Properties

Label 207.3.j.a.10.2
Level $207$
Weight $3$
Character 207.10
Analytic conductor $5.640$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [207,3,Mod(10,207)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("207.10"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(207, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 207.j (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.64034147226\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{22})\)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 10.2
Character \(\chi\) \(=\) 207.10
Dual form 207.3.j.a.145.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.881085 + 1.01683i) q^{2} +(0.311634 - 2.16747i) q^{4} +(2.08252 + 0.951056i) q^{5} +(-2.90589 + 9.89656i) q^{7} +(7.00598 - 4.50247i) q^{8} +(0.867820 + 2.95552i) q^{10} +(6.07406 + 5.26321i) q^{11} +(14.4927 - 4.25543i) q^{13} +(-12.6234 + 5.76492i) q^{14} +(2.34688 + 0.689107i) q^{16} +(13.1674 - 1.89318i) q^{17} +(26.2733 + 3.77753i) q^{19} +(2.71037 - 4.21741i) q^{20} +10.8136i q^{22} +(-22.1459 + 6.20960i) q^{23} +(-12.9391 - 14.9325i) q^{25} +(17.0963 + 10.9871i) q^{26} +(20.5449 + 9.38253i) q^{28} +(-0.753370 - 5.23980i) q^{29} +(-29.7398 + 19.1126i) q^{31} +(-12.4713 - 27.3082i) q^{32} +(13.5266 + 11.7209i) q^{34} +(-15.4638 + 17.8461i) q^{35} +(-32.5376 + 14.8594i) q^{37} +(19.3079 + 30.0437i) q^{38} +(18.8722 - 2.71342i) q^{40} +(-7.60347 + 16.6493i) q^{41} +(8.28150 - 12.8863i) q^{43} +(13.3007 - 11.5251i) q^{44} +(-25.8265 - 17.0473i) q^{46} -72.6550 q^{47} +(-48.2763 - 31.0253i) q^{49} +(3.78334 - 26.3137i) q^{50} +(-4.70709 - 32.7385i) q^{52} +(25.8947 - 88.1894i) q^{53} +(7.64377 + 16.7375i) q^{55} +(24.2004 + 82.4189i) q^{56} +(4.66419 - 5.38276i) q^{58} +(71.1561 - 20.8933i) q^{59} +(-15.2916 - 23.7942i) q^{61} +(-45.6374 - 13.4004i) q^{62} +(20.8438 - 45.6417i) q^{64} +(34.2285 + 4.92131i) q^{65} +(-5.29481 + 4.58798i) q^{67} -29.1298i q^{68} -31.7713 q^{70} +(-18.7368 - 21.6234i) q^{71} +(-1.65454 + 11.5076i) q^{73} +(-43.7778 - 19.9926i) q^{74} +(16.3753 - 55.7692i) q^{76} +(-69.7382 + 44.8180i) q^{77} +(5.91331 + 20.1389i) q^{79} +(4.23206 + 3.66710i) q^{80} +(-23.6287 + 6.93802i) q^{82} +(15.0149 - 6.85707i) q^{83} +(29.2218 + 8.58031i) q^{85} +(20.3998 - 2.93305i) q^{86} +(66.2522 + 9.52563i) q^{88} +(-21.3179 + 33.1714i) q^{89} +155.794i q^{91} +(6.55766 + 49.9356i) q^{92} +(-64.0153 - 73.8775i) q^{94} +(51.1221 + 32.8542i) q^{95} +(-77.7143 - 35.4909i) q^{97} +(-10.9882 - 76.4246i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 11 q^{2} - 23 q^{4} + 11 q^{5} - 11 q^{7} - 10 q^{8} - 11 q^{10} + 11 q^{11} - 11 q^{13} + 11 q^{14} + 73 q^{16} - 44 q^{17} + 22 q^{19} - 77 q^{20} - 36 q^{23} - 152 q^{25} + 186 q^{26} - 275 q^{28}+ \cdots - 77 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/207\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(47\)
\(\chi(n)\) \(e\left(\frac{3}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.881085 + 1.01683i 0.440542 + 0.508413i 0.931985 0.362497i \(-0.118076\pi\)
−0.491443 + 0.870910i \(0.663530\pi\)
\(3\) 0 0
\(4\) 0.311634 2.16747i 0.0779086 0.541866i
\(5\) 2.08252 + 0.951056i 0.416505 + 0.190211i 0.612634 0.790367i \(-0.290110\pi\)
−0.196129 + 0.980578i \(0.562837\pi\)
\(6\) 0 0
\(7\) −2.90589 + 9.89656i −0.415128 + 1.41379i 0.441222 + 0.897398i \(0.354545\pi\)
−0.856349 + 0.516397i \(0.827273\pi\)
\(8\) 7.00598 4.50247i 0.875748 0.562809i
\(9\) 0 0
\(10\) 0.867820 + 2.95552i 0.0867820 + 0.295552i
\(11\) 6.07406 + 5.26321i 0.552188 + 0.478473i 0.885691 0.464276i \(-0.153685\pi\)
−0.333503 + 0.942749i \(0.608231\pi\)
\(12\) 0 0
\(13\) 14.4927 4.25543i 1.11482 0.327341i 0.328096 0.944644i \(-0.393593\pi\)
0.786725 + 0.617303i \(0.211775\pi\)
\(14\) −12.6234 + 5.76492i −0.901673 + 0.411780i
\(15\) 0 0
\(16\) 2.34688 + 0.689107i 0.146680 + 0.0430692i
\(17\) 13.1674 1.89318i 0.774550 0.111364i 0.256305 0.966596i \(-0.417495\pi\)
0.518245 + 0.855232i \(0.326586\pi\)
\(18\) 0 0
\(19\) 26.2733 + 3.77753i 1.38280 + 0.198817i 0.793243 0.608906i \(-0.208391\pi\)
0.589562 + 0.807723i \(0.299300\pi\)
\(20\) 2.71037 4.21741i 0.135518 0.210871i
\(21\) 0 0
\(22\) 10.8136i 0.491527i
\(23\) −22.1459 + 6.20960i −0.962865 + 0.269982i
\(24\) 0 0
\(25\) −12.9391 14.9325i −0.517565 0.597302i
\(26\) 17.0963 + 10.9871i 0.657551 + 0.422582i
\(27\) 0 0
\(28\) 20.5449 + 9.38253i 0.733746 + 0.335090i
\(29\) −0.753370 5.23980i −0.0259783 0.180683i 0.972701 0.232062i \(-0.0745473\pi\)
−0.998679 + 0.0513794i \(0.983638\pi\)
\(30\) 0 0
\(31\) −29.7398 + 19.1126i −0.959347 + 0.616535i −0.923817 0.382834i \(-0.874948\pi\)
−0.0355297 + 0.999369i \(0.511312\pi\)
\(32\) −12.4713 27.3082i −0.389727 0.853382i
\(33\) 0 0
\(34\) 13.5266 + 11.7209i 0.397841 + 0.344731i
\(35\) −15.4638 + 17.8461i −0.441822 + 0.509890i
\(36\) 0 0
\(37\) −32.5376 + 14.8594i −0.879393 + 0.401605i −0.803356 0.595499i \(-0.796954\pi\)
−0.0760377 + 0.997105i \(0.524227\pi\)
\(38\) 19.3079 + 30.0437i 0.508103 + 0.790624i
\(39\) 0 0
\(40\) 18.8722 2.71342i 0.471806 0.0678354i
\(41\) −7.60347 + 16.6493i −0.185451 + 0.406080i −0.979407 0.201894i \(-0.935290\pi\)
0.793957 + 0.607974i \(0.208018\pi\)
\(42\) 0 0
\(43\) 8.28150 12.8863i 0.192593 0.299681i −0.731505 0.681836i \(-0.761182\pi\)
0.924098 + 0.382155i \(0.124818\pi\)
\(44\) 13.3007 11.5251i 0.302289 0.261935i
\(45\) 0 0
\(46\) −25.8265 17.0473i −0.561446 0.370595i
\(47\) −72.6550 −1.54585 −0.772926 0.634496i \(-0.781208\pi\)
−0.772926 + 0.634496i \(0.781208\pi\)
\(48\) 0 0
\(49\) −48.2763 31.0253i −0.985231 0.633170i
\(50\) 3.78334 26.3137i 0.0756667 0.526274i
\(51\) 0 0
\(52\) −4.70709 32.7385i −0.0905209 0.629587i
\(53\) 25.8947 88.1894i 0.488580 1.66395i −0.233668 0.972316i \(-0.575073\pi\)
0.722248 0.691634i \(-0.243109\pi\)
\(54\) 0 0
\(55\) 7.64377 + 16.7375i 0.138978 + 0.304319i
\(56\) 24.2004 + 82.4189i 0.432149 + 1.47177i
\(57\) 0 0
\(58\) 4.66419 5.38276i 0.0804170 0.0928062i
\(59\) 71.1561 20.8933i 1.20604 0.354124i 0.383878 0.923384i \(-0.374588\pi\)
0.822158 + 0.569260i \(0.192770\pi\)
\(60\) 0 0
\(61\) −15.2916 23.7942i −0.250682 0.390069i 0.692992 0.720945i \(-0.256292\pi\)
−0.943674 + 0.330876i \(0.892656\pi\)
\(62\) −45.6374 13.4004i −0.736087 0.216135i
\(63\) 0 0
\(64\) 20.8438 45.6417i 0.325685 0.713151i
\(65\) 34.2285 + 4.92131i 0.526592 + 0.0757125i
\(66\) 0 0
\(67\) −5.29481 + 4.58798i −0.0790270 + 0.0684773i −0.693479 0.720477i \(-0.743923\pi\)
0.614452 + 0.788955i \(0.289377\pi\)
\(68\) 29.1298i 0.428379i
\(69\) 0 0
\(70\) −31.7713 −0.453876
\(71\) −18.7368 21.6234i −0.263899 0.304556i 0.608300 0.793707i \(-0.291852\pi\)
−0.872199 + 0.489152i \(0.837306\pi\)
\(72\) 0 0
\(73\) −1.65454 + 11.5076i −0.0226649 + 0.157638i −0.998011 0.0630439i \(-0.979919\pi\)
0.975346 + 0.220682i \(0.0708283\pi\)
\(74\) −43.7778 19.9926i −0.591592 0.270171i
\(75\) 0 0
\(76\) 16.3753 55.7692i 0.215465 0.733806i
\(77\) −69.7382 + 44.8180i −0.905691 + 0.582053i
\(78\) 0 0
\(79\) 5.91331 + 20.1389i 0.0748520 + 0.254922i 0.988415 0.151774i \(-0.0484987\pi\)
−0.913563 + 0.406697i \(0.866681\pi\)
\(80\) 4.23206 + 3.66710i 0.0529007 + 0.0458387i
\(81\) 0 0
\(82\) −23.6287 + 6.93802i −0.288155 + 0.0846100i
\(83\) 15.0149 6.85707i 0.180902 0.0826153i −0.322905 0.946431i \(-0.604659\pi\)
0.503807 + 0.863816i \(0.331932\pi\)
\(84\) 0 0
\(85\) 29.2218 + 8.58031i 0.343786 + 0.100945i
\(86\) 20.3998 2.93305i 0.237207 0.0341052i
\(87\) 0 0
\(88\) 66.2522 + 9.52563i 0.752866 + 0.108246i
\(89\) −21.3179 + 33.1714i −0.239527 + 0.372712i −0.940117 0.340853i \(-0.889284\pi\)
0.700589 + 0.713565i \(0.252921\pi\)
\(90\) 0 0
\(91\) 155.794i 1.71202i
\(92\) 6.55766 + 49.9356i 0.0712789 + 0.542778i
\(93\) 0 0
\(94\) −64.0153 73.8775i −0.681013 0.785931i
\(95\) 51.1221 + 32.8542i 0.538127 + 0.345833i
\(96\) 0 0
\(97\) −77.7143 35.4909i −0.801178 0.365886i −0.0276260 0.999618i \(-0.508795\pi\)
−0.773552 + 0.633732i \(0.781522\pi\)
\(98\) −10.9882 76.4246i −0.112124 0.779842i
\(99\) 0 0
\(100\) −36.3981 + 23.3916i −0.363981 + 0.233916i
\(101\) −9.02736 19.7672i −0.0893798 0.195715i 0.859663 0.510861i \(-0.170673\pi\)
−0.949043 + 0.315147i \(0.897946\pi\)
\(102\) 0 0
\(103\) −76.0694 65.9145i −0.738538 0.639947i 0.202097 0.979365i \(-0.435224\pi\)
−0.940635 + 0.339419i \(0.889770\pi\)
\(104\) 82.3755 95.0664i 0.792072 0.914100i
\(105\) 0 0
\(106\) 112.489 51.3719i 1.06121 0.484640i
\(107\) −28.2516 43.9603i −0.264033 0.410844i 0.683771 0.729697i \(-0.260339\pi\)
−0.947804 + 0.318853i \(0.896702\pi\)
\(108\) 0 0
\(109\) 69.0753 9.93152i 0.633718 0.0911149i 0.182033 0.983292i \(-0.441732\pi\)
0.451685 + 0.892177i \(0.350823\pi\)
\(110\) −10.2843 + 22.5196i −0.0934940 + 0.204723i
\(111\) 0 0
\(112\) −13.6396 + 21.2236i −0.121782 + 0.189496i
\(113\) −94.9959 + 82.3144i −0.840672 + 0.728446i −0.964564 0.263850i \(-0.915008\pi\)
0.123892 + 0.992296i \(0.460462\pi\)
\(114\) 0 0
\(115\) −52.0250 8.13037i −0.452391 0.0706989i
\(116\) −11.5919 −0.0999299
\(117\) 0 0
\(118\) 83.9395 + 53.9446i 0.711352 + 0.457158i
\(119\) −19.5270 + 135.813i −0.164092 + 1.14129i
\(120\) 0 0
\(121\) −8.02718 55.8303i −0.0663403 0.461407i
\(122\) 10.7214 36.5137i 0.0878801 0.299292i
\(123\) 0 0
\(124\) 32.1579 + 70.4160i 0.259338 + 0.567871i
\(125\) −28.8694 98.3201i −0.230955 0.786561i
\(126\) 0 0
\(127\) −24.0577 + 27.7640i −0.189430 + 0.218614i −0.842518 0.538668i \(-0.818928\pi\)
0.653088 + 0.757282i \(0.273473\pi\)
\(128\) −50.4456 + 14.8122i −0.394106 + 0.115720i
\(129\) 0 0
\(130\) 25.1541 + 39.1405i 0.193493 + 0.301081i
\(131\) 98.3863 + 28.8888i 0.751040 + 0.220525i 0.634779 0.772693i \(-0.281091\pi\)
0.116261 + 0.993219i \(0.462909\pi\)
\(132\) 0 0
\(133\) −113.732 + 249.038i −0.855127 + 1.87247i
\(134\) −9.33036 1.34150i −0.0696295 0.0100112i
\(135\) 0 0
\(136\) 83.7263 72.5492i 0.615634 0.533450i
\(137\) 182.604i 1.33287i 0.745561 + 0.666437i \(0.232182\pi\)
−0.745561 + 0.666437i \(0.767818\pi\)
\(138\) 0 0
\(139\) 150.203 1.08060 0.540298 0.841473i \(-0.318311\pi\)
0.540298 + 0.841473i \(0.318311\pi\)
\(140\) 33.8619 + 39.0787i 0.241870 + 0.279133i
\(141\) 0 0
\(142\) 5.47855 38.1042i 0.0385814 0.268339i
\(143\) 110.427 + 50.4302i 0.772215 + 0.352659i
\(144\) 0 0
\(145\) 3.41444 11.6285i 0.0235479 0.0801966i
\(146\) −13.1590 + 8.45677i −0.0901301 + 0.0579231i
\(147\) 0 0
\(148\) 22.0674 + 75.1547i 0.149104 + 0.507802i
\(149\) 45.4620 + 39.3930i 0.305114 + 0.264383i 0.793937 0.608000i \(-0.208028\pi\)
−0.488823 + 0.872383i \(0.662574\pi\)
\(150\) 0 0
\(151\) 77.6109 22.7886i 0.513979 0.150918i −0.0144495 0.999896i \(-0.504600\pi\)
0.528429 + 0.848978i \(0.322781\pi\)
\(152\) 201.078 91.8295i 1.32288 0.604141i
\(153\) 0 0
\(154\) −107.017 31.4232i −0.694919 0.204047i
\(155\) −80.1108 + 11.5182i −0.516844 + 0.0743110i
\(156\) 0 0
\(157\) −121.801 17.5123i −0.775799 0.111543i −0.256968 0.966420i \(-0.582724\pi\)
−0.518831 + 0.854877i \(0.673633\pi\)
\(158\) −15.2676 + 23.7569i −0.0966304 + 0.150360i
\(159\) 0 0
\(160\) 68.7309i 0.429568i
\(161\) 2.89995 237.213i 0.0180121 1.47337i
\(162\) 0 0
\(163\) 198.855 + 229.491i 1.21997 + 1.40792i 0.884935 + 0.465715i \(0.154203\pi\)
0.335035 + 0.942206i \(0.391252\pi\)
\(164\) 33.7172 + 21.6688i 0.205593 + 0.132127i
\(165\) 0 0
\(166\) 20.2018 + 9.22587i 0.121698 + 0.0555776i
\(167\) −32.2123 224.041i −0.192888 1.34157i −0.824315 0.566131i \(-0.808440\pi\)
0.631427 0.775435i \(-0.282469\pi\)
\(168\) 0 0
\(169\) 49.7572 31.9770i 0.294421 0.189213i
\(170\) 17.0222 + 37.2735i 0.100131 + 0.219256i
\(171\) 0 0
\(172\) −25.3497 21.9657i −0.147382 0.127707i
\(173\) −46.5540 + 53.7262i −0.269098 + 0.310556i −0.874175 0.485611i \(-0.838597\pi\)
0.605077 + 0.796167i \(0.293143\pi\)
\(174\) 0 0
\(175\) 185.381 84.6605i 1.05932 0.483774i
\(176\) 10.6282 + 16.5378i 0.0603875 + 0.0939648i
\(177\) 0 0
\(178\) −52.5124 + 7.55015i −0.295014 + 0.0424166i
\(179\) 11.2744 24.6875i 0.0629854 0.137919i −0.875522 0.483179i \(-0.839482\pi\)
0.938507 + 0.345260i \(0.112209\pi\)
\(180\) 0 0
\(181\) 112.540 175.116i 0.621768 0.967490i −0.377373 0.926061i \(-0.623173\pi\)
0.999141 0.0414292i \(-0.0131911\pi\)
\(182\) −158.415 + 137.267i −0.870412 + 0.754216i
\(183\) 0 0
\(184\) −127.195 + 143.216i −0.691279 + 0.778346i
\(185\) −81.8923 −0.442661
\(186\) 0 0
\(187\) 89.9436 + 57.8032i 0.480982 + 0.309108i
\(188\) −22.6418 + 157.477i −0.120435 + 0.837645i
\(189\) 0 0
\(190\) 11.6359 + 80.9296i 0.0612417 + 0.425945i
\(191\) −66.9746 + 228.094i −0.350652 + 1.19421i 0.575734 + 0.817637i \(0.304716\pi\)
−0.926386 + 0.376575i \(0.877102\pi\)
\(192\) 0 0
\(193\) −8.07013 17.6711i −0.0418141 0.0915602i 0.887572 0.460669i \(-0.152390\pi\)
−0.929386 + 0.369108i \(0.879663\pi\)
\(194\) −32.3848 110.292i −0.166932 0.568518i
\(195\) 0 0
\(196\) −82.2908 + 94.9687i −0.419851 + 0.484534i
\(197\) 273.025 80.1673i 1.38591 0.406941i 0.498089 0.867126i \(-0.334035\pi\)
0.887823 + 0.460185i \(0.152217\pi\)
\(198\) 0 0
\(199\) −124.453 193.653i −0.625393 0.973131i −0.998963 0.0455287i \(-0.985503\pi\)
0.373570 0.927602i \(-0.378134\pi\)
\(200\) −157.885 46.3591i −0.789423 0.231796i
\(201\) 0 0
\(202\) 12.1459 26.5958i 0.0601282 0.131662i
\(203\) 54.0453 + 7.77054i 0.266233 + 0.0382785i
\(204\) 0 0
\(205\) −31.6688 + 27.4412i −0.154482 + 0.133859i
\(206\) 135.426i 0.657406i
\(207\) 0 0
\(208\) 36.9451 0.177621
\(209\) 139.704 + 161.227i 0.668439 + 0.771420i
\(210\) 0 0
\(211\) −44.6752 + 310.723i −0.211731 + 1.47262i 0.555643 + 0.831421i \(0.312472\pi\)
−0.767374 + 0.641200i \(0.778437\pi\)
\(212\) −183.078 83.6088i −0.863574 0.394381i
\(213\) 0 0
\(214\) 19.8079 67.4597i 0.0925605 0.315232i
\(215\) 29.5020 18.9598i 0.137219 0.0881850i
\(216\) 0 0
\(217\) −102.728 349.860i −0.473402 1.61226i
\(218\) 70.9598 + 61.4870i 0.325504 + 0.282051i
\(219\) 0 0
\(220\) 38.6601 11.3516i 0.175728 0.0515983i
\(221\) 182.774 83.4701i 0.827031 0.377693i
\(222\) 0 0
\(223\) −151.479 44.4783i −0.679278 0.199454i −0.0761477 0.997097i \(-0.524262\pi\)
−0.603131 + 0.797642i \(0.706080\pi\)
\(224\) 306.498 44.0677i 1.36829 0.196731i
\(225\) 0 0
\(226\) −167.399 24.0683i −0.740703 0.106497i
\(227\) 29.5680 46.0087i 0.130256 0.202682i −0.769999 0.638045i \(-0.779744\pi\)
0.900255 + 0.435363i \(0.143380\pi\)
\(228\) 0 0
\(229\) 173.588i 0.758025i −0.925391 0.379013i \(-0.876264\pi\)
0.925391 0.379013i \(-0.123736\pi\)
\(230\) −37.5713 60.0639i −0.163353 0.261148i
\(231\) 0 0
\(232\) −28.8702 33.3180i −0.124440 0.143612i
\(233\) −296.516 190.559i −1.27260 0.817852i −0.282646 0.959224i \(-0.591212\pi\)
−0.989956 + 0.141372i \(0.954848\pi\)
\(234\) 0 0
\(235\) −151.306 69.0990i −0.643854 0.294038i
\(236\) −23.1109 160.740i −0.0979274 0.681100i
\(237\) 0 0
\(238\) −155.303 + 99.8072i −0.652534 + 0.419358i
\(239\) 54.3419 + 118.992i 0.227372 + 0.497875i 0.988592 0.150619i \(-0.0481266\pi\)
−0.761220 + 0.648494i \(0.775399\pi\)
\(240\) 0 0
\(241\) 42.3937 + 36.7343i 0.175907 + 0.152425i 0.738365 0.674402i \(-0.235598\pi\)
−0.562457 + 0.826826i \(0.690144\pi\)
\(242\) 49.6971 57.3535i 0.205360 0.236998i
\(243\) 0 0
\(244\) −56.3386 + 25.7290i −0.230896 + 0.105447i
\(245\) −71.0297 110.524i −0.289917 0.451120i
\(246\) 0 0
\(247\) 396.845 57.0578i 1.60666 0.231003i
\(248\) −122.302 + 267.805i −0.493155 + 1.07986i
\(249\) 0 0
\(250\) 74.5381 115.983i 0.298152 0.463934i
\(251\) −148.924 + 129.043i −0.593321 + 0.514116i −0.898959 0.438032i \(-0.855676\pi\)
0.305638 + 0.952148i \(0.401130\pi\)
\(252\) 0 0
\(253\) −167.198 78.8410i −0.660862 0.311624i
\(254\) −49.4280 −0.194599
\(255\) 0 0
\(256\) −228.351 146.752i −0.891997 0.573251i
\(257\) −19.8378 + 137.975i −0.0771901 + 0.536869i 0.914132 + 0.405416i \(0.132873\pi\)
−0.991322 + 0.131453i \(0.958036\pi\)
\(258\) 0 0
\(259\) −52.5064 365.190i −0.202727 1.41000i
\(260\) 21.3336 72.6554i 0.0820521 0.279444i
\(261\) 0 0
\(262\) 57.3118 + 125.495i 0.218747 + 0.478989i
\(263\) −80.6330 274.611i −0.306589 1.04415i −0.958320 0.285697i \(-0.907775\pi\)
0.651731 0.758451i \(-0.274043\pi\)
\(264\) 0 0
\(265\) 137.799 159.029i 0.519998 0.600110i
\(266\) −353.436 + 103.778i −1.32871 + 0.390144i
\(267\) 0 0
\(268\) 8.29424 + 12.9061i 0.0309487 + 0.0481571i
\(269\) −443.025 130.084i −1.64693 0.483583i −0.678862 0.734266i \(-0.737527\pi\)
−0.968069 + 0.250683i \(0.919345\pi\)
\(270\) 0 0
\(271\) −48.8346 + 106.933i −0.180201 + 0.394586i −0.978079 0.208233i \(-0.933229\pi\)
0.797878 + 0.602819i \(0.205956\pi\)
\(272\) 32.2068 + 4.63065i 0.118408 + 0.0170244i
\(273\) 0 0
\(274\) −185.676 + 160.889i −0.677651 + 0.587188i
\(275\) 158.803i 0.577464i
\(276\) 0 0
\(277\) −322.473 −1.16416 −0.582081 0.813131i \(-0.697761\pi\)
−0.582081 + 0.813131i \(0.697761\pi\)
\(278\) 132.342 + 152.730i 0.476049 + 0.549390i
\(279\) 0 0
\(280\) −27.9872 + 194.655i −0.0999542 + 0.695197i
\(281\) 431.727 + 197.163i 1.53640 + 0.701649i 0.990666 0.136312i \(-0.0435250\pi\)
0.545730 + 0.837961i \(0.316252\pi\)
\(282\) 0 0
\(283\) −68.5475 + 233.451i −0.242217 + 0.824917i 0.745208 + 0.666832i \(0.232350\pi\)
−0.987426 + 0.158085i \(0.949468\pi\)
\(284\) −52.7071 + 33.8728i −0.185588 + 0.119270i
\(285\) 0 0
\(286\) 46.0166 + 156.718i 0.160897 + 0.547965i
\(287\) −142.676 123.629i −0.497128 0.430764i
\(288\) 0 0
\(289\) −107.498 + 31.5644i −0.371967 + 0.109219i
\(290\) 14.8326 6.77381i 0.0511468 0.0233580i
\(291\) 0 0
\(292\) 24.4267 + 7.17232i 0.0836530 + 0.0245627i
\(293\) 228.098 32.7955i 0.778491 0.111930i 0.258396 0.966039i \(-0.416806\pi\)
0.520094 + 0.854109i \(0.325897\pi\)
\(294\) 0 0
\(295\) 168.055 + 24.1627i 0.569678 + 0.0819073i
\(296\) −161.054 + 250.604i −0.544100 + 0.846636i
\(297\) 0 0
\(298\) 80.9355i 0.271596i
\(299\) −294.529 + 184.234i −0.985046 + 0.616168i
\(300\) 0 0
\(301\) 103.465 + 119.405i 0.343736 + 0.396693i
\(302\) 91.5538 + 58.8381i 0.303158 + 0.194828i
\(303\) 0 0
\(304\) 59.0572 + 26.9705i 0.194267 + 0.0887189i
\(305\) −9.21550 64.0952i −0.0302148 0.210148i
\(306\) 0 0
\(307\) 30.9820 19.9109i 0.100919 0.0648565i −0.489208 0.872167i \(-0.662714\pi\)
0.590127 + 0.807311i \(0.299078\pi\)
\(308\) 75.4087 + 165.122i 0.244834 + 0.536111i
\(309\) 0 0
\(310\) −82.2965 71.3103i −0.265472 0.230033i
\(311\) 33.0792 38.1754i 0.106364 0.122750i −0.700071 0.714073i \(-0.746848\pi\)
0.806435 + 0.591322i \(0.201394\pi\)
\(312\) 0 0
\(313\) 379.824 173.460i 1.21349 0.554184i 0.297248 0.954800i \(-0.403931\pi\)
0.916246 + 0.400616i \(0.131204\pi\)
\(314\) −89.5097 139.280i −0.285063 0.443566i
\(315\) 0 0
\(316\) 45.4931 6.54092i 0.143966 0.0206991i
\(317\) 85.0163 186.160i 0.268190 0.587254i −0.726842 0.686804i \(-0.759013\pi\)
0.995033 + 0.0995498i \(0.0317403\pi\)
\(318\) 0 0
\(319\) 23.0022 35.7921i 0.0721071 0.112201i
\(320\) 86.8156 75.2261i 0.271299 0.235082i
\(321\) 0 0
\(322\) 243.759 206.056i 0.757016 0.639925i
\(323\) 353.101 1.09319
\(324\) 0 0
\(325\) −251.067 161.351i −0.772514 0.496465i
\(326\) −58.1443 + 404.402i −0.178357 + 1.24050i
\(327\) 0 0
\(328\) 21.6931 + 150.879i 0.0661376 + 0.459997i
\(329\) 211.128 719.035i 0.641726 2.18552i
\(330\) 0 0
\(331\) 71.1293 + 155.751i 0.214892 + 0.470548i 0.986125 0.166005i \(-0.0530868\pi\)
−0.771233 + 0.636553i \(0.780360\pi\)
\(332\) −10.1833 34.6812i −0.0306726 0.104461i
\(333\) 0 0
\(334\) 199.429 230.154i 0.597094 0.689083i
\(335\) −15.3900 + 4.51891i −0.0459403 + 0.0134893i
\(336\) 0 0
\(337\) 228.387 + 355.377i 0.677706 + 1.05453i 0.994367 + 0.105993i \(0.0338020\pi\)
−0.316661 + 0.948539i \(0.602562\pi\)
\(338\) 76.3553 + 22.4199i 0.225903 + 0.0663312i
\(339\) 0 0
\(340\) 27.7040 60.6634i 0.0814825 0.178422i
\(341\) −281.235 40.4354i −0.824735 0.118579i
\(342\) 0 0
\(343\) 65.3709 56.6442i 0.190586 0.165143i
\(344\) 127.568i 0.370838i
\(345\) 0 0
\(346\) −95.6482 −0.276440
\(347\) 102.928 + 118.785i 0.296623 + 0.342321i 0.884424 0.466685i \(-0.154552\pi\)
−0.587801 + 0.809006i \(0.700006\pi\)
\(348\) 0 0
\(349\) 26.1822 182.101i 0.0750206 0.521779i −0.917311 0.398172i \(-0.869645\pi\)
0.992331 0.123607i \(-0.0394463\pi\)
\(350\) 249.421 + 113.907i 0.712632 + 0.325448i
\(351\) 0 0
\(352\) 67.9777 231.511i 0.193118 0.657701i
\(353\) −191.548 + 123.101i −0.542630 + 0.348727i −0.783067 0.621938i \(-0.786346\pi\)
0.240437 + 0.970665i \(0.422709\pi\)
\(354\) 0 0
\(355\) −18.4547 62.8511i −0.0519852 0.177045i
\(356\) 65.2544 + 56.5432i 0.183299 + 0.158829i
\(357\) 0 0
\(358\) 35.0366 10.2877i 0.0978675 0.0287365i
\(359\) 49.1496 22.4459i 0.136907 0.0625233i −0.345784 0.938314i \(-0.612387\pi\)
0.482690 + 0.875791i \(0.339660\pi\)
\(360\) 0 0
\(361\) 329.639 + 96.7908i 0.913128 + 0.268119i
\(362\) 277.220 39.8582i 0.765800 0.110105i
\(363\) 0 0
\(364\) 337.677 + 48.5506i 0.927684 + 0.133381i
\(365\) −14.3900 + 22.3912i −0.0394246 + 0.0613458i
\(366\) 0 0
\(367\) 503.890i 1.37300i 0.727131 + 0.686499i \(0.240853\pi\)
−0.727131 + 0.686499i \(0.759147\pi\)
\(368\) −56.2529 0.687697i −0.152861 0.00186874i
\(369\) 0 0
\(370\) −72.1541 83.2703i −0.195011 0.225055i
\(371\) 797.525 + 512.538i 2.14966 + 1.38150i
\(372\) 0 0
\(373\) 297.027 + 135.648i 0.796318 + 0.363666i 0.771664 0.636030i \(-0.219424\pi\)
0.0246535 + 0.999696i \(0.492152\pi\)
\(374\) 20.4721 + 142.387i 0.0547382 + 0.380713i
\(375\) 0 0
\(376\) −509.020 + 327.127i −1.35378 + 0.870019i
\(377\) −33.2160 72.7329i −0.0881061 0.192925i
\(378\) 0 0
\(379\) 266.695 + 231.092i 0.703680 + 0.609742i 0.931406 0.363983i \(-0.118583\pi\)
−0.227725 + 0.973725i \(0.573129\pi\)
\(380\) 87.1417 100.567i 0.229320 0.264650i
\(381\) 0 0
\(382\) −290.943 + 132.869i −0.761630 + 0.347825i
\(383\) 290.623 + 452.218i 0.758806 + 1.18072i 0.978719 + 0.205205i \(0.0657863\pi\)
−0.219913 + 0.975519i \(0.570577\pi\)
\(384\) 0 0
\(385\) −187.856 + 27.0096i −0.487938 + 0.0701548i
\(386\) 10.8580 23.7757i 0.0281295 0.0615950i
\(387\) 0 0
\(388\) −101.144 + 157.383i −0.260680 + 0.405626i
\(389\) −10.6600 + 9.23695i −0.0274036 + 0.0237454i −0.668455 0.743753i \(-0.733044\pi\)
0.641051 + 0.767498i \(0.278499\pi\)
\(390\) 0 0
\(391\) −279.847 + 123.690i −0.715721 + 0.316343i
\(392\) −477.914 −1.21917
\(393\) 0 0
\(394\) 322.074 + 206.984i 0.817447 + 0.525341i
\(395\) −6.83861 + 47.5635i −0.0173129 + 0.120414i
\(396\) 0 0
\(397\) −20.9638 145.807i −0.0528056 0.367271i −0.999041 0.0437913i \(-0.986056\pi\)
0.946235 0.323480i \(-0.104853\pi\)
\(398\) 87.2576 297.172i 0.219240 0.746663i
\(399\) 0 0
\(400\) −20.0765 43.9614i −0.0501912 0.109903i
\(401\) −93.4983 318.426i −0.233163 0.794080i −0.990072 0.140560i \(-0.955110\pi\)
0.756909 0.653520i \(-0.226708\pi\)
\(402\) 0 0
\(403\) −349.676 + 403.548i −0.867683 + 1.00136i
\(404\) −45.6579 + 13.4064i −0.113015 + 0.0331841i
\(405\) 0 0
\(406\) 39.7172 + 61.8011i 0.0978256 + 0.152220i
\(407\) −275.843 80.9949i −0.677748 0.199005i
\(408\) 0 0
\(409\) 305.548 669.057i 0.747061 1.63584i −0.0245148 0.999699i \(-0.507804\pi\)
0.771576 0.636137i \(-0.219469\pi\)
\(410\) −55.8058 8.02367i −0.136112 0.0195699i
\(411\) 0 0
\(412\) −166.573 + 144.337i −0.404304 + 0.350331i
\(413\) 764.915i 1.85209i
\(414\) 0 0
\(415\) 37.7903 0.0910610
\(416\) −296.950 342.699i −0.713823 0.823795i
\(417\) 0 0
\(418\) −40.8487 + 284.109i −0.0977241 + 0.679686i
\(419\) 259.291 + 118.414i 0.618832 + 0.282611i 0.700059 0.714085i \(-0.253157\pi\)
−0.0812277 + 0.996696i \(0.525884\pi\)
\(420\) 0 0
\(421\) 165.419 563.364i 0.392918 1.33816i −0.491263 0.871011i \(-0.663465\pi\)
0.884181 0.467145i \(-0.154717\pi\)
\(422\) −355.314 + 228.346i −0.841976 + 0.541105i
\(423\) 0 0
\(424\) −215.652 734.444i −0.508614 1.73218i
\(425\) −198.644 172.126i −0.467398 0.405003i
\(426\) 0 0
\(427\) 279.917 82.1910i 0.655543 0.192485i
\(428\) −104.087 + 47.5347i −0.243193 + 0.111062i
\(429\) 0 0
\(430\) 45.2725 + 13.2932i 0.105285 + 0.0309145i
\(431\) 638.587 91.8149i 1.48164 0.213028i 0.646436 0.762968i \(-0.276259\pi\)
0.835204 + 0.549941i \(0.185350\pi\)
\(432\) 0 0
\(433\) −86.2796 12.4051i −0.199260 0.0286493i 0.0419621 0.999119i \(-0.486639\pi\)
−0.241222 + 0.970470i \(0.577548\pi\)
\(434\) 265.235 412.714i 0.611140 0.950953i
\(435\) 0 0
\(436\) 152.813i 0.350489i
\(437\) −605.303 + 79.4898i −1.38513 + 0.181899i
\(438\) 0 0
\(439\) 166.005 + 191.579i 0.378142 + 0.436400i 0.912636 0.408773i \(-0.134043\pi\)
−0.534494 + 0.845172i \(0.679498\pi\)
\(440\) 128.912 + 82.8469i 0.292983 + 0.188289i
\(441\) 0 0
\(442\) 245.914 + 112.305i 0.556366 + 0.254084i
\(443\) −100.645 700.000i −0.227189 1.58014i −0.709865 0.704337i \(-0.751244\pi\)
0.482676 0.875799i \(-0.339665\pi\)
\(444\) 0 0
\(445\) −75.9429 + 48.8056i −0.170658 + 0.109675i
\(446\) −88.2392 193.217i −0.197846 0.433222i
\(447\) 0 0
\(448\) 391.126 + 338.912i 0.873048 + 0.756501i
\(449\) −268.808 + 310.221i −0.598681 + 0.690915i −0.971514 0.236984i \(-0.923841\pi\)
0.372832 + 0.927899i \(0.378387\pi\)
\(450\) 0 0
\(451\) −133.813 + 61.1102i −0.296702 + 0.135499i
\(452\) 148.810 + 231.552i 0.329225 + 0.512284i
\(453\) 0 0
\(454\) 72.8348 10.4721i 0.160429 0.0230662i
\(455\) −148.168 + 324.444i −0.325645 + 0.713063i
\(456\) 0 0
\(457\) −418.002 + 650.423i −0.914664 + 1.42325i −0.00866652 + 0.999962i \(0.502759\pi\)
−0.905998 + 0.423283i \(0.860878\pi\)
\(458\) 176.509 152.946i 0.385390 0.333942i
\(459\) 0 0
\(460\) −33.8351 + 110.229i −0.0735545 + 0.239628i
\(461\) −378.361 −0.820739 −0.410369 0.911919i \(-0.634600\pi\)
−0.410369 + 0.911919i \(0.634600\pi\)
\(462\) 0 0
\(463\) −97.0838 62.3919i −0.209684 0.134756i 0.431584 0.902073i \(-0.357955\pi\)
−0.641268 + 0.767317i \(0.721591\pi\)
\(464\) 1.84271 12.8164i 0.00397137 0.0276215i
\(465\) 0 0
\(466\) −67.4902 469.405i −0.144829 1.00731i
\(467\) 1.77496 6.04497i 0.00380078 0.0129443i −0.957571 0.288198i \(-0.906944\pi\)
0.961372 + 0.275254i \(0.0887620\pi\)
\(468\) 0 0
\(469\) −30.0191 65.7326i −0.0640066 0.140155i
\(470\) −63.0515 214.734i −0.134152 0.456880i
\(471\) 0 0
\(472\) 404.447 466.757i 0.856879 0.988892i
\(473\) 118.125 34.6848i 0.249737 0.0733293i
\(474\) 0 0
\(475\) −283.545 441.205i −0.596938 0.928853i
\(476\) 288.285 + 84.6480i 0.605640 + 0.177832i
\(477\) 0 0
\(478\) −73.1145 + 160.098i −0.152959 + 0.334934i
\(479\) −176.586 25.3892i −0.368655 0.0530046i −0.0445023 0.999009i \(-0.514170\pi\)
−0.324153 + 0.946005i \(0.605079\pi\)
\(480\) 0 0
\(481\) −408.323 + 353.814i −0.848905 + 0.735580i
\(482\) 75.4731i 0.156583i
\(483\) 0 0
\(484\) −123.512 −0.255190
\(485\) −128.088 147.821i −0.264099 0.304786i
\(486\) 0 0
\(487\) −20.8008 + 144.672i −0.0427120 + 0.297069i 0.957257 + 0.289238i \(0.0934018\pi\)
−0.999969 + 0.00783097i \(0.997507\pi\)
\(488\) −214.266 97.8519i −0.439069 0.200516i
\(489\) 0 0
\(490\) 49.8009 169.606i 0.101634 0.346135i
\(491\) −269.661 + 173.301i −0.549208 + 0.352954i −0.785631 0.618696i \(-0.787661\pi\)
0.236423 + 0.971650i \(0.424025\pi\)
\(492\) 0 0
\(493\) −19.8398 67.5681i −0.0402430 0.137055i
\(494\) 407.672 + 353.250i 0.825248 + 0.715081i
\(495\) 0 0
\(496\) −82.9663 + 24.3611i −0.167271 + 0.0491152i
\(497\) 268.445 122.595i 0.540131 0.246669i
\(498\) 0 0
\(499\) −397.621 116.752i −0.796836 0.233972i −0.142122 0.989849i \(-0.545393\pi\)
−0.654714 + 0.755877i \(0.727211\pi\)
\(500\) −222.102 + 31.9335i −0.444204 + 0.0638669i
\(501\) 0 0
\(502\) −262.429 37.7316i −0.522767 0.0751625i
\(503\) −387.279 + 602.617i −0.769938 + 1.19805i 0.205691 + 0.978617i \(0.434056\pi\)
−0.975628 + 0.219430i \(0.929580\pi\)
\(504\) 0 0
\(505\) 49.7511i 0.0985170i
\(506\) −67.1481 239.477i −0.132704 0.473275i
\(507\) 0 0
\(508\) 52.6804 + 60.7964i 0.103701 + 0.119678i
\(509\) 168.764 + 108.458i 0.331560 + 0.213080i 0.695819 0.718217i \(-0.255042\pi\)
−0.364260 + 0.931297i \(0.618678\pi\)
\(510\) 0 0
\(511\) −109.078 49.8141i −0.213459 0.0974835i
\(512\) −22.0461 153.334i −0.0430588 0.299481i
\(513\) 0 0
\(514\) −157.776 + 101.396i −0.306957 + 0.197269i
\(515\) −95.7278 209.615i −0.185879 0.407019i
\(516\) 0 0
\(517\) −441.311 382.399i −0.853600 0.739649i
\(518\) 325.072 375.153i 0.627552 0.724234i
\(519\) 0 0
\(520\) 261.962 119.634i 0.503774 0.230066i
\(521\) −347.311 540.427i −0.666624 1.03729i −0.995669 0.0929733i \(-0.970363\pi\)
0.329044 0.944315i \(-0.393273\pi\)
\(522\) 0 0
\(523\) 177.710 25.5509i 0.339790 0.0488545i 0.0296924 0.999559i \(-0.490547\pi\)
0.310098 + 0.950705i \(0.399638\pi\)
\(524\) 93.2761 204.246i 0.178008 0.389783i
\(525\) 0 0
\(526\) 208.187 323.945i 0.395793 0.615865i
\(527\) −355.410 + 307.965i −0.674403 + 0.584373i
\(528\) 0 0
\(529\) 451.882 275.034i 0.854219 0.519914i
\(530\) 283.118 0.534185
\(531\) 0 0
\(532\) 504.339 + 324.119i 0.948006 + 0.609246i
\(533\) −39.3448 + 273.649i −0.0738176 + 0.513412i
\(534\) 0 0
\(535\) −17.0258 118.417i −0.0318239 0.221340i
\(536\) −16.4381 + 55.9831i −0.0306681 + 0.104446i
\(537\) 0 0
\(538\) −258.070 565.094i −0.479683 1.05036i
\(539\) −129.941 442.538i −0.241078 0.821035i
\(540\) 0 0
\(541\) −527.967 + 609.307i −0.975910 + 1.12626i 0.0160703 + 0.999871i \(0.494884\pi\)
−0.991981 + 0.126390i \(0.959661\pi\)
\(542\) −151.760 + 44.5606i −0.279999 + 0.0822152i
\(543\) 0 0
\(544\) −215.913 335.967i −0.396899 0.617586i
\(545\) 153.296 + 45.0118i 0.281278 + 0.0825905i
\(546\) 0 0
\(547\) −57.4155 + 125.722i −0.104964 + 0.229840i −0.954826 0.297166i \(-0.903958\pi\)
0.849861 + 0.527006i \(0.176686\pi\)
\(548\) 395.788 + 56.9057i 0.722240 + 0.103842i
\(549\) 0 0
\(550\) 161.475 139.919i 0.293590 0.254397i
\(551\) 140.513i 0.255014i
\(552\) 0 0
\(553\) −216.489 −0.391481
\(554\) −284.126 327.899i −0.512862 0.591875i
\(555\) 0 0
\(556\) 46.8084 325.560i 0.0841878 0.585539i
\(557\) −94.7549 43.2731i −0.170117 0.0776896i 0.328537 0.944491i \(-0.393445\pi\)
−0.498653 + 0.866802i \(0.666172\pi\)
\(558\) 0 0
\(559\) 65.1845 221.998i 0.116609 0.397134i
\(560\) −48.5896 + 31.2266i −0.0867671 + 0.0557618i
\(561\) 0 0
\(562\) 179.908 + 612.709i 0.320120 + 1.09023i
\(563\) 165.885 + 143.740i 0.294645 + 0.255311i 0.789620 0.613596i \(-0.210277\pi\)
−0.494975 + 0.868907i \(0.664823\pi\)
\(564\) 0 0
\(565\) −276.117 + 81.0752i −0.488702 + 0.143496i
\(566\) −297.776 + 135.990i −0.526106 + 0.240264i
\(567\) 0 0
\(568\) −228.629 67.1315i −0.402515 0.118189i
\(569\) 865.074 124.379i 1.52034 0.218592i 0.669023 0.743242i \(-0.266713\pi\)
0.851318 + 0.524650i \(0.175804\pi\)
\(570\) 0 0
\(571\) 147.961 + 21.2736i 0.259127 + 0.0372568i 0.270654 0.962677i \(-0.412760\pi\)
−0.0115270 + 0.999934i \(0.503669\pi\)
\(572\) 143.718 223.630i 0.251256 0.390962i
\(573\) 0 0
\(574\) 254.004i 0.442516i
\(575\) 379.274 + 250.348i 0.659606 + 0.435388i
\(576\) 0 0
\(577\) −554.057 639.416i −0.960238 1.10817i −0.994070 0.108746i \(-0.965317\pi\)
0.0338319 0.999428i \(-0.489229\pi\)
\(578\) −126.811 81.4962i −0.219396 0.140997i
\(579\) 0 0
\(580\) −24.1403 11.0245i −0.0416213 0.0190078i
\(581\) 24.2298 + 168.522i 0.0417036 + 0.290055i
\(582\) 0 0
\(583\) 621.445 399.379i 1.06594 0.685041i
\(584\) 40.2209 + 88.0714i 0.0688714 + 0.150807i
\(585\) 0 0
\(586\) 234.321 + 203.040i 0.399865 + 0.346485i
\(587\) 488.077 563.271i 0.831477 0.959576i −0.168180 0.985756i \(-0.553789\pi\)
0.999657 + 0.0261807i \(0.00833452\pi\)
\(588\) 0 0
\(589\) −853.560 + 389.808i −1.44917 + 0.661813i
\(590\) 123.501 + 192.172i 0.209325 + 0.325715i
\(591\) 0 0
\(592\) −86.6016 + 12.4514i −0.146286 + 0.0210328i
\(593\) −268.581 + 588.110i −0.452919 + 0.991754i 0.536126 + 0.844138i \(0.319887\pi\)
−0.989045 + 0.147616i \(0.952840\pi\)
\(594\) 0 0
\(595\) −169.831 + 264.262i −0.285430 + 0.444138i
\(596\) 99.5505 86.2610i 0.167031 0.144733i
\(597\) 0 0
\(598\) −446.839 137.159i −0.747222 0.229362i
\(599\) 385.426 0.643449 0.321724 0.946833i \(-0.395738\pi\)
0.321724 + 0.946833i \(0.395738\pi\)
\(600\) 0 0
\(601\) 804.595 + 517.082i 1.33876 + 0.860369i 0.996846 0.0793627i \(-0.0252885\pi\)
0.341914 + 0.939731i \(0.388925\pi\)
\(602\) −30.2525 + 210.411i −0.0502534 + 0.349520i
\(603\) 0 0
\(604\) −25.2073 175.321i −0.0417339 0.290266i
\(605\) 36.3809 123.902i 0.0601338 0.204797i
\(606\) 0 0
\(607\) −69.1866 151.498i −0.113981 0.249584i 0.844041 0.536279i \(-0.180171\pi\)
−0.958022 + 0.286695i \(0.907443\pi\)
\(608\) −224.503 764.588i −0.369249 1.25755i
\(609\) 0 0
\(610\) 57.0541 65.8439i 0.0935312 0.107941i
\(611\) −1052.97 + 309.179i −1.72335 + 0.506021i
\(612\) 0 0
\(613\) 437.247 + 680.370i 0.713291 + 1.10990i 0.988893 + 0.148630i \(0.0474864\pi\)
−0.275602 + 0.961272i \(0.588877\pi\)
\(614\) 47.5438 + 13.9601i 0.0774329 + 0.0227363i
\(615\) 0 0
\(616\) −286.793 + 627.989i −0.465573 + 1.01946i
\(617\) 985.450 + 141.686i 1.59716 + 0.229637i 0.882666 0.470000i \(-0.155746\pi\)
0.714498 + 0.699638i \(0.246655\pi\)
\(618\) 0 0
\(619\) 50.4021 43.6736i 0.0814250 0.0705552i −0.613197 0.789930i \(-0.710117\pi\)
0.694622 + 0.719375i \(0.255572\pi\)
\(620\) 177.227i 0.285850i
\(621\) 0 0
\(622\) 67.9633 0.109266
\(623\) −266.335 307.367i −0.427504 0.493366i
\(624\) 0 0
\(625\) −36.9117 + 256.727i −0.0590588 + 0.410763i
\(626\) 511.035 + 233.382i 0.816351 + 0.372815i
\(627\) 0 0
\(628\) −75.9145 + 258.541i −0.120883 + 0.411689i
\(629\) −400.302 + 257.258i −0.636410 + 0.408996i
\(630\) 0 0
\(631\) 236.205 + 804.440i 0.374334 + 1.27486i 0.904319 + 0.426858i \(0.140379\pi\)
−0.529985 + 0.848007i \(0.677802\pi\)
\(632\) 132.103 + 114.468i 0.209024 + 0.181120i
\(633\) 0 0
\(634\) 264.199 77.5757i 0.416717 0.122359i
\(635\) −76.5058 + 34.9390i −0.120482 + 0.0550221i
\(636\) 0 0
\(637\) −831.679 244.203i −1.30562 0.383364i
\(638\) 56.6612 8.14664i 0.0888106 0.0127690i
\(639\) 0 0
\(640\) −119.141 17.1299i −0.186158 0.0267655i
\(641\) −182.159 + 283.445i −0.284179 + 0.442192i −0.953769 0.300539i \(-0.902833\pi\)
0.669590 + 0.742731i \(0.266470\pi\)
\(642\) 0 0
\(643\) 661.045i 1.02806i −0.857771 0.514032i \(-0.828151\pi\)
0.857771 0.514032i \(-0.171849\pi\)
\(644\) −513.247 80.2092i −0.796967 0.124548i
\(645\) 0 0
\(646\) 311.112 + 359.043i 0.481598 + 0.555794i
\(647\) 327.556 + 210.507i 0.506268 + 0.325359i 0.768719 0.639587i \(-0.220894\pi\)
−0.262451 + 0.964945i \(0.584531\pi\)
\(648\) 0 0
\(649\) 542.173 + 247.602i 0.835397 + 0.381513i
\(650\) −57.1455 397.456i −0.0879161 0.611470i
\(651\) 0 0
\(652\) 559.384 359.494i 0.857951 0.551372i
\(653\) 503.194 + 1101.84i 0.770589 + 1.68735i 0.725352 + 0.688378i \(0.241677\pi\)
0.0452364 + 0.998976i \(0.485596\pi\)
\(654\) 0 0
\(655\) 177.417 + 153.732i 0.270865 + 0.234706i
\(656\) −29.3176 + 33.8343i −0.0446915 + 0.0515767i
\(657\) 0 0
\(658\) 917.155 418.851i 1.39385 0.636551i
\(659\) −428.607 666.925i −0.650390 1.01203i −0.997250 0.0741096i \(-0.976389\pi\)
0.346860 0.937917i \(-0.387248\pi\)
\(660\) 0 0
\(661\) 940.233 135.185i 1.42244 0.204516i 0.612241 0.790671i \(-0.290268\pi\)
0.810199 + 0.586155i \(0.199359\pi\)
\(662\) −95.7012 + 209.556i −0.144564 + 0.316550i
\(663\) 0 0
\(664\) 74.3203 115.645i 0.111928 0.174164i
\(665\) −473.699 + 410.462i −0.712329 + 0.617236i
\(666\) 0 0
\(667\) 49.2211 + 111.362i 0.0737948 + 0.166960i
\(668\) −495.641 −0.741977
\(669\) 0 0
\(670\) −18.1548 11.6674i −0.0270968 0.0174140i
\(671\) 32.3517 225.011i 0.0482141 0.335336i
\(672\) 0 0
\(673\) 41.2573 + 286.951i 0.0613035 + 0.426375i 0.997242 + 0.0742130i \(0.0236445\pi\)
−0.935939 + 0.352162i \(0.885446\pi\)
\(674\) −160.128 + 545.347i −0.237579 + 0.809121i
\(675\) 0 0
\(676\) −53.8030 117.812i −0.0795902 0.174278i
\(677\) −25.2455 85.9784i −0.0372903 0.126999i 0.938744 0.344614i \(-0.111990\pi\)
−0.976035 + 0.217615i \(0.930172\pi\)
\(678\) 0 0
\(679\) 577.068 665.972i 0.849879 0.980812i
\(680\) 243.360 71.4570i 0.357883 0.105084i
\(681\) 0 0
\(682\) −206.676 321.594i −0.303044 0.471545i
\(683\) −1190.84 349.662i −1.74354 0.511951i −0.754087 0.656774i \(-0.771920\pi\)
−0.989457 + 0.144824i \(0.953739\pi\)
\(684\) 0 0
\(685\) −173.667 + 380.277i −0.253528 + 0.555148i
\(686\) 115.195 + 16.5625i 0.167922 + 0.0241436i
\(687\) 0 0
\(688\) 28.3157 24.5357i 0.0411566 0.0356624i
\(689\) 1388.29i 2.01494i
\(690\) 0 0
\(691\) −99.4743 −0.143957 −0.0719785 0.997406i \(-0.522931\pi\)
−0.0719785 + 0.997406i \(0.522931\pi\)
\(692\) 101.942 + 117.647i 0.147315 + 0.170010i
\(693\) 0 0
\(694\) −30.0957 + 209.320i −0.0433655 + 0.301614i
\(695\) 312.801 + 142.851i 0.450073 + 0.205542i
\(696\) 0 0
\(697\) −68.5976 + 233.622i −0.0984183 + 0.335182i
\(698\) 208.234 133.824i 0.298329 0.191725i
\(699\) 0 0
\(700\) −125.728 428.189i −0.179611 0.611699i
\(701\) −473.583 410.362i −0.675582 0.585395i 0.248017 0.968756i \(-0.420221\pi\)
−0.923599 + 0.383360i \(0.874767\pi\)
\(702\) 0 0
\(703\) −911.001 + 267.494i −1.29588 + 0.380503i
\(704\) 366.828 167.525i 0.521063 0.237962i
\(705\) 0 0
\(706\) −293.942 86.3093i −0.416349 0.122251i
\(707\) 221.860 31.8986i 0.313804 0.0451182i
\(708\) 0 0
\(709\) −375.851 54.0392i −0.530114 0.0762189i −0.127940 0.991782i \(-0.540836\pi\)
−0.402174 + 0.915563i \(0.631745\pi\)
\(710\) 47.6484 74.1424i 0.0671105 0.104426i
\(711\) 0 0
\(712\) 328.381i 0.461210i
\(713\) 539.932 607.937i 0.757268 0.852647i
\(714\) 0 0
\(715\) 182.004 + 210.044i 0.254551 + 0.293768i
\(716\) −49.9957 32.1303i −0.0698265 0.0448747i
\(717\) 0 0
\(718\) 66.1285 + 30.1999i 0.0921009 + 0.0420611i
\(719\) −15.7988 109.883i −0.0219733 0.152828i 0.975881 0.218304i \(-0.0700524\pi\)
−0.997854 + 0.0654762i \(0.979143\pi\)
\(720\) 0 0
\(721\) 873.377 561.285i 1.21134 0.778481i
\(722\) 192.021 + 420.467i 0.265957 + 0.582364i
\(723\) 0 0
\(724\) −344.486 298.499i −0.475809 0.412291i
\(725\) −68.4957 + 79.0482i −0.0944768 + 0.109032i
\(726\) 0 0
\(727\) 121.194 55.3476i 0.166705 0.0761315i −0.330315 0.943871i \(-0.607155\pi\)
0.497020 + 0.867739i \(0.334428\pi\)
\(728\) 701.456 + 1091.49i 0.963539 + 1.49930i
\(729\) 0 0
\(730\) −35.4468 + 5.09648i −0.0485572 + 0.00698148i
\(731\) 84.6495 185.356i 0.115800 0.253566i
\(732\) 0 0
\(733\) −721.336 + 1122.42i −0.984087 + 1.53127i −0.143459 + 0.989656i \(0.545822\pi\)
−0.840628 + 0.541613i \(0.817814\pi\)
\(734\) −512.369 + 443.970i −0.698050 + 0.604864i
\(735\) 0 0
\(736\) 445.760 + 527.324i 0.605652 + 0.716473i
\(737\) −56.3085 −0.0764023
\(738\) 0 0
\(739\) −316.334 203.296i −0.428057 0.275096i 0.308822 0.951120i \(-0.400065\pi\)
−0.736880 + 0.676024i \(0.763702\pi\)
\(740\) −25.5205 + 177.499i −0.0344871 + 0.239863i
\(741\) 0 0
\(742\) 181.525 + 1262.53i 0.244643 + 1.70153i
\(743\) −389.916 + 1327.93i −0.524786 + 1.78726i 0.0869720 + 0.996211i \(0.472281\pi\)
−0.611758 + 0.791045i \(0.709537\pi\)
\(744\) 0 0
\(745\) 57.2106 + 125.274i 0.0767928 + 0.168153i
\(746\) 123.776 + 421.541i 0.165919 + 0.565069i
\(747\) 0 0
\(748\) 153.316 176.936i 0.204968 0.236546i
\(749\) 517.152 151.849i 0.690456 0.202736i
\(750\) 0 0
\(751\) 383.108 + 596.128i 0.510131 + 0.793779i 0.996811 0.0798013i \(-0.0254286\pi\)
−0.486680 + 0.873580i \(0.661792\pi\)
\(752\) −170.513 50.0671i −0.226746 0.0665786i
\(753\) 0 0
\(754\) 44.6906 97.8587i 0.0592713 0.129786i
\(755\) 183.300 + 26.3545i 0.242781 + 0.0349066i
\(756\) 0 0
\(757\) −90.7661 + 78.6493i −0.119902 + 0.103896i −0.712748 0.701420i \(-0.752550\pi\)
0.592846 + 0.805316i \(0.298004\pi\)
\(758\) 474.794i 0.626378i
\(759\) 0 0
\(760\) 506.085 0.665902
\(761\) 550.928 + 635.804i 0.723952 + 0.835485i 0.991776 0.127983i \(-0.0408501\pi\)
−0.267824 + 0.963468i \(0.586305\pi\)
\(762\) 0 0
\(763\) −102.437 + 712.468i −0.134256 + 0.933772i
\(764\) 473.515 + 216.247i 0.619784 + 0.283046i
\(765\) 0 0
\(766\) −203.764 + 693.955i −0.266010 + 0.905946i
\(767\) 942.333 605.601i 1.22860 0.789570i
\(768\) 0 0
\(769\) −301.597 1027.15i −0.392194 1.33569i −0.885016 0.465560i \(-0.845853\pi\)
0.492823 0.870130i \(-0.335965\pi\)
\(770\) −192.981 167.219i −0.250625 0.217168i
\(771\) 0 0
\(772\) −40.8165 + 11.9848i −0.0528711 + 0.0155243i
\(773\) 622.782 284.415i 0.805669 0.367937i 0.0303761 0.999539i \(-0.490330\pi\)
0.775293 + 0.631602i \(0.217602\pi\)
\(774\) 0 0
\(775\) 670.206 + 196.790i 0.864782 + 0.253923i
\(776\) −704.262 + 101.258i −0.907554 + 0.130487i
\(777\) 0 0
\(778\) −18.7848 2.70084i −0.0241449 0.00347152i
\(779\) −262.661 + 408.709i −0.337178 + 0.524659i
\(780\) 0 0
\(781\) 229.958i 0.294440i
\(782\) −372.340 175.574i −0.476139 0.224520i
\(783\) 0 0
\(784\) −91.9191 106.080i −0.117244 0.135307i
\(785\) −236.997 152.309i −0.301907 0.194024i
\(786\) 0 0
\(787\) 155.189 + 70.8725i 0.197191 + 0.0900540i 0.511563 0.859246i \(-0.329067\pi\)
−0.314372 + 0.949300i \(0.601794\pi\)
\(788\) −88.6759 616.754i −0.112533 0.782683i
\(789\) 0 0
\(790\) −54.3893 + 34.9539i −0.0688472 + 0.0442454i
\(791\) −538.582 1179.33i −0.680887 1.49094i
\(792\) 0 0
\(793\) −322.871 279.770i −0.407152 0.352799i
\(794\) 129.789 149.785i 0.163462 0.188646i
\(795\) 0 0
\(796\) −458.520 + 209.399i −0.576030 + 0.263064i
\(797\) −165.608 257.691i −0.207789 0.323327i 0.721679 0.692228i \(-0.243371\pi\)
−0.929469 + 0.368901i \(0.879734\pi\)
\(798\) 0 0
\(799\) −956.675 + 137.549i −1.19734 + 0.172152i
\(800\) −246.414 + 539.572i −0.308018 + 0.674465i
\(801\) 0 0
\(802\) 241.404 375.632i 0.301002 0.468369i
\(803\) −70.6166 + 61.1896i −0.0879409 + 0.0762012i
\(804\) 0 0
\(805\) 231.642 491.243i 0.287754 0.610240i
\(806\) −718.433 −0.891356
\(807\) 0 0
\(808\) −152.247 97.8430i −0.188424 0.121093i
\(809\) 44.2504 307.768i 0.0546976 0.380430i −0.944024 0.329877i \(-0.892993\pi\)
0.998721 0.0505528i \(-0.0160983\pi\)
\(810\) 0 0
\(811\) −196.465 1366.44i −0.242250 1.68489i −0.640773 0.767730i \(-0.721386\pi\)
0.398523 0.917158i \(-0.369523\pi\)
\(812\) 33.6847 114.720i 0.0414837 0.141280i
\(813\) 0 0
\(814\) −160.684 351.848i −0.197400 0.432246i
\(815\) 195.861 + 667.043i 0.240321 + 0.818457i
\(816\) 0 0
\(817\) 266.261 307.281i 0.325900 0.376109i
\(818\) 949.529 278.807i 1.16079 0.340840i
\(819\) 0 0
\(820\) 49.6087 + 77.1927i 0.0604984 + 0.0941374i
\(821\) 1195.09 + 350.909i 1.45565 + 0.427416i 0.911404 0.411512i \(-0.134999\pi\)
0.544242 + 0.838928i \(0.316817\pi\)
\(822\) 0 0
\(823\) 177.663 389.027i 0.215872 0.472694i −0.770455 0.637495i \(-0.779971\pi\)
0.986327 + 0.164801i \(0.0526981\pi\)
\(824\) −829.719 119.296i −1.00694 0.144776i
\(825\) 0 0
\(826\) −777.786 + 673.955i −0.941629 + 0.815926i
\(827\) 614.807i 0.743419i 0.928349 + 0.371709i \(0.121228\pi\)
−0.928349 + 0.371709i \(0.878772\pi\)
\(828\) 0 0
\(829\) 517.712 0.624502 0.312251 0.950000i \(-0.398917\pi\)
0.312251 + 0.950000i \(0.398917\pi\)
\(830\) 33.2965 + 38.4262i 0.0401162 + 0.0462966i
\(831\) 0 0
\(832\) 107.858 750.170i 0.129637 0.901646i
\(833\) −694.408 317.126i −0.833623 0.380703i
\(834\) 0 0
\(835\) 145.993 497.207i 0.174842 0.595458i
\(836\) 392.990 252.559i 0.470084 0.302104i
\(837\) 0 0
\(838\) 108.050 + 367.986i 0.128939 + 0.439124i
\(839\) −960.771 832.513i −1.14514 0.992268i −0.999996 0.00285681i \(-0.999091\pi\)
−0.145142 0.989411i \(-0.546364\pi\)
\(840\) 0 0
\(841\) 780.046 229.042i 0.927522 0.272345i
\(842\) 718.591 328.169i 0.853433 0.389750i
\(843\) 0 0
\(844\) 659.559 + 193.664i 0.781468 + 0.229460i
\(845\) 134.032 19.2709i 0.158618 0.0228058i
\(846\) 0 0
\(847\) 575.854 + 82.7953i 0.679875 + 0.0977512i
\(848\) 121.544 189.126i 0.143330 0.223026i
\(849\) 0 0
\(850\) 353.644i 0.416052i
\(851\) 628.303 531.120i 0.738311 0.624113i
\(852\) 0 0
\(853\) −120.587 139.165i −0.141368 0.163147i 0.680650 0.732608i \(-0.261697\pi\)
−0.822018 + 0.569461i \(0.807152\pi\)
\(854\) 330.205 + 212.210i 0.386656 + 0.248489i
\(855\) 0 0
\(856\) −395.860 180.783i −0.462453 0.211195i
\(857\) 142.527 + 991.300i 0.166310 + 1.15671i 0.886431 + 0.462861i \(0.153177\pi\)
−0.720121 + 0.693849i \(0.755914\pi\)
\(858\) 0 0
\(859\) −1050.84 + 675.333i −1.22333 + 0.786185i −0.982839 0.184467i \(-0.940944\pi\)
−0.240489 + 0.970652i \(0.577308\pi\)
\(860\) −31.9008 69.8531i −0.0370940 0.0812245i
\(861\) 0 0
\(862\) 656.009 + 568.435i 0.761031 + 0.659437i
\(863\) 243.431 280.935i 0.282076 0.325533i −0.596976 0.802259i \(-0.703631\pi\)
0.879052 + 0.476726i \(0.158177\pi\)
\(864\) 0 0
\(865\) −148.046 + 67.6105i −0.171152 + 0.0781625i
\(866\) −63.4058 98.6613i −0.0732168 0.113928i
\(867\) 0 0
\(868\) −790.324 + 113.631i −0.910512 + 0.130912i
\(869\) −70.0773 + 153.448i −0.0806413 + 0.176580i
\(870\) 0 0
\(871\) −57.2122 + 89.0238i −0.0656856 + 0.102209i
\(872\) 439.224 380.590i 0.503697 0.436456i
\(873\) 0 0
\(874\) −614.150 545.450i −0.702689 0.624085i
\(875\) 1056.92 1.20791
\(876\) 0 0
\(877\) 195.815 + 125.842i 0.223278 + 0.143492i 0.647498 0.762067i \(-0.275815\pi\)
−0.424220 + 0.905559i \(0.639452\pi\)
\(878\) −48.5389 + 337.595i −0.0552835 + 0.384505i
\(879\) 0 0
\(880\) 6.40509 + 44.5484i 0.00727851 + 0.0506232i
\(881\) 107.057 364.604i 0.121518 0.413853i −0.876155 0.482029i \(-0.839900\pi\)
0.997673 + 0.0681764i \(0.0217181\pi\)
\(882\) 0 0
\(883\) 65.8746 + 144.245i 0.0746031 + 0.163358i 0.943259 0.332058i \(-0.107743\pi\)
−0.868656 + 0.495416i \(0.835016\pi\)
\(884\) −123.960 422.168i −0.140226 0.477566i
\(885\) 0 0
\(886\) 623.102 719.098i 0.703275 0.811623i
\(887\) −937.152 + 275.173i −1.05654 + 0.310229i −0.763457 0.645858i \(-0.776500\pi\)
−0.293084 + 0.956087i \(0.594682\pi\)
\(888\) 0 0
\(889\) −204.859 318.767i −0.230438 0.358569i
\(890\) −116.539 34.2189i −0.130943 0.0384482i
\(891\) 0 0
\(892\) −143.611 + 314.465i −0.160999 + 0.352539i
\(893\) −1908.89 274.457i −2.13761 0.307342i
\(894\) 0 0
\(895\) 46.9583 40.6896i 0.0524674 0.0454633i
\(896\) 542.281i 0.605224i
\(897\) 0 0
\(898\) −552.283 −0.615015
\(899\) 122.551 + 141.432i 0.136319 + 0.157321i
\(900\) 0 0
\(901\) 174.007 1210.24i 0.193126 1.34322i
\(902\) −180.039 82.2209i −0.199599 0.0911540i
\(903\) 0 0
\(904\) −294.921 + 1004.41i −0.326240 + 1.11107i
\(905\) 400.912 257.651i 0.442997 0.284697i
\(906\) 0 0
\(907\) −265.774 905.144i −0.293026 0.997954i −0.966055 0.258338i \(-0.916825\pi\)
0.673029 0.739616i \(-0.264993\pi\)
\(908\) −90.5079 78.4256i −0.0996783 0.0863718i
\(909\) 0 0
\(910\) −460.452 + 135.201i −0.505991 + 0.148572i
\(911\) −250.275 + 114.297i −0.274725 + 0.125463i −0.548014 0.836469i \(-0.684616\pi\)
0.273288 + 0.961932i \(0.411889\pi\)
\(912\) 0 0
\(913\) 127.292 + 37.3762i 0.139421 + 0.0409378i
\(914\) −1029.66 + 148.043i −1.12654 + 0.161973i
\(915\) 0 0
\(916\) −376.246 54.0959i −0.410748 0.0590567i
\(917\) −571.800 + 889.738i −0.623555 + 0.970271i
\(918\) 0 0
\(919\) 412.424i 0.448775i 0.974500 + 0.224388i \(0.0720382\pi\)
−0.974500 + 0.224388i \(0.927962\pi\)
\(920\) −401.093 + 177.280i −0.435971 + 0.192696i
\(921\) 0 0
\(922\) −333.368 384.727i −0.361570 0.417274i
\(923\) −363.564 233.648i −0.393894 0.253140i
\(924\) 0 0
\(925\) 642.896 + 293.601i 0.695023 + 0.317406i
\(926\) −22.0973 153.690i −0.0238631 0.165972i
\(927\) 0 0
\(928\) −133.694 + 85.9201i −0.144067 + 0.0925863i
\(929\) 135.394 + 296.471i 0.145741 + 0.319129i 0.968398 0.249409i \(-0.0802365\pi\)
−0.822657 + 0.568538i \(0.807509\pi\)
\(930\) 0 0
\(931\) −1151.18 997.502i −1.23650 1.07143i
\(932\) −505.436 + 583.304i −0.542313 + 0.625863i
\(933\) 0 0
\(934\) 7.71057 3.52130i 0.00825543 0.00377013i
\(935\) 132.335 + 205.918i 0.141535 + 0.220233i
\(936\) 0 0
\(937\) 1031.01 148.237i 1.10033 0.158204i 0.431860 0.901941i \(-0.357857\pi\)
0.668473 + 0.743736i \(0.266948\pi\)
\(938\) 40.3893 88.4402i 0.0430589 0.0942859i
\(939\) 0 0
\(940\) −196.922 + 306.416i −0.209491 + 0.325975i
\(941\) 873.960 757.291i 0.928757 0.804772i −0.0522722 0.998633i \(-0.516646\pi\)
0.981029 + 0.193860i \(0.0621009\pi\)
\(942\) 0 0
\(943\) 65.0004 415.928i 0.0689294 0.441069i
\(944\) 181.393 0.192153
\(945\) 0 0
\(946\) 139.347 + 89.5529i 0.147301 + 0.0946648i
\(947\) −13.9968 + 97.3500i −0.0147802 + 0.102798i −0.995876 0.0907237i \(-0.971082\pi\)
0.981096 + 0.193522i \(0.0619911\pi\)
\(948\) 0 0
\(949\) 24.9910 + 173.816i 0.0263341 + 0.183157i
\(950\) 198.801 677.056i 0.209265 0.712690i
\(951\) 0 0
\(952\) 474.688 + 1039.42i 0.498622 + 1.09183i
\(953\) 189.567 + 645.605i 0.198916 + 0.677445i 0.997174 + 0.0751296i \(0.0239370\pi\)
−0.798258 + 0.602316i \(0.794245\pi\)
\(954\) 0 0
\(955\) −356.407 + 411.315i −0.373201 + 0.430697i
\(956\) 274.846 80.7021i 0.287496 0.0844164i
\(957\) 0 0
\(958\) −129.771 201.927i −0.135460 0.210780i
\(959\) −1807.15 530.627i −1.88441 0.553313i
\(960\) 0 0
\(961\) 119.948 262.650i 0.124816 0.273309i
\(962\) −719.535 103.453i −0.747957 0.107540i
\(963\) 0 0
\(964\) 92.8317 80.4391i 0.0962985 0.0834431i
\(965\) 44.4756i 0.0460888i
\(966\) 0 0
\(967\) −441.665 −0.456738 −0.228369 0.973575i \(-0.573339\pi\)
−0.228369 + 0.973575i \(0.573339\pi\)
\(968\) −307.613 355.004i −0.317782 0.366739i
\(969\) 0 0
\(970\) 37.4523 260.486i 0.0386106 0.268543i
\(971\) 801.065 + 365.834i 0.824989 + 0.376760i 0.782741 0.622347i \(-0.213821\pi\)
0.0422481 + 0.999107i \(0.486548\pi\)
\(972\) 0 0
\(973\) −436.474 + 1486.49i −0.448586 + 1.52774i
\(974\) −165.434 + 106.318i −0.169850 + 0.109156i
\(975\) 0 0
\(976\) −19.4909 66.3798i −0.0199702 0.0680121i
\(977\) 1045.41 + 905.852i 1.07002 + 0.927177i 0.997533 0.0701920i \(-0.0223612\pi\)
0.0724862 + 0.997369i \(0.476907\pi\)
\(978\) 0 0
\(979\) −304.074 + 89.2843i −0.310597 + 0.0911995i
\(980\) −261.693 + 119.511i −0.267034 + 0.121950i
\(981\) 0 0
\(982\) −413.811 121.506i −0.421396 0.123733i
\(983\) −585.631 + 84.2010i −0.595759 + 0.0856572i −0.433597 0.901107i \(-0.642756\pi\)
−0.162162 + 0.986764i \(0.551847\pi\)
\(984\) 0 0
\(985\) 644.824 + 92.7116i 0.654643 + 0.0941235i
\(986\) 51.2245 79.7069i 0.0519518 0.0808386i
\(987\) 0 0
\(988\) 877.930i 0.888593i
\(989\) −103.383 + 336.803i −0.104533 + 0.340549i
\(990\) 0 0
\(991\) −1200.52 1385.48i −1.21143 1.39806i −0.892967 0.450123i \(-0.851380\pi\)
−0.318459 0.947937i \(-0.603165\pi\)
\(992\) 892.823 + 573.782i 0.900023 + 0.578410i
\(993\) 0 0
\(994\) 361.180 + 164.946i 0.363360 + 0.165941i
\(995\) −75.0018 521.649i −0.0753787 0.524270i
\(996\) 0 0
\(997\) −179.201 + 115.166i −0.179740 + 0.115512i −0.627417 0.778683i \(-0.715888\pi\)
0.447677 + 0.894195i \(0.352252\pi\)
\(998\) −231.621 507.180i −0.232086 0.508196i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.3.j.a.10.2 30
3.2 odd 2 23.3.d.a.10.2 yes 30
12.11 even 2 368.3.p.a.33.1 30
23.7 odd 22 inner 207.3.j.a.145.2 30
69.50 odd 22 529.3.b.b.528.18 30
69.53 even 22 23.3.d.a.7.2 30
69.65 even 22 529.3.b.b.528.17 30
276.191 odd 22 368.3.p.a.145.1 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.3.d.a.7.2 30 69.53 even 22
23.3.d.a.10.2 yes 30 3.2 odd 2
207.3.j.a.10.2 30 1.1 even 1 trivial
207.3.j.a.145.2 30 23.7 odd 22 inner
368.3.p.a.33.1 30 12.11 even 2
368.3.p.a.145.1 30 276.191 odd 22
529.3.b.b.528.17 30 69.65 even 22
529.3.b.b.528.18 30 69.50 odd 22