gp: [N,k,chi] = [2061,1,Mod(109,2061)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2061.109");
S:= CuspForms(chi, 1);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2061, base_ring=CyclotomicField(76))
chi = DirichletCharacter(H, H._module([0, 9]))
B = ModularForms(chi, 1).cuspidal_submodule().basis()
N = [B[i] for i in range(len(B))]
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 2061 Z ) × \left(\mathbb{Z}/2061\mathbb{Z}\right)^\times ( Z / 2 0 6 1 Z ) × .
n n n
235 235 2 3 5
1604 1604 1 6 0 4
χ ( n ) \chi(n) χ ( n )
− ζ 76 21 -\zeta_{76}^{21} − ζ 7 6 2 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 2061 , [ χ ] ) S_{1}^{\mathrm{new}}(2061, [\chi]) S 1 n e w ( 2 0 6 1 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 36 T^{36} T 3 6
T^36
3 3 3
T 36 T^{36} T 3 6
T^36
5 5 5
T 36 T^{36} T 3 6
T^36
7 7 7
T 36 − 2 T 35 + ⋯ + 1 T^{36} - 2 T^{35} + \cdots + 1 T 3 6 − 2 T 3 5 + ⋯ + 1
T^36 - 2*T^35 + 2*T^34 - 4*T^32 + 8*T^31 - 8*T^30 + 149*T^28 - 298*T^27 + 298*T^26 - 596*T^24 + 4954*T^23 - 8716*T^22 + 7524*T^21 + 6906*T^20 - 28860*T^19 + 50368*T^18 - 43014*T^17 - 14708*T^16 - 22458*T^15 + 74332*T^14 - 100822*T^13 + 83304*T^12 + 35036*T^11 - 64483*T^10 + 58666*T^9 + 12147*T^8 - 15276*T^7 + 6258*T^6 - 2636*T^5 + 2655*T^4 + 105*T^2 - 20*T + 1
11 11 1 1
T 36 T^{36} T 3 6
T^36
13 13 1 3
T 36 + 2 T 35 + ⋯ + 1 T^{36} + 2 T^{35} + \cdots + 1 T 3 6 + 2 T 3 5 + ⋯ + 1
T^36 + 2*T^35 + 2*T^34 - 4*T^32 - 8*T^31 - 8*T^30 + 38*T^29 + 92*T^28 + 108*T^27 + 32*T^26 - 1292*T^25 - 2648*T^24 - 2712*T^23 + 347*T^22 + 6384*T^21 + 12074*T^20 + 11380*T^19 + 47670*T^18 + 72578*T^17 + 49816*T^16 - 43358*T^15 - 78770*T^14 - 70824*T^13 + 15892*T^12 + 36974*T^11 + 75338*T^10 + 76728*T^9 + 5497*T^8 + 5548*T^7 + 3047*T^6 - 5002*T^5 + 261*T^4 + 304*T^3 + 181*T^2 + 20*T + 1
17 17 1 7
T 36 T^{36} T 3 6
T^36
19 19 1 9
( T 18 + 2 T 17 + ⋯ + 1 ) 2 (T^{18} + 2 T^{17} + \cdots + 1)^{2} ( T 1 8 + 2 T 1 7 + ⋯ + 1 ) 2
(T^18 + 2*T^17 + 4*T^16 + 8*T^15 + 16*T^14 + 32*T^13 + 64*T^12 + 71*T^11 + 9*T^10 - T^9 - 2*T^8 - 4*T^7 - 8*T^6 - 35*T^5 + 196*T^4 - 178*T^3 + 62*T^2 - 9*T + 1)^2
23 23 2 3
T 36 T^{36} T 3 6
T^36
29 29 2 9
T 36 T^{36} T 3 6
T^36
31 31 3 1
T 36 − 2 T 35 + ⋯ + 1 T^{36} - 2 T^{35} + \cdots + 1 T 3 6 − 2 T 3 5 + ⋯ + 1
T^36 - 2*T^35 + 21*T^34 - 38*T^33 + 205*T^32 - 334*T^31 + 1227*T^30 - 1786*T^29 + 4994*T^28 - 6416*T^27 + 14472*T^26 - 16112*T^25 + 30412*T^24 - 28600*T^23 + 46764*T^22 - 36328*T^21 + 54710*T^20 - 36764*T^19 + 56486*T^18 - 39442*T^17 + 58290*T^16 - 38038*T^15 + 35078*T^14 + 13672*T^13 - 47112*T^12 + 12616*T^11 + 96124*T^10 - 66316*T^9 - 47988*T^8 + 43852*T^7 + 12148*T^6 - 11224*T^5 - 879*T^4 + 950*T^3 + 29*T^2 - 20*T + 1
37 37 3 7
( T 18 + 2 T 17 + ⋯ + 1 ) 2 (T^{18} + 2 T^{17} + \cdots + 1)^{2} ( T 1 8 + 2 T 1 7 + ⋯ + 1 ) 2
(T^18 + 2*T^17 + 4*T^16 + 8*T^15 + 16*T^14 + 32*T^13 + 64*T^12 + 33*T^11 + 66*T^10 + 132*T^9 + 36*T^8 - 23*T^7 - 46*T^6 - 206*T^5 + 25*T^4 + 31*T^3 + 43*T^2 + 10*T + 1)^2
41 41 4 1
T 36 T^{36} T 3 6
T^36
43 43 4 3
T 36 + 38 T 28 + ⋯ + 361 T^{36} + 38 T^{28} + \cdots + 361 T 3 6 + 3 8 T 2 8 + ⋯ + 3 6 1
T^36 + 38*T^28 + 798*T^26 + 38*T^24 + 437*T^20 - 36860*T^18 + 80503*T^16 - 15162*T^14 + 1805*T^12 + 79059*T^10 + 222376*T^8 + 128155*T^6 + 25992*T^4 + 361
47 47 4 7
T 36 T^{36} T 3 6
T^36
53 53 5 3
T 36 T^{36} T 3 6
T^36
59 59 5 9
T 36 T^{36} T 3 6
T^36
61 61 6 1
T 36 − 456 T 26 + ⋯ + 361 T^{36} - 456 T^{26} + \cdots + 361 T 3 6 − 4 5 6 T 2 6 + ⋯ + 3 6 1
T^36 - 456*T^26 + 8151*T^22 + 38*T^20 - 18088*T^18 + 30324*T^16 + 12635*T^14 + 235372*T^12 + 722*T^10 + 180861*T^8 - 33573*T^6 + 19855*T^4 + 5054*T^2 + 361
67 67 6 7
T 36 − 2 T 35 + ⋯ + 1 T^{36} - 2 T^{35} + \cdots + 1 T 3 6 − 2 T 3 5 + ⋯ + 1
T^36 - 2*T^35 + 2*T^34 - 4*T^32 + 8*T^31 - 8*T^30 + 16*T^28 - 32*T^27 + 203*T^26 - 1938*T^25 + 3679*T^24 - 3482*T^23 - 394*T^22 + 7752*T^21 - 14716*T^20 + 13928*T^19 + 1576*T^18 - 31006*T^17 + 64275*T^16 + 28766*T^15 + 6331*T^14 + 1284*T^13 - 10214*T^12 + 17898*T^11 - 15368*T^10 - 5060*T^9 + 40856*T^8 - 71782*T^7 + 70003*T^6 - 39914*T^5 + 13466*T^4 - 2698*T^3 + 314*T^2 - 20*T + 1
71 71 7 1
T 36 T^{36} T 3 6
T^36
73 73 7 3
T 36 − 2 T 35 + ⋯ + 1 T^{36} - 2 T^{35} + \cdots + 1 T 3 6 − 2 T 3 5 + ⋯ + 1
T^36 - 2*T^35 + 2*T^34 - 38*T^33 + 72*T^32 - 68*T^31 + 619*T^30 - 1102*T^29 + 966*T^28 - 5618*T^27 + 9304*T^26 - 7372*T^25 + 30849*T^24 - 46954*T^23 + 32210*T^22 - 103892*T^21 + 143364*T^20 - 78944*T^19 + 207650*T^18 - 257410*T^17 + 99520*T^16 - 232218*T^15 + 265719*T^14 - 67002*T^13 + 154896*T^12 - 170468*T^11 + 31144*T^10 - 40476*T^9 + 37683*T^8 + 5586*T^7 + 5840*T^6 - 6550*T^5 + 1420*T^4 - 114*T^3 + 105*T^2 + 18*T + 1
79 79 7 9
T 36 + 2 T 35 + ⋯ + 1 T^{36} + 2 T^{35} + \cdots + 1 T 3 6 + 2 T 3 5 + ⋯ + 1
T^36 + 2*T^35 + 2*T^34 - 4*T^32 - 8*T^31 - 8*T^30 + 38*T^29 + 92*T^28 + 108*T^27 + 32*T^26 - 1292*T^25 - 2648*T^24 - 2712*T^23 + 347*T^22 + 6384*T^21 + 12074*T^20 + 11380*T^19 + 47670*T^18 + 72578*T^17 + 49816*T^16 - 43358*T^15 - 78770*T^14 - 70824*T^13 + 15892*T^12 + 36974*T^11 + 75338*T^10 + 76728*T^9 + 5497*T^8 + 5548*T^7 + 3047*T^6 - 5002*T^5 + 261*T^4 + 304*T^3 + 181*T^2 + 20*T + 1
83 83 8 3
T 36 T^{36} T 3 6
T^36
89 89 8 9
T 36 T^{36} T 3 6
T^36
97 97 9 7
( T 18 − 38 T 13 + ⋯ + 19 ) 2 (T^{18} - 38 T^{13} + \cdots + 19)^{2} ( T 1 8 − 3 8 T 1 3 + ⋯ + 1 9 ) 2
(T^18 - 38*T^13 + 19*T^10 + 323*T^8 + 19*T^6 + 323*T^5 - 323*T^3 + 38*T^2 + 38*T + 19)^2
show more
show less