.225342\pi\)
0.759708 + 0.650264i \(0.225342\pi\)
\(572\) 398.911 0.0291597
\(573\) 15901.3 1.15931
\(574\) 18353.1 1.33457
\(575\) 0 0
\(576\) 3665.82 0.265178
\(577\) −1557.94 −0.112406 −0.0562028 0.998419i \(-0.517899\pi\)
−0.0562028 + 0.998419i \(0.517899\pi\)
\(578\) 6082.63 0.437723
\(579\) −14432.8 −1.03593
\(580\) 0 0
\(581\) −734.450 −0.0524442
\(582\) 5610.80 0.399613
\(583\) 28688.7 2.03802
\(584\) 123.162 0.00872687
\(585\) 0 0
\(586\) −13465.6 −0.949244
\(587\) 1514.60 0.106498 0.0532488 0.998581i \(-0.483042\pi\)
0.0532488 + 0.998581i \(0.483042\pi\)
\(588\) −9277.79 −0.650697
\(589\) 1516.90 0.106117
\(590\) 0 0
\(591\) −6457.28 −0.449437
\(592\) 4973.15 0.345262
\(593\) −7811.48 −0.540943 −0.270471 0.962728i \(-0.587180\pi\)
−0.270471 + 0.962728i \(0.587180\pi\)
\(594\) 31850.4 2.20006
\(595\) 0 0
\(596\) 4674.91 0.321295
\(597\) 22631.1 1.55147
\(598\) −473.492 −0.0323788
\(599\) −22845.7 −1.55835 −0.779175 0.626806i \(-0.784362\pi\)
−0.779175 + 0.626806i \(0.784362\pi\)
\(600\) 0 0
\(601\) −4707.20 −0.319486 −0.159743 0.987159i \(-0.551066\pi\)
−0.159743 + 0.987159i \(0.551066\pi\)
\(602\) −9773.57 −0.661696
\(603\) 6481.24 0.437706
\(604\) 28706.8 1.93388
\(605\) 0 0
\(606\) −879.806 −0.0589763
\(607\) −16745.2 −1.11971 −0.559856 0.828590i \(-0.689144\pi\)
−0.559856 + 0.828590i \(0.689144\pi\)
\(608\) 2473.05 0.164960
\(609\) −1324.06 −0.0881009
\(610\) 0 0
\(611\) −87.3792 −0.00578557
\(612\) −3375.23 −0.222934
\(613\) −4682.36 −0.308513 −0.154257 0.988031i \(-0.549298\pi\)
−0.154257 + 0.988031i \(0.549298\pi\)
\(614\) −9792.61 −0.643644
\(615\) 0 0
\(616\) −177.211 −0.0115910
\(617\) −12369.8 −0.807112 −0.403556 0.914955i \(-0.632226\pi\)
−0.403556 + 0.914955i \(0.632226\pi\)
\(618\) 6538.83 0.425615
\(619\) 22280.3 1.44672 0.723362 0.690469i \(-0.242596\pi\)
0.723362 + 0.690469i \(0.242596\pi\)
\(620\) 0 0
\(621\) −18788.8 −1.21412
\(622\) −4635.50 −0.298821
\(623\) −13933.9 −0.896070
\(624\) −276.287 −0.0177249
\(625\) 0 0
\(626\) 15076.1 0.962558
\(627\) 2254.04 0.143569
\(628\) −10816.1 −0.687274
\(629\) −4469.96 −0.283353
\(630\) 0 0
\(631\) 6018.99 0.379734 0.189867 0.981810i \(-0.439194\pi\)
0.189867 + 0.981810i \(0.439194\pi\)
\(632\) 125.913 0.00792493
\(633\) −20291.6 −1.27412
\(634\) −2706.73 −0.169555
\(635\) 0 0
\(636\) 19170.4 1.19521
\(637\) −254.681 −0.0158411
\(638\) −7058.61 −0.438014
\(639\) 7496.75 0.464111
\(640\) 0 0
\(641\) −2732.44 −0.168370 −0.0841848 0.996450i \(-0.526829\pi\)
−0.0841848 + 0.996450i \(0.526829\pi\)
\(642\) 21847.5 1.34307
\(643\) 2452.93 0.150442 0.0752209 0.997167i \(-0.476034\pi\)
0.0752209 + 0.997167i \(0.476034\pi\)
\(644\) −8630.93 −0.528115
\(645\) 0 0
\(646\) −2249.43 −0.137001
\(647\) 21675.7 1.31709 0.658546 0.752541i \(-0.271172\pi\)
0.658546 + 0.752541i \(0.271172\pi\)
\(648\) −182.154 −0.0110427
\(649\) 9233.38 0.558462
\(650\) 0 0
\(651\) −6142.06 −0.369779
\(652\) −29324.4 −1.76140
\(653\) 26735.5 1.60221 0.801104 0.598525i \(-0.204246\pi\)
0.801104 + 0.598525i \(0.204246\pi\)
\(654\) −7894.07 −0.471992
\(655\) 0 0
\(656\) −33678.7 −2.00447
\(657\) −2366.61 −0.140533
\(658\) −3204.83 −0.189874
\(659\) −9354.29 −0.552946 −0.276473 0.961022i \(-0.589166\pi\)
−0.276473 + 0.961022i \(0.589166\pi\)
\(660\) 0 0
\(661\) −17127.5 −1.00784 −0.503921 0.863749i \(-0.668110\pi\)
−0.503921 + 0.863749i \(0.668110\pi\)
\(662\) 31864.6 1.87077
\(663\) 248.332 0.0145466
\(664\) 31.6894 0.00185209
\(665\) 0 0
\(666\) −2246.92 −0.130731
\(667\) 4163.93 0.241721
\(668\) −32367.2 −1.87474
\(669\) −8644.72 −0.499587
\(670\) 0 0
\(671\) −14289.3 −0.822103
\(672\) −10013.6 −0.574825
\(673\) 18329.4 1.04985 0.524923 0.851150i \(-0.324094\pi\)
0.524923 + 0.851150i \(0.324094\pi\)
\(674\) −12145.2 −0.694087
\(675\) 0 0
\(676\) −17358.3 −0.987617
\(677\) −25116.7 −1.42587 −0.712934 0.701231i \(-0.752634\pi\)
−0.712934 + 0.701231i \(0.752634\pi\)
\(678\) −11699.4 −0.662704
\(679\) 2807.50 0.158678
\(680\) 0 0
\(681\) 8365.01 0.470702
\(682\) −32743.6 −1.83844
\(683\) −18557.8 −1.03967 −0.519834 0.854268i \(-0.674006\pi\)
−0.519834 + 0.854268i \(0.674006\pi\)
\(684\) −561.960 −0.0314139
\(685\) 0 0
\(686\) −21445.2 −1.19356
\(687\) −22872.1 −1.27019
\(688\) 17934.8 0.993836
\(689\) 526.239 0.0290974
\(690\) 0 0
\(691\) 32891.9 1.81081 0.905403 0.424554i \(-0.139569\pi\)
0.905403 + 0.424554i \(0.139569\pi\)
\(692\) 25531.9 1.40257
\(693\) 3405.18 0.186655
\(694\) −35081.5 −1.91884
\(695\) 0 0
\(696\) 57.1291 0.00311131
\(697\) 30271.0 1.64505
\(698\) 9934.81 0.538737
\(699\) −18749.4 −1.01455
\(700\) 0 0
\(701\) 17939.4 0.966567 0.483283 0.875464i \(-0.339444\pi\)
0.483283 + 0.875464i \(0.339444\pi\)
\(702\) 584.234 0.0314109
\(703\) −744.228 −0.0399276
\(704\) −26209.4 −1.40313
\(705\) 0 0
\(706\) −31573.2 −1.68311
\(707\) −440.233 −0.0234182
\(708\) 6169.95 0.327515
\(709\) −2147.18 −0.113736 −0.0568681 0.998382i \(-0.518111\pi\)
−0.0568681 + 0.998382i \(0.518111\pi\)
\(710\) 0 0
\(711\) −2419.47 −0.127619
\(712\) 601.209 0.0316450
\(713\) 19315.7 1.01456
\(714\) 9108.13 0.477399
\(715\) 0 0
\(716\) 20090.2 1.04861
\(717\) −10479.1 −0.545813
\(718\) −26865.4 −1.39639
\(719\) −27518.8 −1.42737 −0.713683 0.700469i \(-0.752974\pi\)
−0.713683 + 0.700469i \(0.752974\pi\)
\(720\) 0 0
\(721\) 3271.87 0.169002
\(722\) 26979.3 1.39067
\(723\) 25892.8 1.33190
\(724\) 13061.5 0.670480
\(725\) 0 0
\(726\) −25117.6 −1.28402
\(727\) −5077.35 −0.259021 −0.129511 0.991578i \(-0.541341\pi\)
−0.129511 + 0.991578i \(0.541341\pi\)
\(728\) −3.25060 −0.000165488 0
\(729\) 21729.9 1.10400
\(730\) 0 0
\(731\) −16120.2 −0.815631
\(732\) −9548.41 −0.482130
\(733\) 21133.2 1.06490 0.532450 0.846462i \(-0.321272\pi\)
0.532450 + 0.846462i \(0.321272\pi\)
\(734\) −43028.3 −2.16377
\(735\) 0 0
\(736\) 31491.0 1.57714
\(737\) −46338.8 −2.31603
\(738\) 15216.4 0.758974
\(739\) −23956.5 −1.19249 −0.596247 0.802801i \(-0.703342\pi\)
−0.596247 + 0.802801i \(0.703342\pi\)
\(740\) 0 0
\(741\) 41.3460 0.00204978
\(742\) 19301.0 0.954935
\(743\) −6517.42 −0.321805 −0.160902 0.986970i \(-0.551440\pi\)
−0.160902 + 0.986970i \(0.551440\pi\)
\(744\) 265.012 0.0130589
\(745\) 0 0
\(746\) −8190.40 −0.401973
\(747\) −608.924 −0.0298251
\(748\) 24131.8 1.17961
\(749\) 10932.0 0.533305
\(750\) 0 0
\(751\) −34284.7 −1.66587 −0.832934 0.553372i \(-0.813341\pi\)
−0.832934 + 0.553372i \(0.813341\pi\)
\(752\) 5880.97 0.285182
\(753\) −16288.4 −0.788291
\(754\) −129.477 −0.00625366
\(755\) 0 0
\(756\) 10649.6 0.512329
\(757\) 28705.1 1.37821 0.689106 0.724661i \(-0.258004\pi\)
0.689106 + 0.724661i \(0.258004\pi\)
\(758\) −16145.8 −0.773670
\(759\) 28702.2 1.37263
\(760\) 0 0
\(761\) −28492.3 −1.35722 −0.678609 0.734499i \(-0.737417\pi\)
−0.678609 + 0.734499i \(0.737417\pi\)
\(762\) 3375.42 0.160471
\(763\) −3950.00 −0.187418
\(764\) 28344.1 1.34222
\(765\) 0 0
\(766\) −22339.2 −1.05372
\(767\) 169.369 0.00797333
\(768\) 18590.0 0.873451
\(769\) 35907.2 1.68381 0.841904 0.539627i \(-0.181435\pi\)
0.841904 + 0.539627i \(0.181435\pi\)
\(770\) 0 0
\(771\) 25531.6 1.19261
\(772\) −25726.4 −1.19937
\(773\) 20291.4 0.944154 0.472077 0.881557i \(-0.343504\pi\)
0.472077 + 0.881557i \(0.343504\pi\)
\(774\) −8103.16 −0.376307
\(775\) 0 0
\(776\) −121.136 −0.00560376
\(777\) 3013.43 0.139133
\(778\) −18360.8 −0.846099
\(779\) 5039.98 0.231805
\(780\) 0 0
\(781\) −53599.3 −2.45574
\(782\) −28643.5 −1.30983
\(783\) −5137.80 −0.234496
\(784\) 17141.0 0.780842
\(785\) 0 0
\(786\) −21131.0 −0.958926
\(787\) 16582.6 0.751087 0.375544 0.926805i \(-0.377456\pi\)
0.375544 + 0.926805i \(0.377456\pi\)
\(788\) −11510.1 −0.520344
\(789\) −18476.5 −0.833689
\(790\) 0 0
\(791\) −5854.10 −0.263145
\(792\) −146.924 −0.00659180
\(793\) −262.109 −0.0117374
\(794\) −23528.3 −1.05162
\(795\) 0 0
\(796\) 40339.9 1.79624
\(797\) 28736.7 1.27717 0.638585 0.769551i \(-0.279520\pi\)
0.638585 + 0.769551i \(0.279520\pi\)
\(798\) 1516.46 0.0672708
\(799\) −5285.93 −0.234046
\(800\) 0 0
\(801\) −11552.5 −0.509596
\(802\) 15180.1 0.668366
\(803\) 16920.5 0.743602
\(804\) −30964.6 −1.35826
\(805\) 0 0
\(806\) −600.619 −0.0262480
\(807\) −12372.4 −0.539691
\(808\) 18.9948 0.000827022 0
\(809\) −12129.9 −0.527149 −0.263574 0.964639i \(-0.584901\pi\)
−0.263574 + 0.964639i \(0.584901\pi\)
\(810\) 0 0
\(811\) −15010.3 −0.649918 −0.324959 0.945728i \(-0.605351\pi\)
−0.324959 + 0.945728i \(0.605351\pi\)
\(812\) −2360.13 −0.102000
\(813\) 4077.83 0.175911
\(814\) 16064.8 0.691733
\(815\) 0 0
\(816\) −16713.7 −0.717031
\(817\) −2683.93 −0.114931
\(818\) 36237.0 1.54890
\(819\) 62.4615 0.00266493
\(820\) 0 0
\(821\) 33180.3 1.41048 0.705238 0.708970i \(-0.250840\pi\)
0.705238 + 0.708970i \(0.250840\pi\)
\(822\) −19393.1 −0.822886
\(823\) −36445.9 −1.54365 −0.771826 0.635834i \(-0.780656\pi\)
−0.771826 + 0.635834i \(0.780656\pi\)
\(824\) −141.172 −0.00596838
\(825\) 0 0
\(826\) 6211.98 0.261674
\(827\) −27615.0 −1.16115 −0.580573 0.814208i \(-0.697172\pi\)
−0.580573 + 0.814208i \(0.697172\pi\)
\(828\) −7155.80 −0.300340
\(829\) 20221.4 0.847188 0.423594 0.905852i \(-0.360768\pi\)
0.423594 + 0.905852i \(0.360768\pi\)
\(830\) 0 0
\(831\) 7101.78 0.296460
\(832\) −480.762 −0.0200329
\(833\) −15406.7 −0.640829
\(834\) −39397.5 −1.63576
\(835\) 0 0
\(836\) 4017.83 0.166220
\(837\) −23833.3 −0.984231
\(838\) −32619.4 −1.34465
\(839\) 34370.3 1.41430 0.707148 0.707066i \(-0.249982\pi\)
0.707148 + 0.707066i \(0.249982\pi\)
\(840\) 0 0
\(841\) −23250.4 −0.953314
\(842\) −30277.8 −1.23924
\(843\) 23638.3 0.965772
\(844\) −36169.9 −1.47514
\(845\) 0 0
\(846\) −2657.09 −0.107982
\(847\) −12568.2 −0.509857
\(848\) −35418.0 −1.43427
\(849\) 21358.6 0.863398
\(850\) 0 0
\(851\) −9476.74 −0.381737
\(852\) −35816.3 −1.44019
\(853\) −8431.95 −0.338458 −0.169229 0.985577i \(-0.554128\pi\)
−0.169229 + 0.985577i \(0.554128\pi\)
\(854\) −9613.45 −0.385206
\(855\) 0 0
\(856\) −471.683 −0.0188339
\(857\) −14228.6 −0.567142 −0.283571 0.958951i \(-0.591519\pi\)
−0.283571 + 0.958951i \(0.591519\pi\)
\(858\) −892.489 −0.0355117
\(859\) −4495.67 −0.178568 −0.0892842 0.996006i \(-0.528458\pi\)
−0.0892842 + 0.996006i \(0.528458\pi\)
\(860\) 0 0
\(861\) −20407.3 −0.807756
\(862\) −19332.4 −0.763880
\(863\) 4782.34 0.188636 0.0943179 0.995542i \(-0.469933\pi\)
0.0943179 + 0.995542i \(0.469933\pi\)
\(864\) −38856.2 −1.53000
\(865\) 0 0
\(866\) −44487.5 −1.74567
\(867\) −6763.41 −0.264933
\(868\) −10948.2 −0.428119
\(869\) 17298.4 0.675270
\(870\) 0 0
\(871\) −849.997 −0.0330666
\(872\) 170.431 0.00661872
\(873\) 2327.67 0.0902402
\(874\) −4769.01 −0.184570
\(875\) 0 0
\(876\) 11306.7 0.436093
\(877\) −36418.0 −1.40222 −0.701112 0.713051i \(-0.747313\pi\)
−0.701112 + 0.713051i \(0.747313\pi\)
\(878\) −46553.1 −1.78940
\(879\) 14972.7 0.574534
\(880\) 0 0
\(881\) 18898.1 0.722695 0.361347 0.932431i \(-0.382317\pi\)
0.361347 + 0.932431i \(0.382317\pi\)
\(882\) −7744.51 −0.295659
\(883\) 10411.0 0.396781 0.198391 0.980123i \(-0.436429\pi\)
0.198391 + 0.980123i \(0.436429\pi\)
\(884\) 442.652 0.0168416
\(885\) 0 0
\(886\) −2987.33 −0.113275
\(887\) 24716.3 0.935615 0.467808 0.883830i \(-0.345044\pi\)
0.467808 + 0.883830i \(0.345044\pi\)
\(888\) −130.021 −0.00491353
\(889\) 1688.98 0.0637194
\(890\) 0 0
\(891\) −25025.0 −0.940931
\(892\) −15409.2 −0.578407
\(893\) −880.083 −0.0329797
\(894\) −10459.2 −0.391285
\(895\) 0 0
\(896\) 432.412 0.0161226
\(897\) 526.486 0.0195974
\(898\) −19665.5 −0.730788
\(899\) 5281.89 0.195952
\(900\) 0 0
\(901\) 31834.4 1.17709
\(902\) −108792. −4.01595
\(903\) 10867.5 0.400494
\(904\) 252.587 0.00929306
\(905\) 0 0
\(906\) −64226.2 −2.35516
\(907\) −17074.3 −0.625075 −0.312537 0.949905i \(-0.601179\pi\)
−0.312537 + 0.949905i \(0.601179\pi\)
\(908\) 14910.7 0.544964
\(909\) −364.992 −0.0133180
\(910\) 0 0
\(911\) −39449.4 −1.43470 −0.717352 0.696710i \(-0.754646\pi\)
−0.717352 + 0.696710i \(0.754646\pi\)
\(912\) −2782.76 −0.101038
\(913\) 4353.61 0.157813
\(914\) −37292.8 −1.34960
\(915\) 0 0
\(916\) −40769.5 −1.47059
\(917\) −10573.4 −0.380769
\(918\) 35342.7 1.27068
\(919\) −27032.6 −0.970321 −0.485160 0.874425i \(-0.661239\pi\)
−0.485160 + 0.874425i \(0.661239\pi\)
\(920\) 0 0
\(921\) 10888.6 0.389568
\(922\) −53005.7 −1.89333
\(923\) −983.177 −0.0350614
\(924\) −16268.5 −0.579215
\(925\) 0 0
\(926\) 70287.0 2.49436
\(927\) 2712.67 0.0961119
\(928\) 8611.24 0.304610
\(929\) −11054.3 −0.390398 −0.195199 0.980764i \(-0.562535\pi\)
−0.195199 + 0.980764i \(0.562535\pi\)
\(930\) 0 0
\(931\) −2565.14 −0.0902998
\(932\) −33420.9 −1.17461
\(933\) 5154.31 0.180862
\(934\) −26733.2 −0.936549
\(935\) 0 0
\(936\) −2.69503 −9.41131e−5 0
\(937\) −13156.1 −0.458687 −0.229343 0.973346i \(-0.573658\pi\)
−0.229343 + 0.973346i \(0.573658\pi\)
\(938\) −31175.6 −1.08520
\(939\) −16763.4 −0.582592
\(940\) 0 0
\(941\) 37520.5 1.29982 0.649912 0.760010i \(-0.274806\pi\)
0.649912 + 0.760010i \(0.274806\pi\)
\(942\) 24198.9 0.836989
\(943\) 64177.4 2.21623
\(944\) −11399.2 −0.393021
\(945\) 0 0
\(946\) 57935.0 1.99115
\(947\) 1142.67 0.0392099 0.0196050 0.999808i \(-0.493759\pi\)
0.0196050 + 0.999808i \(0.493759\pi\)
\(948\) 11559.2 0.396019
\(949\) 310.375 0.0106166
\(950\) 0 0
\(951\) 3009.68 0.102624
\(952\) −196.642 −0.00669455
\(953\) −20516.0 −0.697354 −0.348677 0.937243i \(-0.613369\pi\)
−0.348677 + 0.937243i \(0.613369\pi\)
\(954\) 16002.2 0.543073
\(955\) 0 0
\(956\) −18679.0 −0.631926
\(957\) 7848.63 0.265110
\(958\) −29240.6 −0.986139
\(959\) −9703.83 −0.326750
\(960\) 0 0
\(961\) −5289.23 −0.177545
\(962\) 294.678 0.00987608
\(963\) 9063.58 0.303291
\(964\) 46154.0 1.54203
\(965\) 0 0
\(966\) 19310.1 0.643159
\(967\) −10935.2 −0.363651 −0.181826 0.983331i \(-0.558201\pi\)
−0.181826 + 0.983331i \(0.558201\pi\)
\(968\) 542.281 0.0180058
\(969\) 2501.19 0.0829205
\(970\) 0 0
\(971\) −14188.5 −0.468929 −0.234465 0.972125i \(-0.575334\pi\)
−0.234465 + 0.972125i \(0.575334\pi\)
\(972\) 15772.3 0.520471
\(973\) −19713.6 −0.649525
\(974\) 62537.9 2.05734
\(975\) 0 0
\(976\) 17641.0 0.578560
\(977\) 7643.75 0.250302 0.125151 0.992138i \(-0.460058\pi\)
0.125151 + 0.992138i \(0.460058\pi\)
\(978\) 65607.9 2.14510
\(979\) 82596.5 2.69642
\(980\) 0 0
\(981\) −3274.90 −0.106585
\(982\) 34892.1 1.13386
\(983\) −20447.2 −0.663442 −0.331721 0.943378i \(-0.607629\pi\)
−0.331721 + 0.943378i \(0.607629\pi\)
\(984\) 880.514 0.0285262
\(985\) 0 0
\(986\) −7832.58 −0.252982
\(987\) 3563.52 0.114922
\(988\) 73.6994 0.00237317
\(989\) −34176.3 −1.09883
\(990\) 0 0
\(991\) 30015.1 0.962119 0.481059 0.876688i \(-0.340252\pi\)
0.481059 + 0.876688i \(0.340252\pi\)
\(992\) 39946.0 1.27851
\(993\) −35430.9 −1.13229
\(994\) −36060.2 −1.15067
\(995\) 0 0
\(996\) 2909.18 0.0925511
\(997\) −10921.0 −0.346912 −0.173456 0.984842i \(-0.555493\pi\)
−0.173456 + 0.984842i \(0.555493\pi\)
\(998\) −65125.6 −2.06565
\(999\) 11693.2 0.370326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2075.4.a.k.1.9 47
5.4 even 2 2075.4.a.l.1.39 yes 47
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2075.4.a.k.1.9 47 1.1 even 1 trivial
2075.4.a.l.1.39 yes 47 5.4 even 2