Properties

Label 2057.4.a.v.1.10
Level $2057$
Weight $4$
Character 2057.1
Self dual yes
Analytic conductor $121.367$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [52,1,20,235,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(0\)
Dimension: \(52\)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 2057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.88649 q^{2} +0.0923746 q^{3} +7.10482 q^{4} -3.54222 q^{5} -0.359013 q^{6} +27.1367 q^{7} +3.47912 q^{8} -26.9915 q^{9} +13.7668 q^{10} +0.656305 q^{12} +60.7507 q^{13} -105.466 q^{14} -0.327211 q^{15} -70.3601 q^{16} -17.0000 q^{17} +104.902 q^{18} -135.682 q^{19} -25.1668 q^{20} +2.50674 q^{21} -25.8969 q^{23} +0.321383 q^{24} -112.453 q^{25} -236.107 q^{26} -4.98744 q^{27} +192.801 q^{28} +16.7371 q^{29} +1.27170 q^{30} +64.6559 q^{31} +245.621 q^{32} +66.0704 q^{34} -96.1240 q^{35} -191.769 q^{36} +237.140 q^{37} +527.328 q^{38} +5.61183 q^{39} -12.3238 q^{40} -197.539 q^{41} -9.74242 q^{42} -54.5472 q^{43} +95.6096 q^{45} +100.648 q^{46} +303.980 q^{47} -6.49949 q^{48} +393.399 q^{49} +437.046 q^{50} -1.57037 q^{51} +431.623 q^{52} +65.9571 q^{53} +19.3837 q^{54} +94.4118 q^{56} -12.5336 q^{57} -65.0485 q^{58} +524.268 q^{59} -2.32477 q^{60} +33.7414 q^{61} -251.285 q^{62} -732.459 q^{63} -391.723 q^{64} -215.192 q^{65} -612.294 q^{67} -120.782 q^{68} -2.39222 q^{69} +373.585 q^{70} -833.552 q^{71} -93.9066 q^{72} -129.139 q^{73} -921.641 q^{74} -10.3878 q^{75} -963.997 q^{76} -21.8103 q^{78} +1037.89 q^{79} +249.231 q^{80} +728.309 q^{81} +767.732 q^{82} +764.711 q^{83} +17.8099 q^{84} +60.2177 q^{85} +211.997 q^{86} +1.54608 q^{87} +513.861 q^{89} -371.586 q^{90} +1648.57 q^{91} -183.993 q^{92} +5.97257 q^{93} -1181.42 q^{94} +480.616 q^{95} +22.6892 q^{96} -302.815 q^{97} -1528.94 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q + q^{2} + 20 q^{3} + 235 q^{4} + 40 q^{5} - 24 q^{6} - 42 q^{7} + 45 q^{8} + 572 q^{9} + 33 q^{10} + 233 q^{12} + 12 q^{13} + 73 q^{14} + 400 q^{15} + 1223 q^{16} - 884 q^{17} + 201 q^{18} - 44 q^{19}+ \cdots - 4610 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.88649 −1.37408 −0.687041 0.726619i \(-0.741091\pi\)
−0.687041 + 0.726619i \(0.741091\pi\)
\(3\) 0.0923746 0.0177775 0.00888875 0.999960i \(-0.497171\pi\)
0.00888875 + 0.999960i \(0.497171\pi\)
\(4\) 7.10482 0.888102
\(5\) −3.54222 −0.316826 −0.158413 0.987373i \(-0.550638\pi\)
−0.158413 + 0.987373i \(0.550638\pi\)
\(6\) −0.359013 −0.0244278
\(7\) 27.1367 1.46524 0.732621 0.680637i \(-0.238297\pi\)
0.732621 + 0.680637i \(0.238297\pi\)
\(8\) 3.47912 0.153757
\(9\) −26.9915 −0.999684
\(10\) 13.7668 0.435344
\(11\) 0 0
\(12\) 0.656305 0.0157882
\(13\) 60.7507 1.29609 0.648047 0.761600i \(-0.275586\pi\)
0.648047 + 0.761600i \(0.275586\pi\)
\(14\) −105.466 −2.01336
\(15\) −0.327211 −0.00563237
\(16\) −70.3601 −1.09938
\(17\) −17.0000 −0.242536
\(18\) 104.902 1.37365
\(19\) −135.682 −1.63830 −0.819148 0.573582i \(-0.805553\pi\)
−0.819148 + 0.573582i \(0.805553\pi\)
\(20\) −25.1668 −0.281373
\(21\) 2.50674 0.0260484
\(22\) 0 0
\(23\) −25.8969 −0.234777 −0.117389 0.993086i \(-0.537452\pi\)
−0.117389 + 0.993086i \(0.537452\pi\)
\(24\) 0.321383 0.00273341
\(25\) −112.453 −0.899622
\(26\) −236.107 −1.78094
\(27\) −4.98744 −0.0355494
\(28\) 192.801 1.30128
\(29\) 16.7371 0.107172 0.0535862 0.998563i \(-0.482935\pi\)
0.0535862 + 0.998563i \(0.482935\pi\)
\(30\) 1.27170 0.00773934
\(31\) 64.6559 0.374598 0.187299 0.982303i \(-0.440027\pi\)
0.187299 + 0.982303i \(0.440027\pi\)
\(32\) 245.621 1.35688
\(33\) 0 0
\(34\) 66.0704 0.333264
\(35\) −96.1240 −0.464226
\(36\) −191.769 −0.887821
\(37\) 237.140 1.05366 0.526831 0.849970i \(-0.323380\pi\)
0.526831 + 0.849970i \(0.323380\pi\)
\(38\) 527.328 2.25115
\(39\) 5.61183 0.0230413
\(40\) −12.3238 −0.0487141
\(41\) −197.539 −0.752447 −0.376224 0.926529i \(-0.622778\pi\)
−0.376224 + 0.926529i \(0.622778\pi\)
\(42\) −9.74242 −0.0357926
\(43\) −54.5472 −0.193450 −0.0967252 0.995311i \(-0.530837\pi\)
−0.0967252 + 0.995311i \(0.530837\pi\)
\(44\) 0 0
\(45\) 95.6096 0.316725
\(46\) 100.648 0.322603
\(47\) 303.980 0.943406 0.471703 0.881758i \(-0.343640\pi\)
0.471703 + 0.881758i \(0.343640\pi\)
\(48\) −6.49949 −0.0195442
\(49\) 393.399 1.14694
\(50\) 437.046 1.23615
\(51\) −1.57037 −0.00431168
\(52\) 431.623 1.15106
\(53\) 65.9571 0.170942 0.0854708 0.996341i \(-0.472761\pi\)
0.0854708 + 0.996341i \(0.472761\pi\)
\(54\) 19.3837 0.0488478
\(55\) 0 0
\(56\) 94.4118 0.225291
\(57\) −12.5336 −0.0291248
\(58\) −65.0485 −0.147264
\(59\) 524.268 1.15685 0.578423 0.815737i \(-0.303668\pi\)
0.578423 + 0.815737i \(0.303668\pi\)
\(60\) −2.32477 −0.00500212
\(61\) 33.7414 0.0708221 0.0354111 0.999373i \(-0.488726\pi\)
0.0354111 + 0.999373i \(0.488726\pi\)
\(62\) −251.285 −0.514729
\(63\) −732.459 −1.46478
\(64\) −391.723 −0.765084
\(65\) −215.192 −0.410636
\(66\) 0 0
\(67\) −612.294 −1.11647 −0.558236 0.829682i \(-0.688522\pi\)
−0.558236 + 0.829682i \(0.688522\pi\)
\(68\) −120.782 −0.215396
\(69\) −2.39222 −0.00417375
\(70\) 373.585 0.637885
\(71\) −833.552 −1.39330 −0.696651 0.717410i \(-0.745327\pi\)
−0.696651 + 0.717410i \(0.745327\pi\)
\(72\) −93.9066 −0.153708
\(73\) −129.139 −0.207049 −0.103524 0.994627i \(-0.533012\pi\)
−0.103524 + 0.994627i \(0.533012\pi\)
\(74\) −921.641 −1.44782
\(75\) −10.3878 −0.0159930
\(76\) −963.997 −1.45497
\(77\) 0 0
\(78\) −21.8103 −0.0316607
\(79\) 1037.89 1.47813 0.739063 0.673636i \(-0.235269\pi\)
0.739063 + 0.673636i \(0.235269\pi\)
\(80\) 249.231 0.348311
\(81\) 728.309 0.999052
\(82\) 767.732 1.03392
\(83\) 764.711 1.01130 0.505650 0.862738i \(-0.331253\pi\)
0.505650 + 0.862738i \(0.331253\pi\)
\(84\) 17.8099 0.0231336
\(85\) 60.2177 0.0768415
\(86\) 211.997 0.265817
\(87\) 1.54608 0.00190526
\(88\) 0 0
\(89\) 513.861 0.612013 0.306007 0.952029i \(-0.401007\pi\)
0.306007 + 0.952029i \(0.401007\pi\)
\(90\) −371.586 −0.435207
\(91\) 1648.57 1.89909
\(92\) −183.993 −0.208506
\(93\) 5.97257 0.00665942
\(94\) −1181.42 −1.29632
\(95\) 480.616 0.519054
\(96\) 22.6892 0.0241219
\(97\) −302.815 −0.316972 −0.158486 0.987361i \(-0.550661\pi\)
−0.158486 + 0.987361i \(0.550661\pi\)
\(98\) −1528.94 −1.57598
\(99\) 0 0
\(100\) −798.956 −0.798956
\(101\) −948.841 −0.934784 −0.467392 0.884050i \(-0.654806\pi\)
−0.467392 + 0.884050i \(0.654806\pi\)
\(102\) 6.10323 0.00592460
\(103\) 2064.62 1.97508 0.987541 0.157360i \(-0.0502983\pi\)
0.987541 + 0.157360i \(0.0502983\pi\)
\(104\) 211.359 0.199283
\(105\) −8.87942 −0.00825279
\(106\) −256.342 −0.234888
\(107\) −1896.97 −1.71390 −0.856951 0.515398i \(-0.827644\pi\)
−0.856951 + 0.515398i \(0.827644\pi\)
\(108\) −35.4349 −0.0315715
\(109\) 842.737 0.740547 0.370273 0.928923i \(-0.379264\pi\)
0.370273 + 0.928923i \(0.379264\pi\)
\(110\) 0 0
\(111\) 21.9057 0.0187315
\(112\) −1909.34 −1.61085
\(113\) −1568.35 −1.30564 −0.652821 0.757512i \(-0.726415\pi\)
−0.652821 + 0.757512i \(0.726415\pi\)
\(114\) 48.7117 0.0400199
\(115\) 91.7324 0.0743834
\(116\) 118.914 0.0951800
\(117\) −1639.75 −1.29568
\(118\) −2037.56 −1.58960
\(119\) −461.323 −0.355373
\(120\) −1.13841 −0.000866016 0
\(121\) 0 0
\(122\) −131.136 −0.0973154
\(123\) −18.2476 −0.0133766
\(124\) 459.368 0.332681
\(125\) 841.109 0.601849
\(126\) 2846.69 2.01273
\(127\) −281.186 −0.196467 −0.0982333 0.995163i \(-0.531319\pi\)
−0.0982333 + 0.995163i \(0.531319\pi\)
\(128\) −442.540 −0.305589
\(129\) −5.03878 −0.00343907
\(130\) 836.343 0.564247
\(131\) −57.4316 −0.0383040 −0.0191520 0.999817i \(-0.506097\pi\)
−0.0191520 + 0.999817i \(0.506097\pi\)
\(132\) 0 0
\(133\) −3681.96 −2.40050
\(134\) 2379.68 1.53412
\(135\) 17.6666 0.0112630
\(136\) −59.1451 −0.0372915
\(137\) −462.328 −0.288316 −0.144158 0.989555i \(-0.546047\pi\)
−0.144158 + 0.989555i \(0.546047\pi\)
\(138\) 9.29733 0.00573508
\(139\) −1375.37 −0.839262 −0.419631 0.907695i \(-0.637840\pi\)
−0.419631 + 0.907695i \(0.637840\pi\)
\(140\) −682.943 −0.412280
\(141\) 28.0801 0.0167714
\(142\) 3239.59 1.91451
\(143\) 0 0
\(144\) 1899.12 1.09903
\(145\) −59.2864 −0.0339549
\(146\) 501.897 0.284502
\(147\) 36.3401 0.0203897
\(148\) 1684.83 0.935760
\(149\) 571.352 0.314141 0.157071 0.987587i \(-0.449795\pi\)
0.157071 + 0.987587i \(0.449795\pi\)
\(150\) 40.3720 0.0219757
\(151\) 2399.07 1.29294 0.646468 0.762941i \(-0.276245\pi\)
0.646468 + 0.762941i \(0.276245\pi\)
\(152\) −472.055 −0.251899
\(153\) 458.855 0.242459
\(154\) 0 0
\(155\) −229.025 −0.118682
\(156\) 39.8710 0.0204631
\(157\) 3894.35 1.97964 0.989818 0.142335i \(-0.0454612\pi\)
0.989818 + 0.142335i \(0.0454612\pi\)
\(158\) −4033.76 −2.03107
\(159\) 6.09276 0.00303892
\(160\) −870.043 −0.429893
\(161\) −702.755 −0.344006
\(162\) −2830.57 −1.37278
\(163\) −941.872 −0.452596 −0.226298 0.974058i \(-0.572662\pi\)
−0.226298 + 0.974058i \(0.572662\pi\)
\(164\) −1403.48 −0.668250
\(165\) 0 0
\(166\) −2972.04 −1.38961
\(167\) 2407.24 1.11544 0.557718 0.830031i \(-0.311677\pi\)
0.557718 + 0.830031i \(0.311677\pi\)
\(168\) 8.72125 0.00400512
\(169\) 1493.65 0.679860
\(170\) −234.036 −0.105587
\(171\) 3662.26 1.63778
\(172\) −387.548 −0.171804
\(173\) −780.435 −0.342979 −0.171490 0.985186i \(-0.554858\pi\)
−0.171490 + 0.985186i \(0.554858\pi\)
\(174\) −6.00883 −0.00261798
\(175\) −3051.59 −1.31816
\(176\) 0 0
\(177\) 48.4291 0.0205658
\(178\) −1997.12 −0.840957
\(179\) −1562.43 −0.652410 −0.326205 0.945299i \(-0.605770\pi\)
−0.326205 + 0.945299i \(0.605770\pi\)
\(180\) 679.289 0.281284
\(181\) 297.891 0.122332 0.0611658 0.998128i \(-0.480518\pi\)
0.0611658 + 0.998128i \(0.480518\pi\)
\(182\) −6407.16 −2.60951
\(183\) 3.11685 0.00125904
\(184\) −90.0984 −0.0360986
\(185\) −840.000 −0.333827
\(186\) −23.2123 −0.00915060
\(187\) 0 0
\(188\) 2159.72 0.837840
\(189\) −135.343 −0.0520885
\(190\) −1867.91 −0.713223
\(191\) −2183.13 −0.827045 −0.413522 0.910494i \(-0.635702\pi\)
−0.413522 + 0.910494i \(0.635702\pi\)
\(192\) −36.1853 −0.0136013
\(193\) 1275.35 0.475657 0.237828 0.971307i \(-0.423564\pi\)
0.237828 + 0.971307i \(0.423564\pi\)
\(194\) 1176.89 0.435545
\(195\) −19.8783 −0.00730008
\(196\) 2795.03 1.01860
\(197\) −5271.02 −1.90632 −0.953160 0.302467i \(-0.902190\pi\)
−0.953160 + 0.302467i \(0.902190\pi\)
\(198\) 0 0
\(199\) 3500.22 1.24685 0.623427 0.781881i \(-0.285740\pi\)
0.623427 + 0.781881i \(0.285740\pi\)
\(200\) −391.237 −0.138323
\(201\) −56.5604 −0.0198481
\(202\) 3687.66 1.28447
\(203\) 454.189 0.157033
\(204\) −11.1572 −0.00382921
\(205\) 699.725 0.238395
\(206\) −8024.15 −2.71393
\(207\) 698.995 0.234703
\(208\) −4274.43 −1.42490
\(209\) 0 0
\(210\) 34.5098 0.0113400
\(211\) 2247.97 0.733444 0.366722 0.930331i \(-0.380480\pi\)
0.366722 + 0.930331i \(0.380480\pi\)
\(212\) 468.613 0.151814
\(213\) −76.9991 −0.0247694
\(214\) 7372.58 2.35504
\(215\) 193.218 0.0612900
\(216\) −17.3519 −0.00546597
\(217\) 1754.55 0.548877
\(218\) −3275.29 −1.01757
\(219\) −11.9291 −0.00368081
\(220\) 0 0
\(221\) −1032.76 −0.314349
\(222\) −85.1363 −0.0257386
\(223\) −3860.13 −1.15916 −0.579581 0.814914i \(-0.696784\pi\)
−0.579581 + 0.814914i \(0.696784\pi\)
\(224\) 6665.34 1.98815
\(225\) 3035.26 0.899337
\(226\) 6095.37 1.79406
\(227\) 4753.15 1.38977 0.694885 0.719121i \(-0.255455\pi\)
0.694885 + 0.719121i \(0.255455\pi\)
\(228\) −89.0489 −0.0258658
\(229\) 299.717 0.0864886 0.0432443 0.999065i \(-0.486231\pi\)
0.0432443 + 0.999065i \(0.486231\pi\)
\(230\) −356.517 −0.102209
\(231\) 0 0
\(232\) 58.2303 0.0164785
\(233\) 1630.62 0.458477 0.229239 0.973370i \(-0.426376\pi\)
0.229239 + 0.973370i \(0.426376\pi\)
\(234\) 6372.88 1.78038
\(235\) −1076.76 −0.298895
\(236\) 3724.83 1.02740
\(237\) 95.8749 0.0262774
\(238\) 1792.93 0.488312
\(239\) −1871.45 −0.506504 −0.253252 0.967400i \(-0.581500\pi\)
−0.253252 + 0.967400i \(0.581500\pi\)
\(240\) 23.0226 0.00619210
\(241\) −624.356 −0.166881 −0.0834405 0.996513i \(-0.526591\pi\)
−0.0834405 + 0.996513i \(0.526591\pi\)
\(242\) 0 0
\(243\) 201.938 0.0533101
\(244\) 239.727 0.0628973
\(245\) −1393.50 −0.363378
\(246\) 70.9190 0.0183806
\(247\) −8242.79 −2.12339
\(248\) 224.946 0.0575971
\(249\) 70.6399 0.0179784
\(250\) −3268.96 −0.826990
\(251\) −5375.52 −1.35179 −0.675895 0.736998i \(-0.736243\pi\)
−0.675895 + 0.736998i \(0.736243\pi\)
\(252\) −5203.98 −1.30087
\(253\) 0 0
\(254\) 1092.83 0.269961
\(255\) 5.56259 0.00136605
\(256\) 4853.71 1.18499
\(257\) −4064.72 −0.986578 −0.493289 0.869866i \(-0.664205\pi\)
−0.493289 + 0.869866i \(0.664205\pi\)
\(258\) 19.5832 0.00472556
\(259\) 6435.18 1.54387
\(260\) −1528.90 −0.364686
\(261\) −451.758 −0.107138
\(262\) 223.207 0.0526328
\(263\) −6009.25 −1.40892 −0.704461 0.709743i \(-0.748811\pi\)
−0.704461 + 0.709743i \(0.748811\pi\)
\(264\) 0 0
\(265\) −233.634 −0.0541586
\(266\) 14309.9 3.29849
\(267\) 47.4677 0.0108801
\(268\) −4350.24 −0.991541
\(269\) 7996.94 1.81257 0.906286 0.422664i \(-0.138905\pi\)
0.906286 + 0.422664i \(0.138905\pi\)
\(270\) −68.6611 −0.0154762
\(271\) 5583.01 1.25145 0.625726 0.780043i \(-0.284803\pi\)
0.625726 + 0.780043i \(0.284803\pi\)
\(272\) 1196.12 0.266638
\(273\) 152.286 0.0337611
\(274\) 1796.83 0.396171
\(275\) 0 0
\(276\) −16.9963 −0.00370672
\(277\) 259.590 0.0563078 0.0281539 0.999604i \(-0.491037\pi\)
0.0281539 + 0.999604i \(0.491037\pi\)
\(278\) 5345.36 1.15321
\(279\) −1745.16 −0.374480
\(280\) −334.427 −0.0713780
\(281\) 1528.98 0.324595 0.162298 0.986742i \(-0.448110\pi\)
0.162298 + 0.986742i \(0.448110\pi\)
\(282\) −109.133 −0.0230453
\(283\) −3261.08 −0.684986 −0.342493 0.939520i \(-0.611271\pi\)
−0.342493 + 0.939520i \(0.611271\pi\)
\(284\) −5922.23 −1.23739
\(285\) 44.3967 0.00922749
\(286\) 0 0
\(287\) −5360.54 −1.10252
\(288\) −6629.67 −1.35645
\(289\) 289.000 0.0588235
\(290\) 230.416 0.0466569
\(291\) −27.9725 −0.00563497
\(292\) −917.507 −0.183880
\(293\) −1082.89 −0.215915 −0.107957 0.994156i \(-0.534431\pi\)
−0.107957 + 0.994156i \(0.534431\pi\)
\(294\) −141.235 −0.0280171
\(295\) −1857.07 −0.366518
\(296\) 825.037 0.162008
\(297\) 0 0
\(298\) −2220.56 −0.431656
\(299\) −1573.26 −0.304293
\(300\) −73.8033 −0.0142034
\(301\) −1480.23 −0.283452
\(302\) −9323.96 −1.77660
\(303\) −87.6488 −0.0166181
\(304\) 9546.61 1.80110
\(305\) −119.520 −0.0224383
\(306\) −1783.34 −0.333159
\(307\) 7355.28 1.36739 0.683694 0.729769i \(-0.260372\pi\)
0.683694 + 0.729769i \(0.260372\pi\)
\(308\) 0 0
\(309\) 190.719 0.0351120
\(310\) 890.105 0.163079
\(311\) 9763.57 1.78020 0.890098 0.455768i \(-0.150635\pi\)
0.890098 + 0.455768i \(0.150635\pi\)
\(312\) 19.5242 0.00354276
\(313\) 6636.33 1.19843 0.599213 0.800590i \(-0.295480\pi\)
0.599213 + 0.800590i \(0.295480\pi\)
\(314\) −15135.4 −2.72018
\(315\) 2594.53 0.464079
\(316\) 7374.03 1.31273
\(317\) 7537.27 1.33544 0.667721 0.744412i \(-0.267270\pi\)
0.667721 + 0.744412i \(0.267270\pi\)
\(318\) −23.6795 −0.00417572
\(319\) 0 0
\(320\) 1387.57 0.242398
\(321\) −175.232 −0.0304689
\(322\) 2731.25 0.472692
\(323\) 2306.60 0.397345
\(324\) 5174.50 0.887260
\(325\) −6831.59 −1.16599
\(326\) 3660.58 0.621904
\(327\) 77.8475 0.0131651
\(328\) −687.261 −0.115694
\(329\) 8249.01 1.38232
\(330\) 0 0
\(331\) 4014.50 0.666637 0.333319 0.942814i \(-0.391832\pi\)
0.333319 + 0.942814i \(0.391832\pi\)
\(332\) 5433.13 0.898138
\(333\) −6400.75 −1.05333
\(334\) −9355.71 −1.53270
\(335\) 2168.88 0.353727
\(336\) −176.375 −0.0286370
\(337\) −2971.40 −0.480303 −0.240152 0.970735i \(-0.577197\pi\)
−0.240152 + 0.970735i \(0.577197\pi\)
\(338\) −5805.07 −0.934184
\(339\) −144.875 −0.0232111
\(340\) 427.836 0.0682431
\(341\) 0 0
\(342\) −14233.3 −2.25044
\(343\) 1367.66 0.215296
\(344\) −189.776 −0.0297443
\(345\) 8.47375 0.00132235
\(346\) 3033.15 0.471281
\(347\) −9948.22 −1.53905 −0.769523 0.638620i \(-0.779506\pi\)
−0.769523 + 0.638620i \(0.779506\pi\)
\(348\) 10.9846 0.00169206
\(349\) −3102.38 −0.475835 −0.237918 0.971285i \(-0.576465\pi\)
−0.237918 + 0.971285i \(0.576465\pi\)
\(350\) 11860.0 1.81127
\(351\) −302.991 −0.0460754
\(352\) 0 0
\(353\) −824.026 −0.124245 −0.0621225 0.998069i \(-0.519787\pi\)
−0.0621225 + 0.998069i \(0.519787\pi\)
\(354\) −188.219 −0.0282591
\(355\) 2952.62 0.441434
\(356\) 3650.89 0.543530
\(357\) −42.6146 −0.00631766
\(358\) 6072.36 0.896465
\(359\) −607.542 −0.0893172 −0.0446586 0.999002i \(-0.514220\pi\)
−0.0446586 + 0.999002i \(0.514220\pi\)
\(360\) 332.638 0.0486987
\(361\) 11550.6 1.68401
\(362\) −1157.75 −0.168094
\(363\) 0 0
\(364\) 11712.8 1.68659
\(365\) 457.438 0.0655983
\(366\) −12.1136 −0.00173003
\(367\) 7719.03 1.09790 0.548951 0.835855i \(-0.315027\pi\)
0.548951 + 0.835855i \(0.315027\pi\)
\(368\) 1822.11 0.258109
\(369\) 5331.86 0.752210
\(370\) 3264.65 0.458706
\(371\) 1789.86 0.250471
\(372\) 42.4340 0.00591425
\(373\) 8024.53 1.11393 0.556963 0.830537i \(-0.311967\pi\)
0.556963 + 0.830537i \(0.311967\pi\)
\(374\) 0 0
\(375\) 77.6971 0.0106994
\(376\) 1057.58 0.145055
\(377\) 1016.79 0.138905
\(378\) 526.008 0.0715739
\(379\) −14358.9 −1.94608 −0.973040 0.230635i \(-0.925920\pi\)
−0.973040 + 0.230635i \(0.925920\pi\)
\(380\) 3414.69 0.460973
\(381\) −25.9745 −0.00349269
\(382\) 8484.71 1.13643
\(383\) 7822.17 1.04359 0.521794 0.853072i \(-0.325263\pi\)
0.521794 + 0.853072i \(0.325263\pi\)
\(384\) −40.8794 −0.00543260
\(385\) 0 0
\(386\) −4956.64 −0.653591
\(387\) 1472.31 0.193389
\(388\) −2151.45 −0.281503
\(389\) −9317.39 −1.21442 −0.607212 0.794540i \(-0.707712\pi\)
−0.607212 + 0.794540i \(0.707712\pi\)
\(390\) 77.2569 0.0100309
\(391\) 440.247 0.0569418
\(392\) 1368.68 0.176349
\(393\) −5.30522 −0.000680949 0
\(394\) 20485.8 2.61944
\(395\) −3676.44 −0.468308
\(396\) 0 0
\(397\) 11913.9 1.50616 0.753078 0.657931i \(-0.228568\pi\)
0.753078 + 0.657931i \(0.228568\pi\)
\(398\) −13603.6 −1.71328
\(399\) −340.120 −0.0426749
\(400\) 7912.18 0.989023
\(401\) 6795.80 0.846299 0.423149 0.906060i \(-0.360925\pi\)
0.423149 + 0.906060i \(0.360925\pi\)
\(402\) 219.822 0.0272729
\(403\) 3927.90 0.485515
\(404\) −6741.34 −0.830184
\(405\) −2579.83 −0.316525
\(406\) −1765.20 −0.215777
\(407\) 0 0
\(408\) −5.46350 −0.000662950 0
\(409\) −7470.56 −0.903167 −0.451584 0.892229i \(-0.649141\pi\)
−0.451584 + 0.892229i \(0.649141\pi\)
\(410\) −2719.47 −0.327574
\(411\) −42.7074 −0.00512555
\(412\) 14668.8 1.75408
\(413\) 14226.9 1.69506
\(414\) −2716.64 −0.322501
\(415\) −2708.77 −0.320406
\(416\) 14921.7 1.75864
\(417\) −127.049 −0.0149200
\(418\) 0 0
\(419\) 13399.6 1.56232 0.781160 0.624331i \(-0.214628\pi\)
0.781160 + 0.624331i \(0.214628\pi\)
\(420\) −63.0866 −0.00732932
\(421\) 15500.2 1.79438 0.897189 0.441646i \(-0.145605\pi\)
0.897189 + 0.441646i \(0.145605\pi\)
\(422\) −8736.72 −1.00781
\(423\) −8204.87 −0.943107
\(424\) 229.473 0.0262834
\(425\) 1911.70 0.218190
\(426\) 299.256 0.0340352
\(427\) 915.630 0.103772
\(428\) −13477.7 −1.52212
\(429\) 0 0
\(430\) −750.940 −0.0842175
\(431\) −10265.3 −1.14724 −0.573620 0.819121i \(-0.694461\pi\)
−0.573620 + 0.819121i \(0.694461\pi\)
\(432\) 350.917 0.0390822
\(433\) −7146.13 −0.793120 −0.396560 0.918009i \(-0.629796\pi\)
−0.396560 + 0.918009i \(0.629796\pi\)
\(434\) −6819.03 −0.754202
\(435\) −5.47656 −0.000603634 0
\(436\) 5987.49 0.657681
\(437\) 3513.75 0.384634
\(438\) 46.3625 0.00505773
\(439\) 10796.9 1.17382 0.586911 0.809652i \(-0.300344\pi\)
0.586911 + 0.809652i \(0.300344\pi\)
\(440\) 0 0
\(441\) −10618.4 −1.14657
\(442\) 4013.82 0.431941
\(443\) 12646.3 1.35630 0.678152 0.734922i \(-0.262781\pi\)
0.678152 + 0.734922i \(0.262781\pi\)
\(444\) 155.636 0.0166355
\(445\) −1820.21 −0.193901
\(446\) 15002.4 1.59278
\(447\) 52.7785 0.00558465
\(448\) −10630.1 −1.12103
\(449\) −4626.37 −0.486263 −0.243132 0.969993i \(-0.578175\pi\)
−0.243132 + 0.969993i \(0.578175\pi\)
\(450\) −11796.5 −1.23576
\(451\) 0 0
\(452\) −11142.8 −1.15954
\(453\) 221.613 0.0229852
\(454\) −18473.1 −1.90966
\(455\) −5839.60 −0.601681
\(456\) −43.6059 −0.00447814
\(457\) 5160.37 0.528210 0.264105 0.964494i \(-0.414923\pi\)
0.264105 + 0.964494i \(0.414923\pi\)
\(458\) −1164.85 −0.118842
\(459\) 84.7865 0.00862200
\(460\) 651.742 0.0660601
\(461\) 8319.71 0.840537 0.420269 0.907400i \(-0.361936\pi\)
0.420269 + 0.907400i \(0.361936\pi\)
\(462\) 0 0
\(463\) 15571.7 1.56302 0.781510 0.623892i \(-0.214450\pi\)
0.781510 + 0.623892i \(0.214450\pi\)
\(464\) −1177.62 −0.117823
\(465\) −21.1561 −0.00210988
\(466\) −6337.37 −0.629985
\(467\) 10198.0 1.01050 0.505252 0.862972i \(-0.331400\pi\)
0.505252 + 0.862972i \(0.331400\pi\)
\(468\) −11650.1 −1.15070
\(469\) −16615.6 −1.63590
\(470\) 4184.83 0.410706
\(471\) 359.739 0.0351930
\(472\) 1823.99 0.177873
\(473\) 0 0
\(474\) −372.617 −0.0361073
\(475\) 15257.8 1.47385
\(476\) −3277.62 −0.315608
\(477\) −1780.28 −0.170888
\(478\) 7273.39 0.695978
\(479\) −4312.62 −0.411375 −0.205687 0.978618i \(-0.565943\pi\)
−0.205687 + 0.978618i \(0.565943\pi\)
\(480\) −80.3699 −0.00764243
\(481\) 14406.4 1.36565
\(482\) 2426.55 0.229308
\(483\) −64.9168 −0.00611556
\(484\) 0 0
\(485\) 1072.64 0.100425
\(486\) −784.831 −0.0732524
\(487\) 1945.35 0.181011 0.0905053 0.995896i \(-0.471152\pi\)
0.0905053 + 0.995896i \(0.471152\pi\)
\(488\) 117.391 0.0108894
\(489\) −87.0051 −0.00804602
\(490\) 5415.84 0.499312
\(491\) 20406.8 1.87565 0.937827 0.347102i \(-0.112834\pi\)
0.937827 + 0.347102i \(0.112834\pi\)
\(492\) −129.646 −0.0118798
\(493\) −284.530 −0.0259931
\(494\) 32035.5 2.91771
\(495\) 0 0
\(496\) −4549.20 −0.411825
\(497\) −22619.8 −2.04152
\(498\) −274.541 −0.0247038
\(499\) 11310.4 1.01467 0.507336 0.861748i \(-0.330630\pi\)
0.507336 + 0.861748i \(0.330630\pi\)
\(500\) 5975.93 0.534503
\(501\) 222.368 0.0198297
\(502\) 20891.9 1.85747
\(503\) −9801.79 −0.868867 −0.434434 0.900704i \(-0.643051\pi\)
−0.434434 + 0.900704i \(0.643051\pi\)
\(504\) −2548.31 −0.225220
\(505\) 3361.00 0.296163
\(506\) 0 0
\(507\) 137.976 0.0120862
\(508\) −1997.78 −0.174482
\(509\) 16863.2 1.46847 0.734233 0.678898i \(-0.237542\pi\)
0.734233 + 0.678898i \(0.237542\pi\)
\(510\) −21.6190 −0.00187707
\(511\) −3504.40 −0.303376
\(512\) −15323.6 −1.32268
\(513\) 676.707 0.0582404
\(514\) 15797.5 1.35564
\(515\) −7313.35 −0.625757
\(516\) −35.7996 −0.00305424
\(517\) 0 0
\(518\) −25010.3 −2.12141
\(519\) −72.0924 −0.00609731
\(520\) −748.680 −0.0631381
\(521\) 6029.40 0.507011 0.253506 0.967334i \(-0.418416\pi\)
0.253506 + 0.967334i \(0.418416\pi\)
\(522\) 1755.75 0.147217
\(523\) −13254.9 −1.10821 −0.554106 0.832446i \(-0.686940\pi\)
−0.554106 + 0.832446i \(0.686940\pi\)
\(524\) −408.041 −0.0340178
\(525\) −281.890 −0.0234337
\(526\) 23354.9 1.93597
\(527\) −1099.15 −0.0908534
\(528\) 0 0
\(529\) −11496.4 −0.944880
\(530\) 908.018 0.0744184
\(531\) −14150.8 −1.15648
\(532\) −26159.7 −2.13189
\(533\) −12000.6 −0.975243
\(534\) −184.483 −0.0149501
\(535\) 6719.50 0.543008
\(536\) −2130.25 −0.171665
\(537\) −144.329 −0.0115982
\(538\) −31080.0 −2.49062
\(539\) 0 0
\(540\) 125.518 0.0100027
\(541\) 13839.5 1.09982 0.549912 0.835222i \(-0.314661\pi\)
0.549912 + 0.835222i \(0.314661\pi\)
\(542\) −21698.3 −1.71960
\(543\) 27.5175 0.00217475
\(544\) −4175.56 −0.329091
\(545\) −2985.16 −0.234624
\(546\) −591.860 −0.0463906
\(547\) 16896.3 1.32072 0.660360 0.750949i \(-0.270404\pi\)
0.660360 + 0.750949i \(0.270404\pi\)
\(548\) −3284.76 −0.256054
\(549\) −910.731 −0.0707997
\(550\) 0 0
\(551\) −2270.92 −0.175580
\(552\) −8.32281 −0.000641743 0
\(553\) 28164.9 2.16581
\(554\) −1008.89 −0.0773715
\(555\) −77.5947 −0.00593462
\(556\) −9771.75 −0.745350
\(557\) 6741.52 0.512832 0.256416 0.966567i \(-0.417458\pi\)
0.256416 + 0.966567i \(0.417458\pi\)
\(558\) 6782.54 0.514566
\(559\) −3313.78 −0.250730
\(560\) 6763.29 0.510359
\(561\) 0 0
\(562\) −5942.36 −0.446020
\(563\) −15869.8 −1.18798 −0.593989 0.804473i \(-0.702448\pi\)
−0.593989 + 0.804473i \(0.702448\pi\)
\(564\) 199.504 0.0148947
\(565\) 5555.42 0.413661
\(566\) 12674.2 0.941227
\(567\) 19763.9 1.46385
\(568\) −2900.03 −0.214230
\(569\) −10677.0 −0.786651 −0.393325 0.919399i \(-0.628675\pi\)
−0.393325 + 0.919399i \(0.628675\pi\)
\(570\) −172.547 −0.0126793
\(571\) 5406.95 0.396277 0.198138 0.980174i \(-0.436510\pi\)
0.198138 + 0.980174i \(0.436510\pi\)
\(572\) 0 0
\(573\) −201.666 −0.0147028
\(574\) 20833.7 1.51495
\(575\) 2912.18 0.211211
\(576\) 10573.2 0.764842
\(577\) 1779.45 0.128387 0.0641935 0.997937i \(-0.479553\pi\)
0.0641935 + 0.997937i \(0.479553\pi\)
\(578\) −1123.20 −0.0808284
\(579\) 117.810 0.00845599
\(580\) −421.219 −0.0301554
\(581\) 20751.7 1.48180
\(582\) 108.715 0.00774291
\(583\) 0 0
\(584\) −449.289 −0.0318352
\(585\) 5808.36 0.410506
\(586\) 4208.64 0.296685
\(587\) 14326.9 1.00739 0.503693 0.863883i \(-0.331974\pi\)
0.503693 + 0.863883i \(0.331974\pi\)
\(588\) 258.190 0.0181081
\(589\) −8772.65 −0.613703
\(590\) 7217.49 0.503626
\(591\) −486.909 −0.0338896
\(592\) −16685.2 −1.15837
\(593\) 17239.6 1.19384 0.596920 0.802301i \(-0.296391\pi\)
0.596920 + 0.802301i \(0.296391\pi\)
\(594\) 0 0
\(595\) 1634.11 0.112591
\(596\) 4059.35 0.278989
\(597\) 323.332 0.0221660
\(598\) 6114.45 0.418124
\(599\) −27264.5 −1.85976 −0.929882 0.367858i \(-0.880091\pi\)
−0.929882 + 0.367858i \(0.880091\pi\)
\(600\) −36.1403 −0.00245904
\(601\) 23932.1 1.62431 0.812155 0.583441i \(-0.198294\pi\)
0.812155 + 0.583441i \(0.198294\pi\)
\(602\) 5752.90 0.389486
\(603\) 16526.7 1.11612
\(604\) 17044.9 1.14826
\(605\) 0 0
\(606\) 340.646 0.0228347
\(607\) −8230.35 −0.550346 −0.275173 0.961395i \(-0.588735\pi\)
−0.275173 + 0.961395i \(0.588735\pi\)
\(608\) −33326.4 −2.22297
\(609\) 41.9555 0.00279166
\(610\) 464.512 0.0308320
\(611\) 18467.0 1.22274
\(612\) 3260.08 0.215328
\(613\) 29025.8 1.91246 0.956232 0.292608i \(-0.0945231\pi\)
0.956232 + 0.292608i \(0.0945231\pi\)
\(614\) −28586.2 −1.87890
\(615\) 64.6368 0.00423806
\(616\) 0 0
\(617\) 20432.5 1.33320 0.666598 0.745418i \(-0.267750\pi\)
0.666598 + 0.745418i \(0.267750\pi\)
\(618\) −741.228 −0.0482468
\(619\) 16427.5 1.06668 0.533341 0.845900i \(-0.320936\pi\)
0.533341 + 0.845900i \(0.320936\pi\)
\(620\) −1627.18 −0.105402
\(621\) 129.159 0.00834619
\(622\) −37946.0 −2.44614
\(623\) 13944.5 0.896748
\(624\) −394.849 −0.0253311
\(625\) 11077.2 0.708941
\(626\) −25792.0 −1.64674
\(627\) 0 0
\(628\) 27668.6 1.75812
\(629\) −4031.37 −0.255551
\(630\) −10083.6 −0.637683
\(631\) −26174.8 −1.65135 −0.825674 0.564147i \(-0.809205\pi\)
−0.825674 + 0.564147i \(0.809205\pi\)
\(632\) 3610.95 0.227272
\(633\) 207.655 0.0130388
\(634\) −29293.5 −1.83501
\(635\) 996.023 0.0622456
\(636\) 43.2880 0.00269887
\(637\) 23899.3 1.48654
\(638\) 0 0
\(639\) 22498.8 1.39286
\(640\) 1567.57 0.0968183
\(641\) 16197.4 0.998062 0.499031 0.866584i \(-0.333689\pi\)
0.499031 + 0.866584i \(0.333689\pi\)
\(642\) 681.039 0.0418668
\(643\) −17872.6 −1.09616 −0.548078 0.836427i \(-0.684640\pi\)
−0.548078 + 0.836427i \(0.684640\pi\)
\(644\) −4992.95 −0.305512
\(645\) 17.8484 0.00108958
\(646\) −8964.57 −0.545985
\(647\) −22749.9 −1.38237 −0.691184 0.722679i \(-0.742910\pi\)
−0.691184 + 0.722679i \(0.742910\pi\)
\(648\) 2533.88 0.153611
\(649\) 0 0
\(650\) 26550.9 1.60217
\(651\) 162.076 0.00975767
\(652\) −6691.83 −0.401951
\(653\) −654.228 −0.0392066 −0.0196033 0.999808i \(-0.506240\pi\)
−0.0196033 + 0.999808i \(0.506240\pi\)
\(654\) −302.554 −0.0180899
\(655\) 203.435 0.0121357
\(656\) 13898.8 0.827223
\(657\) 3485.64 0.206983
\(658\) −32059.7 −1.89942
\(659\) −4629.40 −0.273650 −0.136825 0.990595i \(-0.543690\pi\)
−0.136825 + 0.990595i \(0.543690\pi\)
\(660\) 0 0
\(661\) 8457.38 0.497661 0.248830 0.968547i \(-0.419954\pi\)
0.248830 + 0.968547i \(0.419954\pi\)
\(662\) −15602.3 −0.916014
\(663\) −95.4011 −0.00558834
\(664\) 2660.52 0.155494
\(665\) 13042.3 0.760540
\(666\) 24876.4 1.44736
\(667\) −433.438 −0.0251616
\(668\) 17103.0 0.990620
\(669\) −356.578 −0.0206070
\(670\) −8429.33 −0.486050
\(671\) 0 0
\(672\) 615.708 0.0353444
\(673\) −3677.31 −0.210624 −0.105312 0.994439i \(-0.533584\pi\)
−0.105312 + 0.994439i \(0.533584\pi\)
\(674\) 11548.3 0.659977
\(675\) 560.851 0.0319810
\(676\) 10612.1 0.603785
\(677\) 2759.09 0.156633 0.0783163 0.996929i \(-0.475046\pi\)
0.0783163 + 0.996929i \(0.475046\pi\)
\(678\) 563.057 0.0318939
\(679\) −8217.40 −0.464440
\(680\) 209.505 0.0118149
\(681\) 439.071 0.0247066
\(682\) 0 0
\(683\) 6291.53 0.352472 0.176236 0.984348i \(-0.443608\pi\)
0.176236 + 0.984348i \(0.443608\pi\)
\(684\) 26019.7 1.45451
\(685\) 1637.67 0.0913460
\(686\) −5315.38 −0.295834
\(687\) 27.6863 0.00153755
\(688\) 3837.95 0.212675
\(689\) 4006.94 0.221556
\(690\) −32.9332 −0.00181702
\(691\) −1086.66 −0.0598243 −0.0299121 0.999553i \(-0.509523\pi\)
−0.0299121 + 0.999553i \(0.509523\pi\)
\(692\) −5544.85 −0.304600
\(693\) 0 0
\(694\) 38663.7 2.11477
\(695\) 4871.86 0.265900
\(696\) 5.37901 0.000292946 0
\(697\) 3358.16 0.182495
\(698\) 12057.4 0.653837
\(699\) 150.628 0.00815058
\(700\) −21681.0 −1.17066
\(701\) −29306.8 −1.57904 −0.789518 0.613728i \(-0.789669\pi\)
−0.789518 + 0.613728i \(0.789669\pi\)
\(702\) 1177.57 0.0633114
\(703\) −32175.6 −1.72621
\(704\) 0 0
\(705\) −99.4657 −0.00531361
\(706\) 3202.57 0.170723
\(707\) −25748.4 −1.36969
\(708\) 344.080 0.0182646
\(709\) −24677.6 −1.30717 −0.653587 0.756851i \(-0.726737\pi\)
−0.653587 + 0.756851i \(0.726737\pi\)
\(710\) −11475.3 −0.606566
\(711\) −28014.2 −1.47766
\(712\) 1787.79 0.0941013
\(713\) −1674.39 −0.0879471
\(714\) 165.621 0.00868098
\(715\) 0 0
\(716\) −11100.8 −0.579407
\(717\) −172.875 −0.00900437
\(718\) 2361.21 0.122729
\(719\) −11580.6 −0.600673 −0.300337 0.953833i \(-0.597099\pi\)
−0.300337 + 0.953833i \(0.597099\pi\)
\(720\) −6727.10 −0.348201
\(721\) 56027.0 2.89397
\(722\) −44891.5 −2.31397
\(723\) −57.6747 −0.00296673
\(724\) 2116.46 0.108643
\(725\) −1882.13 −0.0964145
\(726\) 0 0
\(727\) −5861.34 −0.299016 −0.149508 0.988760i \(-0.547769\pi\)
−0.149508 + 0.988760i \(0.547769\pi\)
\(728\) 5735.59 0.291999
\(729\) −19645.7 −0.998104
\(730\) −1777.83 −0.0901375
\(731\) 927.302 0.0469186
\(732\) 22.1447 0.00111816
\(733\) −7296.78 −0.367685 −0.183842 0.982956i \(-0.558854\pi\)
−0.183842 + 0.982956i \(0.558854\pi\)
\(734\) −29999.9 −1.50861
\(735\) −128.724 −0.00645996
\(736\) −6360.82 −0.318564
\(737\) 0 0
\(738\) −20722.2 −1.03360
\(739\) 27276.0 1.35773 0.678867 0.734262i \(-0.262471\pi\)
0.678867 + 0.734262i \(0.262471\pi\)
\(740\) −5968.05 −0.296473
\(741\) −761.425 −0.0377485
\(742\) −6956.26 −0.344168
\(743\) −11833.4 −0.584288 −0.292144 0.956374i \(-0.594369\pi\)
−0.292144 + 0.956374i \(0.594369\pi\)
\(744\) 20.7793 0.00102393
\(745\) −2023.85 −0.0995279
\(746\) −31187.3 −1.53063
\(747\) −20640.7 −1.01098
\(748\) 0 0
\(749\) −51477.6 −2.51128
\(750\) −301.969 −0.0147018
\(751\) 16146.2 0.784532 0.392266 0.919852i \(-0.371691\pi\)
0.392266 + 0.919852i \(0.371691\pi\)
\(752\) −21388.1 −1.03716
\(753\) −496.561 −0.0240315
\(754\) −3951.75 −0.190867
\(755\) −8498.02 −0.409635
\(756\) −961.584 −0.0462599
\(757\) −34539.2 −1.65832 −0.829160 0.559012i \(-0.811181\pi\)
−0.829160 + 0.559012i \(0.811181\pi\)
\(758\) 55805.6 2.67408
\(759\) 0 0
\(760\) 1672.12 0.0798081
\(761\) 35841.1 1.70728 0.853639 0.520866i \(-0.174391\pi\)
0.853639 + 0.520866i \(0.174391\pi\)
\(762\) 100.950 0.00479924
\(763\) 22869.1 1.08508
\(764\) −15510.7 −0.734500
\(765\) −1625.36 −0.0768172
\(766\) −30400.8 −1.43398
\(767\) 31849.7 1.49938
\(768\) 448.360 0.0210661
\(769\) −11467.7 −0.537758 −0.268879 0.963174i \(-0.586653\pi\)
−0.268879 + 0.963174i \(0.586653\pi\)
\(770\) 0 0
\(771\) −375.477 −0.0175389
\(772\) 9061.13 0.422432
\(773\) −4411.61 −0.205271 −0.102636 0.994719i \(-0.532728\pi\)
−0.102636 + 0.994719i \(0.532728\pi\)
\(774\) −5722.12 −0.265733
\(775\) −7270.73 −0.336997
\(776\) −1053.53 −0.0487366
\(777\) 594.447 0.0274462
\(778\) 36212.0 1.66872
\(779\) 26802.5 1.23273
\(780\) −141.232 −0.00648322
\(781\) 0 0
\(782\) −1711.02 −0.0782428
\(783\) −83.4752 −0.00380991
\(784\) −27679.6 −1.26091
\(785\) −13794.6 −0.627200
\(786\) 20.6187 0.000935680 0
\(787\) −23844.7 −1.08001 −0.540007 0.841660i \(-0.681578\pi\)
−0.540007 + 0.841660i \(0.681578\pi\)
\(788\) −37449.7 −1.69301
\(789\) −555.103 −0.0250471
\(790\) 14288.4 0.643494
\(791\) −42559.7 −1.91308
\(792\) 0 0
\(793\) 2049.82 0.0917921
\(794\) −46303.5 −2.06958
\(795\) −21.5819 −0.000962806 0
\(796\) 24868.4 1.10733
\(797\) 19939.2 0.886178 0.443089 0.896478i \(-0.353883\pi\)
0.443089 + 0.896478i \(0.353883\pi\)
\(798\) 1321.87 0.0586388
\(799\) −5167.66 −0.228809
\(800\) −27620.7 −1.22068
\(801\) −13869.9 −0.611820
\(802\) −26411.8 −1.16288
\(803\) 0 0
\(804\) −401.852 −0.0176271
\(805\) 2489.31 0.108990
\(806\) −15265.7 −0.667137
\(807\) 738.714 0.0322230
\(808\) −3301.13 −0.143729
\(809\) 37266.3 1.61955 0.809773 0.586743i \(-0.199590\pi\)
0.809773 + 0.586743i \(0.199590\pi\)
\(810\) 10026.5 0.434932
\(811\) −27286.7 −1.18146 −0.590731 0.806869i \(-0.701161\pi\)
−0.590731 + 0.806869i \(0.701161\pi\)
\(812\) 3226.93 0.139462
\(813\) 515.729 0.0222477
\(814\) 0 0
\(815\) 3336.31 0.143394
\(816\) 110.491 0.00474016
\(817\) 7401.08 0.316929
\(818\) 29034.3 1.24103
\(819\) −44497.4 −1.89849
\(820\) 4971.42 0.211719
\(821\) −16982.5 −0.721918 −0.360959 0.932582i \(-0.617551\pi\)
−0.360959 + 0.932582i \(0.617551\pi\)
\(822\) 165.982 0.00704293
\(823\) 20829.2 0.882214 0.441107 0.897455i \(-0.354586\pi\)
0.441107 + 0.897455i \(0.354586\pi\)
\(824\) 7183.08 0.303683
\(825\) 0 0
\(826\) −55292.7 −2.32915
\(827\) 1906.45 0.0801616 0.0400808 0.999196i \(-0.487238\pi\)
0.0400808 + 0.999196i \(0.487238\pi\)
\(828\) 4966.23 0.208440
\(829\) 22740.5 0.952725 0.476362 0.879249i \(-0.341955\pi\)
0.476362 + 0.879249i \(0.341955\pi\)
\(830\) 10527.6 0.440264
\(831\) 23.9795 0.00100101
\(832\) −23797.5 −0.991621
\(833\) −6687.78 −0.278173
\(834\) 493.776 0.0205013
\(835\) −8526.96 −0.353398
\(836\) 0 0
\(837\) −322.468 −0.0133167
\(838\) −52077.4 −2.14676
\(839\) 2199.29 0.0904982 0.0452491 0.998976i \(-0.485592\pi\)
0.0452491 + 0.998976i \(0.485592\pi\)
\(840\) −30.8926 −0.00126892
\(841\) −24108.9 −0.988514
\(842\) −60241.4 −2.46562
\(843\) 141.239 0.00577049
\(844\) 15971.4 0.651373
\(845\) −5290.84 −0.215397
\(846\) 31888.2 1.29591
\(847\) 0 0
\(848\) −4640.75 −0.187929
\(849\) −301.241 −0.0121773
\(850\) −7429.79 −0.299811
\(851\) −6141.18 −0.247376
\(852\) −547.064 −0.0219978
\(853\) −12977.4 −0.520914 −0.260457 0.965486i \(-0.583873\pi\)
−0.260457 + 0.965486i \(0.583873\pi\)
\(854\) −3558.59 −0.142591
\(855\) −12972.5 −0.518890
\(856\) −6599.81 −0.263524
\(857\) 47924.2 1.91022 0.955111 0.296247i \(-0.0957352\pi\)
0.955111 + 0.296247i \(0.0957352\pi\)
\(858\) 0 0
\(859\) −27458.0 −1.09063 −0.545316 0.838230i \(-0.683590\pi\)
−0.545316 + 0.838230i \(0.683590\pi\)
\(860\) 1372.78 0.0544318
\(861\) −495.178 −0.0196000
\(862\) 39895.9 1.57640
\(863\) −11600.5 −0.457574 −0.228787 0.973477i \(-0.573476\pi\)
−0.228787 + 0.973477i \(0.573476\pi\)
\(864\) −1225.02 −0.0482362
\(865\) 2764.47 0.108665
\(866\) 27773.4 1.08981
\(867\) 26.6963 0.00104574
\(868\) 12465.7 0.487459
\(869\) 0 0
\(870\) 21.2846 0.000829443 0
\(871\) −37197.3 −1.44705
\(872\) 2931.98 0.113864
\(873\) 8173.43 0.316871
\(874\) −13656.1 −0.528519
\(875\) 22824.9 0.881854
\(876\) −84.7544 −0.00326893
\(877\) −30437.2 −1.17194 −0.585970 0.810332i \(-0.699287\pi\)
−0.585970 + 0.810332i \(0.699287\pi\)
\(878\) −41962.0 −1.61293
\(879\) −100.032 −0.00383843
\(880\) 0 0
\(881\) 6135.42 0.234628 0.117314 0.993095i \(-0.462572\pi\)
0.117314 + 0.993095i \(0.462572\pi\)
\(882\) 41268.4 1.57549
\(883\) −29999.6 −1.14334 −0.571669 0.820484i \(-0.693704\pi\)
−0.571669 + 0.820484i \(0.693704\pi\)
\(884\) −7337.59 −0.279174
\(885\) −171.546 −0.00651578
\(886\) −49149.6 −1.86367
\(887\) −21669.8 −0.820295 −0.410148 0.912019i \(-0.634523\pi\)
−0.410148 + 0.912019i \(0.634523\pi\)
\(888\) 76.2125 0.00288010
\(889\) −7630.46 −0.287871
\(890\) 7074.22 0.266437
\(891\) 0 0
\(892\) −27425.5 −1.02945
\(893\) −41244.7 −1.54558
\(894\) −205.123 −0.00767376
\(895\) 5534.46 0.206700
\(896\) −12009.0 −0.447761
\(897\) −145.329 −0.00540958
\(898\) 17980.4 0.668165
\(899\) 1082.15 0.0401466
\(900\) 21565.0 0.798703
\(901\) −1121.27 −0.0414594
\(902\) 0 0
\(903\) −136.736 −0.00503907
\(904\) −5456.47 −0.200752
\(905\) −1055.19 −0.0387578
\(906\) −861.298 −0.0315836
\(907\) 50578.2 1.85162 0.925811 0.377986i \(-0.123383\pi\)
0.925811 + 0.377986i \(0.123383\pi\)
\(908\) 33770.3 1.23426
\(909\) 25610.6 0.934489
\(910\) 22695.6 0.826759
\(911\) −47399.5 −1.72384 −0.861918 0.507047i \(-0.830737\pi\)
−0.861918 + 0.507047i \(0.830737\pi\)
\(912\) 881.865 0.0320191
\(913\) 0 0
\(914\) −20055.7 −0.725804
\(915\) −11.0406 −0.000398896 0
\(916\) 2129.44 0.0768107
\(917\) −1558.50 −0.0561246
\(918\) −329.522 −0.0118473
\(919\) −13702.7 −0.491852 −0.245926 0.969289i \(-0.579092\pi\)
−0.245926 + 0.969289i \(0.579092\pi\)
\(920\) 319.148 0.0114370
\(921\) 679.442 0.0243088
\(922\) −32334.5 −1.15497
\(923\) −50638.9 −1.80585
\(924\) 0 0
\(925\) −26667.0 −0.947897
\(926\) −60519.3 −2.14772
\(927\) −55727.2 −1.97446
\(928\) 4110.98 0.145420
\(929\) 13908.1 0.491184 0.245592 0.969373i \(-0.421018\pi\)
0.245592 + 0.969373i \(0.421018\pi\)
\(930\) 82.2231 0.00289914
\(931\) −53377.2 −1.87902
\(932\) 11585.2 0.407174
\(933\) 901.906 0.0316475
\(934\) −39634.3 −1.38851
\(935\) 0 0
\(936\) −5704.90 −0.199220
\(937\) 22326.6 0.778420 0.389210 0.921149i \(-0.372748\pi\)
0.389210 + 0.921149i \(0.372748\pi\)
\(938\) 64576.5 2.24786
\(939\) 613.028 0.0213050
\(940\) −7650.21 −0.265449
\(941\) −9071.95 −0.314280 −0.157140 0.987576i \(-0.550227\pi\)
−0.157140 + 0.987576i \(0.550227\pi\)
\(942\) −1398.12 −0.0483581
\(943\) 5115.64 0.176658
\(944\) −36887.6 −1.27181
\(945\) 479.413 0.0165030
\(946\) 0 0
\(947\) 36042.0 1.23675 0.618377 0.785882i \(-0.287790\pi\)
0.618377 + 0.785882i \(0.287790\pi\)
\(948\) 681.174 0.0233370
\(949\) −7845.28 −0.268355
\(950\) −59299.4 −2.02519
\(951\) 696.252 0.0237408
\(952\) −1605.00 −0.0546411
\(953\) 14367.5 0.488361 0.244180 0.969730i \(-0.421481\pi\)
0.244180 + 0.969730i \(0.421481\pi\)
\(954\) 6919.04 0.234814
\(955\) 7733.11 0.262029
\(956\) −13296.3 −0.449827
\(957\) 0 0
\(958\) 16760.9 0.565263
\(959\) −12546.0 −0.422454
\(960\) 128.176 0.00430924
\(961\) −25610.6 −0.859676
\(962\) −55990.4 −1.87651
\(963\) 51202.1 1.71336
\(964\) −4435.94 −0.148207
\(965\) −4517.57 −0.150700
\(966\) 252.299 0.00840328
\(967\) 28043.1 0.932579 0.466290 0.884632i \(-0.345590\pi\)
0.466290 + 0.884632i \(0.345590\pi\)
\(968\) 0 0
\(969\) 213.071 0.00706381
\(970\) −4168.80 −0.137992
\(971\) 51541.9 1.70346 0.851729 0.523982i \(-0.175554\pi\)
0.851729 + 0.523982i \(0.175554\pi\)
\(972\) 1434.73 0.0473448
\(973\) −37323.0 −1.22972
\(974\) −7560.58 −0.248723
\(975\) −631.065 −0.0207285
\(976\) −2374.05 −0.0778602
\(977\) −11802.0 −0.386469 −0.193235 0.981153i \(-0.561898\pi\)
−0.193235 + 0.981153i \(0.561898\pi\)
\(978\) 338.144 0.0110559
\(979\) 0 0
\(980\) −9900.59 −0.322717
\(981\) −22746.7 −0.740313
\(982\) −79310.9 −2.57730
\(983\) −14482.2 −0.469899 −0.234949 0.972008i \(-0.575492\pi\)
−0.234949 + 0.972008i \(0.575492\pi\)
\(984\) −63.4855 −0.00205675
\(985\) 18671.1 0.603971
\(986\) 1105.82 0.0357167
\(987\) 761.999 0.0245742
\(988\) −58563.5 −1.88578
\(989\) 1412.60 0.0454177
\(990\) 0 0
\(991\) 6229.88 0.199696 0.0998479 0.995003i \(-0.468164\pi\)
0.0998479 + 0.995003i \(0.468164\pi\)
\(992\) 15880.9 0.508284
\(993\) 370.838 0.0118511
\(994\) 87911.8 2.80522
\(995\) −12398.5 −0.395035
\(996\) 501.884 0.0159667
\(997\) −55005.4 −1.74728 −0.873639 0.486574i \(-0.838246\pi\)
−0.873639 + 0.486574i \(0.838246\pi\)
\(998\) −43957.6 −1.39424
\(999\) −1182.72 −0.0374571
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2057.4.a.v.1.10 52
11.3 even 5 187.4.g.b.86.6 104
11.4 even 5 187.4.g.b.137.6 yes 104
11.10 odd 2 2057.4.a.u.1.43 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.g.b.86.6 104 11.3 even 5
187.4.g.b.137.6 yes 104 11.4 even 5
2057.4.a.u.1.43 52 11.10 odd 2
2057.4.a.v.1.10 52 1.1 even 1 trivial