Properties

Label 2061.1.bn.a
Level 20612061
Weight 11
Character orbit 2061.bn
Analytic conductor 1.0291.029
Analytic rank 00
Dimension 3636
Projective image D76D_{76}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2061,1,Mod(109,2061)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2061.109"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2061, base_ring=CyclotomicField(76)) chi = DirichletCharacter(H, H._module([0, 9])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 2061=32229 2061 = 3^{2} \cdot 229
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2061.bn (of order 7676, degree 3636, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.028572991041.02857299104
Analytic rank: 00
Dimension: 3636
Coefficient field: Q(ζ76)\Q(\zeta_{76})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x36x34+x32x30+x28x26+x24x22+x20x18+x16++1 x^{36} - x^{34} + x^{32} - x^{30} + x^{28} - x^{26} + x^{24} - x^{22} + x^{20} - x^{18} + x^{16} + \cdots + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D76D_{76}
Projective field: Galois closure of Q[x]/(x76)\mathbb{Q}[x]/(x^{76} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ7623q4+(ζ7626ζ7617)q7+(ζ7633ζ7630)q13ζ768q16+(ζ7628+ζ764)q19ζ766q25++(ζ7624+ζ762)q97+O(q100) q - \zeta_{76}^{23} q^{4} + (\zeta_{76}^{26} - \zeta_{76}^{17}) q^{7} + ( - \zeta_{76}^{33} - \zeta_{76}^{30}) q^{13} - \zeta_{76}^{8} q^{16} + (\zeta_{76}^{28} + \zeta_{76}^{4}) q^{19} - \zeta_{76}^{6} q^{25} + \cdots + (\zeta_{76}^{24} + \zeta_{76}^{2}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 36q+2q72q13+2q164q192q252q28+2q314q372q52+2q67+2q732q79+4q91+O(q100) 36 q + 2 q^{7} - 2 q^{13} + 2 q^{16} - 4 q^{19} - 2 q^{25} - 2 q^{28} + 2 q^{31} - 4 q^{37} - 2 q^{52} + 2 q^{67} + 2 q^{73} - 2 q^{79} + 4 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2061Z)×\left(\mathbb{Z}/2061\mathbb{Z}\right)^\times.

nn 235235 16041604
χ(n)\chi(n) ζ7621-\zeta_{76}^{21} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
0.915773 0.401695i
0.614213 + 0.789141i
−0.837166 + 0.546948i
−0.837166 0.546948i
0.915773 + 0.401695i
−0.475947 + 0.879474i
−0.969400 + 0.245485i
−0.735724 0.677282i
0.164595 + 0.986361i
−0.324699 + 0.945817i
0.475947 + 0.879474i
−0.324699 0.945817i
0.324699 + 0.945817i
−0.475947 0.879474i
0.324699 0.945817i
−0.164595 0.986361i
0.735724 + 0.677282i
0.969400 0.245485i
0.475947 0.879474i
−0.915773 0.401695i
0 0 0.996584 0.0825793i 0 0 −0.981209 + 1.64668i 0 0 0
136.1 0 0 0.475947 0.879474i 0 0 1.05198 1.24207i 0 0 0
145.1 0 0 0.735724 0.677282i 0 0 −1.70491 0.212517i 0 0 0
199.1 0 0 0.735724 + 0.677282i 0 0 −1.70491 + 0.212517i 0 0 0
208.1 0 0 0.996584 + 0.0825793i 0 0 −0.981209 1.64668i 0 0 0
343.1 0 0 0.915773 + 0.401695i 0 0 −0.108651 + 0.222249i 0 0 0
352.1 0 0 0.837166 + 0.546948i 0 0 0.510414 + 0.714879i 0 0 0
370.1 0 0 −0.164595 0.986361i 0 0 1.87606 + 0.558527i 0 0 0
406.1 0 0 −0.614213 0.789141i 0 0 0.0769960 + 0.0300439i 0 0 0
424.1 0 0 −0.969400 + 0.245485i 0 0 0.0630689 1.52486i 0 0 0
460.1 0 0 −0.915773 + 0.401695i 0 0 −1.78298 + 0.871648i 0 0 0
559.1 0 0 −0.969400 0.245485i 0 0 0.0630689 + 1.52486i 0 0 0
586.1 0 0 0.969400 + 0.245485i 0 0 1.29149 0.0534166i 0 0 0
685.1 0 0 0.915773 0.401695i 0 0 −0.108651 0.222249i 0 0 0
721.1 0 0 0.969400 0.245485i 0 0 1.29149 + 0.0534166i 0 0 0
739.1 0 0 0.614213 + 0.789141i 0 0 0.726395 1.86159i 0 0 0
775.1 0 0 0.164595 + 0.986361i 0 0 −0.117111 + 0.393368i 0 0 0
793.1 0 0 −0.837166 0.546948i 0 0 1.46231 1.04407i 0 0 0
802.1 0 0 −0.915773 0.401695i 0 0 −1.78298 0.871648i 0 0 0
937.1 0 0 −0.996584 0.0825793i 0 0 0.490238 0.292119i 0 0 0
See all 36 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
229.j odd 76 1 inner
687.r even 76 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2061.1.bn.a 36
3.b odd 2 1 CM 2061.1.bn.a 36
229.j odd 76 1 inner 2061.1.bn.a 36
687.r even 76 1 inner 2061.1.bn.a 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2061.1.bn.a 36 1.a even 1 1 trivial
2061.1.bn.a 36 3.b odd 2 1 CM
2061.1.bn.a 36 229.j odd 76 1 inner
2061.1.bn.a 36 687.r even 76 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(2061,[χ])S_{1}^{\mathrm{new}}(2061, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T36 T^{36} Copy content Toggle raw display
33 T36 T^{36} Copy content Toggle raw display
55 T36 T^{36} Copy content Toggle raw display
77 T362T35++1 T^{36} - 2 T^{35} + \cdots + 1 Copy content Toggle raw display
1111 T36 T^{36} Copy content Toggle raw display
1313 T36+2T35++1 T^{36} + 2 T^{35} + \cdots + 1 Copy content Toggle raw display
1717 T36 T^{36} Copy content Toggle raw display
1919 (T18+2T17++1)2 (T^{18} + 2 T^{17} + \cdots + 1)^{2} Copy content Toggle raw display
2323 T36 T^{36} Copy content Toggle raw display
2929 T36 T^{36} Copy content Toggle raw display
3131 T362T35++1 T^{36} - 2 T^{35} + \cdots + 1 Copy content Toggle raw display
3737 (T18+2T17++1)2 (T^{18} + 2 T^{17} + \cdots + 1)^{2} Copy content Toggle raw display
4141 T36 T^{36} Copy content Toggle raw display
4343 T36+38T28++361 T^{36} + 38 T^{28} + \cdots + 361 Copy content Toggle raw display
4747 T36 T^{36} Copy content Toggle raw display
5353 T36 T^{36} Copy content Toggle raw display
5959 T36 T^{36} Copy content Toggle raw display
6161 T36456T26++361 T^{36} - 456 T^{26} + \cdots + 361 Copy content Toggle raw display
6767 T362T35++1 T^{36} - 2 T^{35} + \cdots + 1 Copy content Toggle raw display
7171 T36 T^{36} Copy content Toggle raw display
7373 T362T35++1 T^{36} - 2 T^{35} + \cdots + 1 Copy content Toggle raw display
7979 T36+2T35++1 T^{36} + 2 T^{35} + \cdots + 1 Copy content Toggle raw display
8383 T36 T^{36} Copy content Toggle raw display
8989 T36 T^{36} Copy content Toggle raw display
9797 (T1838T13++19)2 (T^{18} - 38 T^{13} + \cdots + 19)^{2} Copy content Toggle raw display
show more
show less