Properties

Label 2075.4.a.k.1.40
Level $2075$
Weight $4$
Character 2075.1
Self dual yes
Analytic conductor $122.429$
Analytic rank $0$
Dimension $47$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2075,4,Mod(1,2075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2075.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2075 = 5^{2} \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [47,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.428963262\)
Analytic rank: \(0\)
Dimension: \(47\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.40
Character \(\chi\) \(=\) 2075.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.47908 q^{2} -1.96805 q^{3} +12.0621 q^{4} -8.81505 q^{6} -27.9268 q^{7} +18.1946 q^{8} -23.1268 q^{9} +1.10633 q^{11} -23.7389 q^{12} -53.8543 q^{13} -125.086 q^{14} -15.0020 q^{16} +35.5100 q^{17} -103.587 q^{18} +150.926 q^{19} +54.9613 q^{21} +4.95532 q^{22} +35.5907 q^{23} -35.8079 q^{24} -241.218 q^{26} +98.6520 q^{27} -336.856 q^{28} -200.577 q^{29} +248.494 q^{31} -212.752 q^{32} -2.17730 q^{33} +159.052 q^{34} -278.958 q^{36} -349.834 q^{37} +676.008 q^{38} +105.988 q^{39} -69.5204 q^{41} +246.176 q^{42} +405.042 q^{43} +13.3446 q^{44} +159.414 q^{46} +307.844 q^{47} +29.5247 q^{48} +436.904 q^{49} -69.8855 q^{51} -649.598 q^{52} -19.7924 q^{53} +441.870 q^{54} -508.117 q^{56} -297.029 q^{57} -898.399 q^{58} +393.465 q^{59} +477.990 q^{61} +1113.03 q^{62} +645.856 q^{63} -832.917 q^{64} -9.75231 q^{66} -743.743 q^{67} +428.327 q^{68} -70.0444 q^{69} +527.495 q^{71} -420.783 q^{72} +171.209 q^{73} -1566.93 q^{74} +1820.49 q^{76} -30.8961 q^{77} +474.728 q^{78} +442.894 q^{79} +430.271 q^{81} -311.387 q^{82} +83.0000 q^{83} +662.950 q^{84} +1814.21 q^{86} +394.745 q^{87} +20.1292 q^{88} -673.015 q^{89} +1503.98 q^{91} +429.300 q^{92} -489.049 q^{93} +1378.86 q^{94} +418.707 q^{96} +1098.95 q^{97} +1956.93 q^{98} -25.5857 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 47 q - q^{2} + 6 q^{3} + 229 q^{4} + 9 q^{6} + 6 q^{7} - 39 q^{8} + 531 q^{9} + 90 q^{11} - 6 q^{12} - 50 q^{13} + 115 q^{14} + 1149 q^{16} + 68 q^{17} - 8 q^{18} + 344 q^{19} + 625 q^{21} - 402 q^{22}+ \cdots + 13991 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.47908 1.58359 0.791796 0.610785i \(-0.209146\pi\)
0.791796 + 0.610785i \(0.209146\pi\)
\(3\) −1.96805 −0.378751 −0.189376 0.981905i \(-0.560646\pi\)
−0.189376 + 0.981905i \(0.560646\pi\)
\(4\) 12.0621 1.50777
\(5\) 0 0
\(6\) −8.81505 −0.599788
\(7\) −27.9268 −1.50790 −0.753952 0.656930i \(-0.771855\pi\)
−0.753952 + 0.656930i \(0.771855\pi\)
\(8\) 18.1946 0.804096
\(9\) −23.1268 −0.856547
\(10\) 0 0
\(11\) 1.10633 0.0303245 0.0151623 0.999885i \(-0.495174\pi\)
0.0151623 + 0.999885i \(0.495174\pi\)
\(12\) −23.7389 −0.571069
\(13\) −53.8543 −1.14896 −0.574481 0.818518i \(-0.694796\pi\)
−0.574481 + 0.818518i \(0.694796\pi\)
\(14\) −125.086 −2.38791
\(15\) 0 0
\(16\) −15.0020 −0.234406
\(17\) 35.5100 0.506615 0.253307 0.967386i \(-0.418482\pi\)
0.253307 + 0.967386i \(0.418482\pi\)
\(18\) −103.587 −1.35642
\(19\) 150.926 1.82235 0.911177 0.412014i \(-0.135175\pi\)
0.911177 + 0.412014i \(0.135175\pi\)
\(20\) 0 0
\(21\) 54.9613 0.571121
\(22\) 4.95532 0.0480217
\(23\) 35.5907 0.322660 0.161330 0.986901i \(-0.448422\pi\)
0.161330 + 0.986901i \(0.448422\pi\)
\(24\) −35.8079 −0.304552
\(25\) 0 0
\(26\) −241.218 −1.81949
\(27\) 98.6520 0.703170
\(28\) −336.856 −2.27357
\(29\) −200.577 −1.28435 −0.642176 0.766557i \(-0.721968\pi\)
−0.642176 + 0.766557i \(0.721968\pi\)
\(30\) 0 0
\(31\) 248.494 1.43971 0.719853 0.694126i \(-0.244209\pi\)
0.719853 + 0.694126i \(0.244209\pi\)
\(32\) −212.752 −1.17530
\(33\) −2.17730 −0.0114855
\(34\) 159.052 0.802272
\(35\) 0 0
\(36\) −278.958 −1.29147
\(37\) −349.834 −1.55439 −0.777194 0.629261i \(-0.783358\pi\)
−0.777194 + 0.629261i \(0.783358\pi\)
\(38\) 676.008 2.88587
\(39\) 105.988 0.435171
\(40\) 0 0
\(41\) −69.5204 −0.264811 −0.132406 0.991196i \(-0.542270\pi\)
−0.132406 + 0.991196i \(0.542270\pi\)
\(42\) 246.176 0.904423
\(43\) 405.042 1.43647 0.718236 0.695799i \(-0.244950\pi\)
0.718236 + 0.695799i \(0.244950\pi\)
\(44\) 13.3446 0.0457223
\(45\) 0 0
\(46\) 159.414 0.510962
\(47\) 307.844 0.955399 0.477699 0.878523i \(-0.341471\pi\)
0.477699 + 0.878523i \(0.341471\pi\)
\(48\) 29.5247 0.0887817
\(49\) 436.904 1.27377
\(50\) 0 0
\(51\) −69.8855 −0.191881
\(52\) −649.598 −1.73237
\(53\) −19.7924 −0.0512961 −0.0256480 0.999671i \(-0.508165\pi\)
−0.0256480 + 0.999671i \(0.508165\pi\)
\(54\) 441.870 1.11353
\(55\) 0 0
\(56\) −508.117 −1.21250
\(57\) −297.029 −0.690219
\(58\) −898.399 −2.03389
\(59\) 393.465 0.868216 0.434108 0.900861i \(-0.357064\pi\)
0.434108 + 0.900861i \(0.357064\pi\)
\(60\) 0 0
\(61\) 477.990 1.00329 0.501643 0.865075i \(-0.332729\pi\)
0.501643 + 0.865075i \(0.332729\pi\)
\(62\) 1113.03 2.27991
\(63\) 645.856 1.29159
\(64\) −832.917 −1.62679
\(65\) 0 0
\(66\) −9.75231 −0.0181883
\(67\) −743.743 −1.35616 −0.678079 0.734989i \(-0.737187\pi\)
−0.678079 + 0.734989i \(0.737187\pi\)
\(68\) 428.327 0.763857
\(69\) −70.0444 −0.122208
\(70\) 0 0
\(71\) 527.495 0.881721 0.440860 0.897576i \(-0.354673\pi\)
0.440860 + 0.897576i \(0.354673\pi\)
\(72\) −420.783 −0.688746
\(73\) 171.209 0.274500 0.137250 0.990536i \(-0.456174\pi\)
0.137250 + 0.990536i \(0.456174\pi\)
\(74\) −1566.93 −2.46152
\(75\) 0 0
\(76\) 1820.49 2.74769
\(77\) −30.8961 −0.0457265
\(78\) 474.728 0.689133
\(79\) 442.894 0.630753 0.315377 0.948967i \(-0.397869\pi\)
0.315377 + 0.948967i \(0.397869\pi\)
\(80\) 0 0
\(81\) 430.271 0.590221
\(82\) −311.387 −0.419354
\(83\) 83.0000 0.109764
\(84\) 662.950 0.861117
\(85\) 0 0
\(86\) 1814.21 2.27479
\(87\) 394.745 0.486450
\(88\) 20.1292 0.0243838
\(89\) −673.015 −0.801567 −0.400784 0.916173i \(-0.631262\pi\)
−0.400784 + 0.916173i \(0.631262\pi\)
\(90\) 0 0
\(91\) 1503.98 1.73252
\(92\) 429.300 0.486496
\(93\) −489.049 −0.545291
\(94\) 1378.86 1.51296
\(95\) 0 0
\(96\) 418.707 0.445146
\(97\) 1098.95 1.15032 0.575162 0.818039i \(-0.304939\pi\)
0.575162 + 0.818039i \(0.304939\pi\)
\(98\) 1956.93 2.01714
\(99\) −25.5857 −0.0259744
\(100\) 0 0
\(101\) 1447.30 1.42586 0.712930 0.701235i \(-0.247368\pi\)
0.712930 + 0.701235i \(0.247368\pi\)
\(102\) −313.023 −0.303861
\(103\) −228.980 −0.219049 −0.109525 0.993984i \(-0.534933\pi\)
−0.109525 + 0.993984i \(0.534933\pi\)
\(104\) −979.858 −0.923875
\(105\) 0 0
\(106\) −88.6516 −0.0812321
\(107\) 1002.78 0.906000 0.453000 0.891511i \(-0.350354\pi\)
0.453000 + 0.891511i \(0.350354\pi\)
\(108\) 1189.95 1.06022
\(109\) 1153.38 1.01352 0.506762 0.862086i \(-0.330842\pi\)
0.506762 + 0.862086i \(0.330842\pi\)
\(110\) 0 0
\(111\) 688.491 0.588727
\(112\) 418.958 0.353462
\(113\) −992.531 −0.826278 −0.413139 0.910668i \(-0.635568\pi\)
−0.413139 + 0.910668i \(0.635568\pi\)
\(114\) −1330.42 −1.09303
\(115\) 0 0
\(116\) −2419.38 −1.93650
\(117\) 1245.48 0.984140
\(118\) 1762.36 1.37490
\(119\) −991.681 −0.763926
\(120\) 0 0
\(121\) −1329.78 −0.999080
\(122\) 2140.96 1.58880
\(123\) 136.820 0.100298
\(124\) 2997.37 2.17074
\(125\) 0 0
\(126\) 2892.84 2.04535
\(127\) 1474.40 1.03017 0.515087 0.857138i \(-0.327759\pi\)
0.515087 + 0.857138i \(0.327759\pi\)
\(128\) −2028.68 −1.40087
\(129\) −797.143 −0.544066
\(130\) 0 0
\(131\) 2398.88 1.59993 0.799967 0.600045i \(-0.204851\pi\)
0.799967 + 0.600045i \(0.204851\pi\)
\(132\) −26.2629 −0.0173174
\(133\) −4214.87 −2.74794
\(134\) −3331.28 −2.14760
\(135\) 0 0
\(136\) 646.091 0.407367
\(137\) −3130.43 −1.95220 −0.976099 0.217327i \(-0.930266\pi\)
−0.976099 + 0.217327i \(0.930266\pi\)
\(138\) −313.734 −0.193528
\(139\) −379.847 −0.231785 −0.115893 0.993262i \(-0.536973\pi\)
−0.115893 + 0.993262i \(0.536973\pi\)
\(140\) 0 0
\(141\) −605.853 −0.361859
\(142\) 2362.69 1.39629
\(143\) −59.5804 −0.0348417
\(144\) 346.948 0.200780
\(145\) 0 0
\(146\) 766.858 0.434696
\(147\) −859.850 −0.482444
\(148\) −4219.75 −2.34366
\(149\) −2901.73 −1.59543 −0.797715 0.603035i \(-0.793958\pi\)
−0.797715 + 0.603035i \(0.793958\pi\)
\(150\) 0 0
\(151\) 1624.86 0.875688 0.437844 0.899051i \(-0.355742\pi\)
0.437844 + 0.899051i \(0.355742\pi\)
\(152\) 2746.03 1.46535
\(153\) −821.233 −0.433940
\(154\) −138.386 −0.0724121
\(155\) 0 0
\(156\) 1278.44 0.656136
\(157\) 3252.16 1.65319 0.826594 0.562799i \(-0.190276\pi\)
0.826594 + 0.562799i \(0.190276\pi\)
\(158\) 1983.76 0.998857
\(159\) 38.9524 0.0194285
\(160\) 0 0
\(161\) −993.934 −0.486540
\(162\) 1927.22 0.934670
\(163\) −516.314 −0.248103 −0.124052 0.992276i \(-0.539589\pi\)
−0.124052 + 0.992276i \(0.539589\pi\)
\(164\) −838.565 −0.399274
\(165\) 0 0
\(166\) 371.763 0.173822
\(167\) −1451.00 −0.672345 −0.336173 0.941800i \(-0.609133\pi\)
−0.336173 + 0.941800i \(0.609133\pi\)
\(168\) 999.999 0.459236
\(169\) 703.288 0.320113
\(170\) 0 0
\(171\) −3490.43 −1.56093
\(172\) 4885.67 2.16587
\(173\) −1569.44 −0.689723 −0.344861 0.938654i \(-0.612074\pi\)
−0.344861 + 0.938654i \(0.612074\pi\)
\(174\) 1768.09 0.770339
\(175\) 0 0
\(176\) −16.5971 −0.00710826
\(177\) −774.358 −0.328838
\(178\) −3014.49 −1.26936
\(179\) −1767.40 −0.737998 −0.368999 0.929430i \(-0.620299\pi\)
−0.368999 + 0.929430i \(0.620299\pi\)
\(180\) 0 0
\(181\) −2154.03 −0.884573 −0.442286 0.896874i \(-0.645833\pi\)
−0.442286 + 0.896874i \(0.645833\pi\)
\(182\) 6736.43 2.74361
\(183\) −940.709 −0.379996
\(184\) 647.560 0.259450
\(185\) 0 0
\(186\) −2190.49 −0.863519
\(187\) 39.2857 0.0153629
\(188\) 3713.26 1.44052
\(189\) −2755.03 −1.06031
\(190\) 0 0
\(191\) −337.348 −0.127799 −0.0638996 0.997956i \(-0.520354\pi\)
−0.0638996 + 0.997956i \(0.520354\pi\)
\(192\) 1639.22 0.616149
\(193\) 4783.20 1.78395 0.891975 0.452086i \(-0.149320\pi\)
0.891975 + 0.452086i \(0.149320\pi\)
\(194\) 4922.28 1.82165
\(195\) 0 0
\(196\) 5270.00 1.92055
\(197\) 276.353 0.0999458 0.0499729 0.998751i \(-0.484087\pi\)
0.0499729 + 0.998751i \(0.484087\pi\)
\(198\) −114.601 −0.0411329
\(199\) 3127.48 1.11408 0.557038 0.830487i \(-0.311938\pi\)
0.557038 + 0.830487i \(0.311938\pi\)
\(200\) 0 0
\(201\) 1463.72 0.513647
\(202\) 6482.57 2.25798
\(203\) 5601.46 1.93668
\(204\) −842.969 −0.289312
\(205\) 0 0
\(206\) −1025.62 −0.346885
\(207\) −823.099 −0.276374
\(208\) 807.923 0.269324
\(209\) 166.973 0.0552620
\(210\) 0 0
\(211\) 1355.25 0.442175 0.221088 0.975254i \(-0.429039\pi\)
0.221088 + 0.975254i \(0.429039\pi\)
\(212\) −238.738 −0.0773425
\(213\) −1038.14 −0.333953
\(214\) 4491.51 1.43473
\(215\) 0 0
\(216\) 1794.93 0.565416
\(217\) −6939.64 −2.17094
\(218\) 5166.09 1.60501
\(219\) −336.948 −0.103967
\(220\) 0 0
\(221\) −1912.37 −0.582081
\(222\) 3083.80 0.932304
\(223\) 399.899 0.120086 0.0600430 0.998196i \(-0.480876\pi\)
0.0600430 + 0.998196i \(0.480876\pi\)
\(224\) 5941.48 1.77224
\(225\) 0 0
\(226\) −4445.62 −1.30849
\(227\) 1781.32 0.520839 0.260420 0.965496i \(-0.416139\pi\)
0.260420 + 0.965496i \(0.416139\pi\)
\(228\) −3582.81 −1.04069
\(229\) −4648.46 −1.34139 −0.670696 0.741733i \(-0.734004\pi\)
−0.670696 + 0.741733i \(0.734004\pi\)
\(230\) 0 0
\(231\) 60.8051 0.0173190
\(232\) −3649.42 −1.03274
\(233\) −4757.51 −1.33766 −0.668830 0.743415i \(-0.733205\pi\)
−0.668830 + 0.743415i \(0.733205\pi\)
\(234\) 5578.59 1.55848
\(235\) 0 0
\(236\) 4746.02 1.30907
\(237\) −871.638 −0.238899
\(238\) −4441.82 −1.20975
\(239\) −3553.60 −0.961771 −0.480886 0.876783i \(-0.659685\pi\)
−0.480886 + 0.876783i \(0.659685\pi\)
\(240\) 0 0
\(241\) −1989.57 −0.531783 −0.265891 0.964003i \(-0.585666\pi\)
−0.265891 + 0.964003i \(0.585666\pi\)
\(242\) −5956.17 −1.58214
\(243\) −3510.40 −0.926717
\(244\) 5765.58 1.51272
\(245\) 0 0
\(246\) 612.826 0.158831
\(247\) −8128.00 −2.09382
\(248\) 4521.26 1.15766
\(249\) −163.348 −0.0415734
\(250\) 0 0
\(251\) 3266.88 0.821528 0.410764 0.911742i \(-0.365262\pi\)
0.410764 + 0.911742i \(0.365262\pi\)
\(252\) 7790.40 1.94742
\(253\) 39.3750 0.00978451
\(254\) 6603.97 1.63138
\(255\) 0 0
\(256\) −2423.29 −0.591624
\(257\) 5789.14 1.40512 0.702562 0.711623i \(-0.252040\pi\)
0.702562 + 0.711623i \(0.252040\pi\)
\(258\) −3570.46 −0.861579
\(259\) 9769.74 2.34387
\(260\) 0 0
\(261\) 4638.70 1.10011
\(262\) 10744.8 2.53364
\(263\) −1086.39 −0.254714 −0.127357 0.991857i \(-0.540649\pi\)
−0.127357 + 0.991857i \(0.540649\pi\)
\(264\) −39.6152 −0.00923540
\(265\) 0 0
\(266\) −18878.7 −4.35161
\(267\) 1324.53 0.303595
\(268\) −8971.12 −2.04477
\(269\) −6745.63 −1.52895 −0.764477 0.644651i \(-0.777003\pi\)
−0.764477 + 0.644651i \(0.777003\pi\)
\(270\) 0 0
\(271\) 8169.30 1.83118 0.915589 0.402115i \(-0.131725\pi\)
0.915589 + 0.402115i \(0.131725\pi\)
\(272\) −532.722 −0.118754
\(273\) −2959.90 −0.656196
\(274\) −14021.5 −3.09149
\(275\) 0 0
\(276\) −844.884 −0.184261
\(277\) 4871.18 1.05661 0.528305 0.849055i \(-0.322828\pi\)
0.528305 + 0.849055i \(0.322828\pi\)
\(278\) −1701.36 −0.367054
\(279\) −5746.87 −1.23318
\(280\) 0 0
\(281\) 7426.68 1.57665 0.788325 0.615260i \(-0.210949\pi\)
0.788325 + 0.615260i \(0.210949\pi\)
\(282\) −2713.66 −0.573037
\(283\) 5125.86 1.07668 0.538340 0.842727i \(-0.319051\pi\)
0.538340 + 0.842727i \(0.319051\pi\)
\(284\) 6362.72 1.32943
\(285\) 0 0
\(286\) −266.865 −0.0551751
\(287\) 1941.48 0.399310
\(288\) 4920.27 1.00670
\(289\) −3652.04 −0.743341
\(290\) 0 0
\(291\) −2162.79 −0.435687
\(292\) 2065.14 0.413882
\(293\) 4090.92 0.815679 0.407840 0.913054i \(-0.366282\pi\)
0.407840 + 0.913054i \(0.366282\pi\)
\(294\) −3851.33 −0.763994
\(295\) 0 0
\(296\) −6365.10 −1.24988
\(297\) 109.141 0.0213233
\(298\) −12997.1 −2.52651
\(299\) −1916.72 −0.370724
\(300\) 0 0
\(301\) −11311.5 −2.16606
\(302\) 7277.86 1.38673
\(303\) −2848.36 −0.540046
\(304\) −2264.19 −0.427172
\(305\) 0 0
\(306\) −3678.37 −0.687184
\(307\) −4673.43 −0.868818 −0.434409 0.900716i \(-0.643043\pi\)
−0.434409 + 0.900716i \(0.643043\pi\)
\(308\) −372.673 −0.0689448
\(309\) 450.645 0.0829653
\(310\) 0 0
\(311\) −59.5176 −0.0108519 −0.00542594 0.999985i \(-0.501727\pi\)
−0.00542594 + 0.999985i \(0.501727\pi\)
\(312\) 1928.41 0.349919
\(313\) −6891.26 −1.24446 −0.622231 0.782833i \(-0.713774\pi\)
−0.622231 + 0.782833i \(0.713774\pi\)
\(314\) 14566.7 2.61798
\(315\) 0 0
\(316\) 5342.25 0.951029
\(317\) −2115.68 −0.374853 −0.187426 0.982279i \(-0.560015\pi\)
−0.187426 + 0.982279i \(0.560015\pi\)
\(318\) 174.471 0.0307668
\(319\) −221.903 −0.0389473
\(320\) 0 0
\(321\) −1973.51 −0.343149
\(322\) −4451.91 −0.770482
\(323\) 5359.38 0.923232
\(324\) 5189.99 0.889915
\(325\) 0 0
\(326\) −2312.61 −0.392895
\(327\) −2269.91 −0.383873
\(328\) −1264.90 −0.212934
\(329\) −8597.10 −1.44065
\(330\) 0 0
\(331\) −432.484 −0.0718172 −0.0359086 0.999355i \(-0.511433\pi\)
−0.0359086 + 0.999355i \(0.511433\pi\)
\(332\) 1001.16 0.165499
\(333\) 8090.54 1.33141
\(334\) −6499.14 −1.06472
\(335\) 0 0
\(336\) −824.529 −0.133874
\(337\) 8042.09 1.29994 0.649971 0.759959i \(-0.274781\pi\)
0.649971 + 0.759959i \(0.274781\pi\)
\(338\) 3150.08 0.506929
\(339\) 1953.35 0.312954
\(340\) 0 0
\(341\) 274.916 0.0436584
\(342\) −15633.9 −2.47188
\(343\) −2622.45 −0.412825
\(344\) 7369.58 1.15506
\(345\) 0 0
\(346\) −7029.63 −1.09224
\(347\) −9375.09 −1.45038 −0.725189 0.688550i \(-0.758248\pi\)
−0.725189 + 0.688550i \(0.758248\pi\)
\(348\) 4761.47 0.733453
\(349\) 10570.2 1.62124 0.810619 0.585574i \(-0.199131\pi\)
0.810619 + 0.585574i \(0.199131\pi\)
\(350\) 0 0
\(351\) −5312.84 −0.807915
\(352\) −235.373 −0.0356404
\(353\) 323.155 0.0487246 0.0243623 0.999703i \(-0.492244\pi\)
0.0243623 + 0.999703i \(0.492244\pi\)
\(354\) −3468.41 −0.520745
\(355\) 0 0
\(356\) −8118.00 −1.20858
\(357\) 1951.68 0.289338
\(358\) −7916.32 −1.16869
\(359\) 8509.95 1.25108 0.625540 0.780192i \(-0.284879\pi\)
0.625540 + 0.780192i \(0.284879\pi\)
\(360\) 0 0
\(361\) 15919.6 2.32098
\(362\) −9648.06 −1.40080
\(363\) 2617.07 0.378403
\(364\) 18141.2 2.61224
\(365\) 0 0
\(366\) −4213.51 −0.601759
\(367\) −5850.12 −0.832081 −0.416041 0.909346i \(-0.636583\pi\)
−0.416041 + 0.909346i \(0.636583\pi\)
\(368\) −533.933 −0.0756336
\(369\) 1607.78 0.226824
\(370\) 0 0
\(371\) 552.737 0.0773496
\(372\) −5898.98 −0.822171
\(373\) −2306.84 −0.320224 −0.160112 0.987099i \(-0.551186\pi\)
−0.160112 + 0.987099i \(0.551186\pi\)
\(374\) 175.964 0.0243285
\(375\) 0 0
\(376\) 5601.11 0.768232
\(377\) 10801.9 1.47567
\(378\) −12340.0 −1.67910
\(379\) −7465.12 −1.01176 −0.505881 0.862604i \(-0.668832\pi\)
−0.505881 + 0.862604i \(0.668832\pi\)
\(380\) 0 0
\(381\) −2901.70 −0.390180
\(382\) −1511.01 −0.202382
\(383\) −5064.60 −0.675689 −0.337845 0.941202i \(-0.609698\pi\)
−0.337845 + 0.941202i \(0.609698\pi\)
\(384\) 3992.55 0.530583
\(385\) 0 0
\(386\) 21424.3 2.82505
\(387\) −9367.32 −1.23041
\(388\) 13255.7 1.73442
\(389\) 14112.6 1.83942 0.919711 0.392595i \(-0.128423\pi\)
0.919711 + 0.392595i \(0.128423\pi\)
\(390\) 0 0
\(391\) 1263.83 0.163464
\(392\) 7949.31 1.02424
\(393\) −4721.12 −0.605977
\(394\) 1237.81 0.158274
\(395\) 0 0
\(396\) −308.619 −0.0391633
\(397\) 12519.1 1.58265 0.791327 0.611393i \(-0.209391\pi\)
0.791327 + 0.611393i \(0.209391\pi\)
\(398\) 14008.2 1.76424
\(399\) 8295.07 1.04078
\(400\) 0 0
\(401\) 5320.42 0.662566 0.331283 0.943531i \(-0.392519\pi\)
0.331283 + 0.943531i \(0.392519\pi\)
\(402\) 6556.13 0.813408
\(403\) −13382.5 −1.65417
\(404\) 17457.5 2.14986
\(405\) 0 0
\(406\) 25089.4 3.06691
\(407\) −387.030 −0.0471361
\(408\) −1271.54 −0.154291
\(409\) −2656.13 −0.321118 −0.160559 0.987026i \(-0.551330\pi\)
−0.160559 + 0.987026i \(0.551330\pi\)
\(410\) 0 0
\(411\) 6160.85 0.739397
\(412\) −2761.99 −0.330275
\(413\) −10988.2 −1.30919
\(414\) −3686.73 −0.437663
\(415\) 0 0
\(416\) 11457.6 1.35037
\(417\) 747.557 0.0877891
\(418\) 747.885 0.0875126
\(419\) 7531.18 0.878096 0.439048 0.898464i \(-0.355316\pi\)
0.439048 + 0.898464i \(0.355316\pi\)
\(420\) 0 0
\(421\) 2962.90 0.343000 0.171500 0.985184i \(-0.445139\pi\)
0.171500 + 0.985184i \(0.445139\pi\)
\(422\) 6070.25 0.700225
\(423\) −7119.45 −0.818344
\(424\) −360.115 −0.0412470
\(425\) 0 0
\(426\) −4649.90 −0.528846
\(427\) −13348.7 −1.51286
\(428\) 12095.6 1.36604
\(429\) 117.257 0.0131963
\(430\) 0 0
\(431\) 6991.70 0.781388 0.390694 0.920521i \(-0.372235\pi\)
0.390694 + 0.920521i \(0.372235\pi\)
\(432\) −1479.98 −0.164827
\(433\) −10191.5 −1.13111 −0.565557 0.824709i \(-0.691339\pi\)
−0.565557 + 0.824709i \(0.691339\pi\)
\(434\) −31083.2 −3.43788
\(435\) 0 0
\(436\) 13912.3 1.52816
\(437\) 5371.56 0.588001
\(438\) −1509.21 −0.164642
\(439\) 9491.43 1.03189 0.515947 0.856621i \(-0.327440\pi\)
0.515947 + 0.856621i \(0.327440\pi\)
\(440\) 0 0
\(441\) −10104.2 −1.09105
\(442\) −8565.65 −0.921779
\(443\) 8017.52 0.859873 0.429936 0.902859i \(-0.358536\pi\)
0.429936 + 0.902859i \(0.358536\pi\)
\(444\) 8304.67 0.887663
\(445\) 0 0
\(446\) 1791.18 0.190167
\(447\) 5710.75 0.604271
\(448\) 23260.7 2.45304
\(449\) −15361.7 −1.61462 −0.807310 0.590128i \(-0.799077\pi\)
−0.807310 + 0.590128i \(0.799077\pi\)
\(450\) 0 0
\(451\) −76.9122 −0.00803028
\(452\) −11972.0 −1.24583
\(453\) −3197.80 −0.331668
\(454\) 7978.68 0.824797
\(455\) 0 0
\(456\) −5404.33 −0.555002
\(457\) −11444.8 −1.17148 −0.585741 0.810499i \(-0.699196\pi\)
−0.585741 + 0.810499i \(0.699196\pi\)
\(458\) −20820.8 −2.12422
\(459\) 3503.14 0.356236
\(460\) 0 0
\(461\) 14701.8 1.48531 0.742656 0.669673i \(-0.233566\pi\)
0.742656 + 0.669673i \(0.233566\pi\)
\(462\) 272.351 0.0274262
\(463\) 21.0020 0.00210809 0.00105405 0.999999i \(-0.499664\pi\)
0.00105405 + 0.999999i \(0.499664\pi\)
\(464\) 3009.06 0.301060
\(465\) 0 0
\(466\) −21309.2 −2.11831
\(467\) −14991.4 −1.48548 −0.742741 0.669579i \(-0.766475\pi\)
−0.742741 + 0.669579i \(0.766475\pi\)
\(468\) 15023.1 1.48385
\(469\) 20770.3 2.04496
\(470\) 0 0
\(471\) −6400.41 −0.626147
\(472\) 7158.93 0.698128
\(473\) 448.108 0.0435603
\(474\) −3904.14 −0.378318
\(475\) 0 0
\(476\) −11961.8 −1.15182
\(477\) 457.734 0.0439375
\(478\) −15916.9 −1.52305
\(479\) 18888.8 1.80177 0.900887 0.434053i \(-0.142917\pi\)
0.900887 + 0.434053i \(0.142917\pi\)
\(480\) 0 0
\(481\) 18840.1 1.78593
\(482\) −8911.45 −0.842128
\(483\) 1956.11 0.184278
\(484\) −16039.9 −1.50638
\(485\) 0 0
\(486\) −15723.3 −1.46754
\(487\) −6533.58 −0.607936 −0.303968 0.952682i \(-0.598312\pi\)
−0.303968 + 0.952682i \(0.598312\pi\)
\(488\) 8696.85 0.806737
\(489\) 1016.13 0.0939695
\(490\) 0 0
\(491\) 6971.17 0.640742 0.320371 0.947292i \(-0.396192\pi\)
0.320371 + 0.947292i \(0.396192\pi\)
\(492\) 1650.34 0.151226
\(493\) −7122.49 −0.650671
\(494\) −36406.0 −3.31575
\(495\) 0 0
\(496\) −3727.91 −0.337476
\(497\) −14731.2 −1.32955
\(498\) −731.649 −0.0658353
\(499\) 1492.98 0.133938 0.0669689 0.997755i \(-0.478667\pi\)
0.0669689 + 0.997755i \(0.478667\pi\)
\(500\) 0 0
\(501\) 2855.64 0.254652
\(502\) 14632.6 1.30097
\(503\) −4277.49 −0.379172 −0.189586 0.981864i \(-0.560715\pi\)
−0.189586 + 0.981864i \(0.560715\pi\)
\(504\) 11751.1 1.03856
\(505\) 0 0
\(506\) 176.363 0.0154947
\(507\) −1384.11 −0.121243
\(508\) 17784.5 1.55326
\(509\) −7020.29 −0.611334 −0.305667 0.952138i \(-0.598879\pi\)
−0.305667 + 0.952138i \(0.598879\pi\)
\(510\) 0 0
\(511\) −4781.31 −0.413919
\(512\) 5375.35 0.463983
\(513\) 14889.1 1.28142
\(514\) 25930.0 2.22514
\(515\) 0 0
\(516\) −9615.24 −0.820325
\(517\) 340.576 0.0289720
\(518\) 43759.4 3.71173
\(519\) 3088.73 0.261233
\(520\) 0 0
\(521\) −4143.27 −0.348407 −0.174203 0.984710i \(-0.555735\pi\)
−0.174203 + 0.984710i \(0.555735\pi\)
\(522\) 20777.1 1.74212
\(523\) 6946.59 0.580790 0.290395 0.956907i \(-0.406213\pi\)
0.290395 + 0.956907i \(0.406213\pi\)
\(524\) 28935.6 2.41233
\(525\) 0 0
\(526\) −4866.03 −0.403363
\(527\) 8824.04 0.729377
\(528\) 32.6639 0.00269226
\(529\) −10900.3 −0.895890
\(530\) 0 0
\(531\) −9099.57 −0.743668
\(532\) −50840.3 −4.14325
\(533\) 3743.98 0.304258
\(534\) 5932.66 0.480770
\(535\) 0 0
\(536\) −13532.1 −1.09048
\(537\) 3478.33 0.279518
\(538\) −30214.2 −2.42124
\(539\) 483.359 0.0386266
\(540\) 0 0
\(541\) 7949.54 0.631751 0.315875 0.948801i \(-0.397702\pi\)
0.315875 + 0.948801i \(0.397702\pi\)
\(542\) 36590.9 2.89984
\(543\) 4239.24 0.335033
\(544\) −7554.83 −0.595424
\(545\) 0 0
\(546\) −13257.6 −1.03915
\(547\) −15833.7 −1.23766 −0.618828 0.785526i \(-0.712392\pi\)
−0.618828 + 0.785526i \(0.712392\pi\)
\(548\) −37759.7 −2.94346
\(549\) −11054.4 −0.859361
\(550\) 0 0
\(551\) −30272.2 −2.34054
\(552\) −1274.43 −0.0982669
\(553\) −12368.6 −0.951115
\(554\) 21818.4 1.67324
\(555\) 0 0
\(556\) −4581.76 −0.349478
\(557\) 16832.3 1.28045 0.640224 0.768189i \(-0.278842\pi\)
0.640224 + 0.768189i \(0.278842\pi\)
\(558\) −25740.7 −1.95285
\(559\) −21813.3 −1.65045
\(560\) 0 0
\(561\) −77.3162 −0.00581870
\(562\) 33264.7 2.49677
\(563\) −22369.3 −1.67452 −0.837258 0.546808i \(-0.815843\pi\)
−0.837258 + 0.546808i \(0.815843\pi\)
\(564\) −7307.88 −0.545598
\(565\) 0 0
\(566\) 22959.1 1.70502
\(567\) −12016.1 −0.889996
\(568\) 9597.57 0.708988
\(569\) 18669.1 1.37548 0.687740 0.725957i \(-0.258603\pi\)
0.687740 + 0.725957i \(0.258603\pi\)
\(570\) 0 0
\(571\) 4298.30 0.315023 0.157512 0.987517i \(-0.449653\pi\)
0.157512 + 0.987517i \(0.449653\pi\)
\(572\) −718.667 −0.0525332
\(573\) 663.917 0.0484041
\(574\) 8696.05 0.632345
\(575\) 0 0
\(576\) 19262.7 1.39342
\(577\) −19951.5 −1.43950 −0.719752 0.694231i \(-0.755744\pi\)
−0.719752 + 0.694231i \(0.755744\pi\)
\(578\) −16357.8 −1.17715
\(579\) −9413.57 −0.675673
\(580\) 0 0
\(581\) −2317.92 −0.165514
\(582\) −9687.29 −0.689951
\(583\) −21.8968 −0.00155553
\(584\) 3115.08 0.220724
\(585\) 0 0
\(586\) 18323.5 1.29170
\(587\) 17760.2 1.24880 0.624398 0.781106i \(-0.285344\pi\)
0.624398 + 0.781106i \(0.285344\pi\)
\(588\) −10371.6 −0.727412
\(589\) 37504.2 2.62366
\(590\) 0 0
\(591\) −543.876 −0.0378546
\(592\) 5248.21 0.364359
\(593\) 13990.5 0.968838 0.484419 0.874836i \(-0.339031\pi\)
0.484419 + 0.874836i \(0.339031\pi\)
\(594\) 488.852 0.0337674
\(595\) 0 0
\(596\) −35001.0 −2.40553
\(597\) −6155.04 −0.421958
\(598\) −8585.12 −0.587076
\(599\) 23269.8 1.58728 0.793638 0.608391i \(-0.208185\pi\)
0.793638 + 0.608391i \(0.208185\pi\)
\(600\) 0 0
\(601\) −13497.9 −0.916123 −0.458062 0.888921i \(-0.651456\pi\)
−0.458062 + 0.888921i \(0.651456\pi\)
\(602\) −50665.1 −3.43016
\(603\) 17200.4 1.16161
\(604\) 19599.2 1.32033
\(605\) 0 0
\(606\) −12758.0 −0.855214
\(607\) 8412.24 0.562508 0.281254 0.959633i \(-0.409250\pi\)
0.281254 + 0.959633i \(0.409250\pi\)
\(608\) −32109.8 −2.14181
\(609\) −11024.0 −0.733520
\(610\) 0 0
\(611\) −16578.8 −1.09772
\(612\) −9905.82 −0.654280
\(613\) −19815.1 −1.30558 −0.652792 0.757537i \(-0.726403\pi\)
−0.652792 + 0.757537i \(0.726403\pi\)
\(614\) −20932.7 −1.37585
\(615\) 0 0
\(616\) −562.142 −0.0367684
\(617\) −22031.0 −1.43750 −0.718749 0.695270i \(-0.755285\pi\)
−0.718749 + 0.695270i \(0.755285\pi\)
\(618\) 2018.47 0.131383
\(619\) 6870.20 0.446101 0.223051 0.974807i \(-0.428398\pi\)
0.223051 + 0.974807i \(0.428398\pi\)
\(620\) 0 0
\(621\) 3511.10 0.226885
\(622\) −266.584 −0.0171850
\(623\) 18795.1 1.20869
\(624\) −1590.03 −0.102007
\(625\) 0 0
\(626\) −30866.5 −1.97072
\(627\) −328.611 −0.0209306
\(628\) 39228.0 2.49262
\(629\) −12422.6 −0.787476
\(630\) 0 0
\(631\) −6443.69 −0.406528 −0.203264 0.979124i \(-0.565155\pi\)
−0.203264 + 0.979124i \(0.565155\pi\)
\(632\) 8058.29 0.507186
\(633\) −2667.19 −0.167474
\(634\) −9476.29 −0.593615
\(635\) 0 0
\(636\) 469.849 0.0292936
\(637\) −23529.2 −1.46352
\(638\) −993.922 −0.0616767
\(639\) −12199.3 −0.755236
\(640\) 0 0
\(641\) 1436.28 0.0885017 0.0442508 0.999020i \(-0.485910\pi\)
0.0442508 + 0.999020i \(0.485910\pi\)
\(642\) −8839.51 −0.543408
\(643\) −8864.97 −0.543702 −0.271851 0.962339i \(-0.587636\pi\)
−0.271851 + 0.962339i \(0.587636\pi\)
\(644\) −11989.0 −0.733589
\(645\) 0 0
\(646\) 24005.1 1.46202
\(647\) 20844.0 1.26656 0.633279 0.773923i \(-0.281708\pi\)
0.633279 + 0.773923i \(0.281708\pi\)
\(648\) 7828.61 0.474594
\(649\) 435.300 0.0263282
\(650\) 0 0
\(651\) 13657.6 0.822246
\(652\) −6227.85 −0.374082
\(653\) 4654.38 0.278928 0.139464 0.990227i \(-0.455462\pi\)
0.139464 + 0.990227i \(0.455462\pi\)
\(654\) −10167.1 −0.607899
\(655\) 0 0
\(656\) 1042.95 0.0620735
\(657\) −3959.51 −0.235122
\(658\) −38507.1 −2.28140
\(659\) 6789.17 0.401318 0.200659 0.979661i \(-0.435692\pi\)
0.200659 + 0.979661i \(0.435692\pi\)
\(660\) 0 0
\(661\) 4486.83 0.264020 0.132010 0.991248i \(-0.457857\pi\)
0.132010 + 0.991248i \(0.457857\pi\)
\(662\) −1937.13 −0.113729
\(663\) 3763.64 0.220464
\(664\) 1510.15 0.0882610
\(665\) 0 0
\(666\) 36238.1 2.10841
\(667\) −7138.68 −0.414409
\(668\) −17502.1 −1.01374
\(669\) −787.021 −0.0454828
\(670\) 0 0
\(671\) 528.813 0.0304241
\(672\) −11693.1 −0.671238
\(673\) 12403.8 0.710450 0.355225 0.934781i \(-0.384404\pi\)
0.355225 + 0.934781i \(0.384404\pi\)
\(674\) 36021.1 2.05858
\(675\) 0 0
\(676\) 8483.16 0.482656
\(677\) 20788.2 1.18014 0.590070 0.807352i \(-0.299100\pi\)
0.590070 + 0.807352i \(0.299100\pi\)
\(678\) 8749.21 0.495592
\(679\) −30690.1 −1.73458
\(680\) 0 0
\(681\) −3505.73 −0.197269
\(682\) 1231.37 0.0691371
\(683\) −4355.19 −0.243992 −0.121996 0.992531i \(-0.538930\pi\)
−0.121996 + 0.992531i \(0.538930\pi\)
\(684\) −42102.0 −2.35352
\(685\) 0 0
\(686\) −11746.1 −0.653746
\(687\) 9148.39 0.508054
\(688\) −6076.44 −0.336718
\(689\) 1065.91 0.0589372
\(690\) 0 0
\(691\) 7425.03 0.408772 0.204386 0.978890i \(-0.434480\pi\)
0.204386 + 0.978890i \(0.434480\pi\)
\(692\) −18930.7 −1.03994
\(693\) 714.527 0.0391669
\(694\) −41991.8 −2.29681
\(695\) 0 0
\(696\) 7182.24 0.391152
\(697\) −2468.67 −0.134157
\(698\) 47344.9 2.56738
\(699\) 9363.01 0.506640
\(700\) 0 0
\(701\) 30391.1 1.63746 0.818728 0.574181i \(-0.194680\pi\)
0.818728 + 0.574181i \(0.194680\pi\)
\(702\) −23796.6 −1.27941
\(703\) −52799.0 −2.83265
\(704\) −921.477 −0.0493316
\(705\) 0 0
\(706\) 1447.43 0.0771600
\(707\) −40418.5 −2.15006
\(708\) −9340.41 −0.495811
\(709\) −9033.93 −0.478528 −0.239264 0.970955i \(-0.576906\pi\)
−0.239264 + 0.970955i \(0.576906\pi\)
\(710\) 0 0
\(711\) −10242.7 −0.540270
\(712\) −12245.3 −0.644537
\(713\) 8844.10 0.464536
\(714\) 8741.71 0.458194
\(715\) 0 0
\(716\) −21318.6 −1.11273
\(717\) 6993.66 0.364272
\(718\) 38116.7 1.98120
\(719\) −15255.8 −0.791301 −0.395651 0.918401i \(-0.629481\pi\)
−0.395651 + 0.918401i \(0.629481\pi\)
\(720\) 0 0
\(721\) 6394.68 0.330306
\(722\) 71305.0 3.67548
\(723\) 3915.58 0.201413
\(724\) −25982.2 −1.33373
\(725\) 0 0
\(726\) 11722.0 0.599236
\(727\) −31425.7 −1.60319 −0.801593 0.597870i \(-0.796014\pi\)
−0.801593 + 0.597870i \(0.796014\pi\)
\(728\) 27364.3 1.39311
\(729\) −4708.68 −0.239226
\(730\) 0 0
\(731\) 14383.1 0.727738
\(732\) −11347.0 −0.572945
\(733\) 20741.7 1.04517 0.522587 0.852586i \(-0.324967\pi\)
0.522587 + 0.852586i \(0.324967\pi\)
\(734\) −26203.1 −1.31768
\(735\) 0 0
\(736\) −7572.00 −0.379222
\(737\) −822.821 −0.0411249
\(738\) 7201.39 0.359196
\(739\) −19085.6 −0.950035 −0.475017 0.879976i \(-0.657558\pi\)
−0.475017 + 0.879976i \(0.657558\pi\)
\(740\) 0 0
\(741\) 15996.3 0.793036
\(742\) 2475.75 0.122490
\(743\) 17225.3 0.850517 0.425259 0.905072i \(-0.360183\pi\)
0.425259 + 0.905072i \(0.360183\pi\)
\(744\) −8898.06 −0.438466
\(745\) 0 0
\(746\) −10332.5 −0.507104
\(747\) −1919.52 −0.0940183
\(748\) 473.869 0.0231636
\(749\) −28004.3 −1.36616
\(750\) 0 0
\(751\) −9934.87 −0.482728 −0.241364 0.970435i \(-0.577595\pi\)
−0.241364 + 0.970435i \(0.577595\pi\)
\(752\) −4618.29 −0.223952
\(753\) −6429.38 −0.311155
\(754\) 48382.7 2.33686
\(755\) 0 0
\(756\) −33231.6 −1.59870
\(757\) −68.9021 −0.00330818 −0.00165409 0.999999i \(-0.500527\pi\)
−0.00165409 + 0.999999i \(0.500527\pi\)
\(758\) −33436.9 −1.60222
\(759\) −77.4919 −0.00370590
\(760\) 0 0
\(761\) −9900.08 −0.471587 −0.235794 0.971803i \(-0.575769\pi\)
−0.235794 + 0.971803i \(0.575769\pi\)
\(762\) −12996.9 −0.617886
\(763\) −32210.2 −1.52830
\(764\) −4069.13 −0.192691
\(765\) 0 0
\(766\) −22684.7 −1.07002
\(767\) −21189.8 −0.997546
\(768\) 4769.16 0.224078
\(769\) 9776.56 0.458455 0.229227 0.973373i \(-0.426380\pi\)
0.229227 + 0.973373i \(0.426380\pi\)
\(770\) 0 0
\(771\) −11393.3 −0.532192
\(772\) 57695.6 2.68978
\(773\) 21990.2 1.02320 0.511599 0.859224i \(-0.329053\pi\)
0.511599 + 0.859224i \(0.329053\pi\)
\(774\) −41956.9 −1.94846
\(775\) 0 0
\(776\) 19995.0 0.924971
\(777\) −19227.3 −0.887743
\(778\) 63211.3 2.91290
\(779\) −10492.4 −0.482580
\(780\) 0 0
\(781\) 583.582 0.0267378
\(782\) 5660.79 0.258861
\(783\) −19787.3 −0.903117
\(784\) −6554.44 −0.298581
\(785\) 0 0
\(786\) −21146.3 −0.959621
\(787\) 13279.1 0.601461 0.300731 0.953709i \(-0.402769\pi\)
0.300731 + 0.953709i \(0.402769\pi\)
\(788\) 3333.41 0.150695
\(789\) 2138.07 0.0964732
\(790\) 0 0
\(791\) 27718.2 1.24595
\(792\) −465.523 −0.0208859
\(793\) −25741.9 −1.15274
\(794\) 56073.8 2.50628
\(795\) 0 0
\(796\) 37724.1 1.67977
\(797\) 21493.8 0.955269 0.477635 0.878559i \(-0.341494\pi\)
0.477635 + 0.878559i \(0.341494\pi\)
\(798\) 37154.3 1.64818
\(799\) 10931.6 0.484019
\(800\) 0 0
\(801\) 15564.7 0.686580
\(802\) 23830.6 1.04924
\(803\) 189.413 0.00832407
\(804\) 17655.6 0.774460
\(805\) 0 0
\(806\) −59941.2 −2.61953
\(807\) 13275.7 0.579093
\(808\) 26333.1 1.14653
\(809\) −29958.7 −1.30197 −0.650985 0.759091i \(-0.725644\pi\)
−0.650985 + 0.759091i \(0.725644\pi\)
\(810\) 0 0
\(811\) 26589.1 1.15126 0.575629 0.817711i \(-0.304757\pi\)
0.575629 + 0.817711i \(0.304757\pi\)
\(812\) 67565.6 2.92006
\(813\) −16077.6 −0.693561
\(814\) −1733.54 −0.0746444
\(815\) 0 0
\(816\) 1048.42 0.0449781
\(817\) 61131.3 2.61776
\(818\) −11897.0 −0.508520
\(819\) −34782.2 −1.48399
\(820\) 0 0
\(821\) −32354.5 −1.37537 −0.687686 0.726009i \(-0.741373\pi\)
−0.687686 + 0.726009i \(0.741373\pi\)
\(822\) 27594.9 1.17090
\(823\) −912.733 −0.0386584 −0.0193292 0.999813i \(-0.506153\pi\)
−0.0193292 + 0.999813i \(0.506153\pi\)
\(824\) −4166.21 −0.176137
\(825\) 0 0
\(826\) −49217.0 −2.07322
\(827\) −17231.2 −0.724531 −0.362265 0.932075i \(-0.617997\pi\)
−0.362265 + 0.932075i \(0.617997\pi\)
\(828\) −9928.33 −0.416707
\(829\) −31991.9 −1.34032 −0.670160 0.742217i \(-0.733775\pi\)
−0.670160 + 0.742217i \(0.733775\pi\)
\(830\) 0 0
\(831\) −9586.73 −0.400192
\(832\) 44856.2 1.86912
\(833\) 15514.5 0.645313
\(834\) 3348.37 0.139022
\(835\) 0 0
\(836\) 2014.05 0.0833223
\(837\) 24514.5 1.01236
\(838\) 33732.7 1.39055
\(839\) 11161.1 0.459267 0.229634 0.973277i \(-0.426247\pi\)
0.229634 + 0.973277i \(0.426247\pi\)
\(840\) 0 0
\(841\) 15842.1 0.649558
\(842\) 13271.1 0.543173
\(843\) −14616.1 −0.597158
\(844\) 16347.2 0.666697
\(845\) 0 0
\(846\) −31888.6 −1.29592
\(847\) 37136.3 1.50652
\(848\) 296.925 0.0120241
\(849\) −10087.9 −0.407794
\(850\) 0 0
\(851\) −12450.9 −0.501539
\(852\) −12522.2 −0.503523
\(853\) −15256.3 −0.612388 −0.306194 0.951969i \(-0.599056\pi\)
−0.306194 + 0.951969i \(0.599056\pi\)
\(854\) −59790.0 −2.39575
\(855\) 0 0
\(856\) 18245.1 0.728511
\(857\) −38889.4 −1.55010 −0.775051 0.631898i \(-0.782276\pi\)
−0.775051 + 0.631898i \(0.782276\pi\)
\(858\) 525.204 0.0208976
\(859\) 5149.06 0.204521 0.102261 0.994758i \(-0.467392\pi\)
0.102261 + 0.994758i \(0.467392\pi\)
\(860\) 0 0
\(861\) −3820.93 −0.151239
\(862\) 31316.4 1.23740
\(863\) −6731.55 −0.265521 −0.132761 0.991148i \(-0.542384\pi\)
−0.132761 + 0.991148i \(0.542384\pi\)
\(864\) −20988.4 −0.826436
\(865\) 0 0
\(866\) −45648.5 −1.79122
\(867\) 7187.39 0.281542
\(868\) −83706.9 −3.27327
\(869\) 489.985 0.0191273
\(870\) 0 0
\(871\) 40053.8 1.55817
\(872\) 20985.3 0.814969
\(873\) −25415.2 −0.985307
\(874\) 24059.6 0.931155
\(875\) 0 0
\(876\) −4064.31 −0.156758
\(877\) 8176.68 0.314831 0.157415 0.987532i \(-0.449684\pi\)
0.157415 + 0.987532i \(0.449684\pi\)
\(878\) 42512.9 1.63410
\(879\) −8051.13 −0.308940
\(880\) 0 0
\(881\) −32106.5 −1.22780 −0.613901 0.789383i \(-0.710401\pi\)
−0.613901 + 0.789383i \(0.710401\pi\)
\(882\) −45257.5 −1.72778
\(883\) 34983.7 1.33329 0.666645 0.745375i \(-0.267730\pi\)
0.666645 + 0.745375i \(0.267730\pi\)
\(884\) −23067.3 −0.877642
\(885\) 0 0
\(886\) 35911.1 1.36169
\(887\) 10990.6 0.416040 0.208020 0.978125i \(-0.433298\pi\)
0.208020 + 0.978125i \(0.433298\pi\)
\(888\) 12526.8 0.473393
\(889\) −41175.3 −1.55340
\(890\) 0 0
\(891\) 476.020 0.0178982
\(892\) 4823.63 0.181062
\(893\) 46461.7 1.74108
\(894\) 25578.9 0.956919
\(895\) 0 0
\(896\) 56654.5 2.11238
\(897\) 3772.19 0.140412
\(898\) −68806.3 −2.55690
\(899\) −49842.2 −1.84909
\(900\) 0 0
\(901\) −702.828 −0.0259874
\(902\) −344.496 −0.0127167
\(903\) 22261.6 0.820399
\(904\) −18058.7 −0.664407
\(905\) 0 0
\(906\) −14323.2 −0.525227
\(907\) 8587.67 0.314387 0.157193 0.987568i \(-0.449755\pi\)
0.157193 + 0.987568i \(0.449755\pi\)
\(908\) 21486.5 0.785304
\(909\) −33471.4 −1.22132
\(910\) 0 0
\(911\) 16350.0 0.594620 0.297310 0.954781i \(-0.403911\pi\)
0.297310 + 0.954781i \(0.403911\pi\)
\(912\) 4456.04 0.161792
\(913\) 91.8250 0.00332855
\(914\) −51262.3 −1.85515
\(915\) 0 0
\(916\) −56070.3 −2.02251
\(917\) −66993.0 −2.41255
\(918\) 15690.8 0.564133
\(919\) −2057.65 −0.0738583 −0.0369291 0.999318i \(-0.511758\pi\)
−0.0369291 + 0.999318i \(0.511758\pi\)
\(920\) 0 0
\(921\) 9197.55 0.329066
\(922\) 65850.3 2.35213
\(923\) −28407.9 −1.01306
\(924\) 733.439 0.0261129
\(925\) 0 0
\(926\) 94.0698 0.00333836
\(927\) 5295.58 0.187626
\(928\) 42673.1 1.50950
\(929\) 21010.5 0.742016 0.371008 0.928630i \(-0.379012\pi\)
0.371008 + 0.928630i \(0.379012\pi\)
\(930\) 0 0
\(931\) 65940.1 2.32127
\(932\) −57385.7 −2.01688
\(933\) 117.134 0.00411016
\(934\) −67147.7 −2.35240
\(935\) 0 0
\(936\) 22661.0 0.791343
\(937\) −6872.87 −0.239623 −0.119812 0.992797i \(-0.538229\pi\)
−0.119812 + 0.992797i \(0.538229\pi\)
\(938\) 93031.9 3.23838
\(939\) 13562.3 0.471342
\(940\) 0 0
\(941\) 23175.3 0.802861 0.401431 0.915889i \(-0.368513\pi\)
0.401431 + 0.915889i \(0.368513\pi\)
\(942\) −28667.9 −0.991562
\(943\) −2474.28 −0.0854441
\(944\) −5902.76 −0.203515
\(945\) 0 0
\(946\) 2007.11 0.0689819
\(947\) −39802.8 −1.36581 −0.682903 0.730510i \(-0.739283\pi\)
−0.682903 + 0.730510i \(0.739283\pi\)
\(948\) −10513.8 −0.360203
\(949\) −9220.34 −0.315390
\(950\) 0 0
\(951\) 4163.76 0.141976
\(952\) −18043.2 −0.614270
\(953\) 12561.3 0.426968 0.213484 0.976947i \(-0.431519\pi\)
0.213484 + 0.976947i \(0.431519\pi\)
\(954\) 2050.23 0.0695792
\(955\) 0 0
\(956\) −42864.0 −1.45013
\(957\) 436.717 0.0147514
\(958\) 84604.3 2.85328
\(959\) 87422.9 2.94373
\(960\) 0 0
\(961\) 31958.4 1.07275
\(962\) 84386.2 2.82819
\(963\) −23191.0 −0.776032
\(964\) −23998.5 −0.801804
\(965\) 0 0
\(966\) 8761.58 0.291821
\(967\) 37183.7 1.23655 0.618276 0.785961i \(-0.287831\pi\)
0.618276 + 0.785961i \(0.287831\pi\)
\(968\) −24194.8 −0.803356
\(969\) −10547.5 −0.349675
\(970\) 0 0
\(971\) 17128.5 0.566096 0.283048 0.959106i \(-0.408654\pi\)
0.283048 + 0.959106i \(0.408654\pi\)
\(972\) −42342.9 −1.39727
\(973\) 10607.9 0.349510
\(974\) −29264.4 −0.962723
\(975\) 0 0
\(976\) −7170.82 −0.235176
\(977\) 23254.7 0.761497 0.380749 0.924679i \(-0.375666\pi\)
0.380749 + 0.924679i \(0.375666\pi\)
\(978\) 4551.33 0.148809
\(979\) −744.574 −0.0243071
\(980\) 0 0
\(981\) −26674.0 −0.868130
\(982\) 31224.4 1.01467
\(983\) 1776.47 0.0576406 0.0288203 0.999585i \(-0.490825\pi\)
0.0288203 + 0.999585i \(0.490825\pi\)
\(984\) 2489.38 0.0806489
\(985\) 0 0
\(986\) −31902.2 −1.03040
\(987\) 16919.5 0.545648
\(988\) −98041.1 −3.15699
\(989\) 14415.7 0.463492
\(990\) 0 0
\(991\) 12681.8 0.406508 0.203254 0.979126i \(-0.434848\pi\)
0.203254 + 0.979126i \(0.434848\pi\)
\(992\) −52867.7 −1.69209
\(993\) 851.150 0.0272008
\(994\) −65982.4 −2.10547
\(995\) 0 0
\(996\) −1970.33 −0.0626829
\(997\) 19332.0 0.614094 0.307047 0.951694i \(-0.400659\pi\)
0.307047 + 0.951694i \(0.400659\pi\)
\(998\) 6687.18 0.212103
\(999\) −34511.8 −1.09300
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2075.4.a.k.1.40 47
5.4 even 2 2075.4.a.l.1.8 yes 47
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2075.4.a.k.1.40 47 1.1 even 1 trivial
2075.4.a.l.1.8 yes 47 5.4 even 2