Properties

Label 2057.4.a.u.1.7
Level $2057$
Weight $4$
Character 2057.1
Self dual yes
Analytic conductor $121.367$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [52,-1,20,235,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(0\)
Dimension: \(52\)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 2057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.59808 q^{2} -2.80460 q^{3} +13.1424 q^{4} +1.26573 q^{5} +12.8958 q^{6} -24.2666 q^{7} -23.6449 q^{8} -19.1342 q^{9} -5.81993 q^{10} -36.8591 q^{12} +8.37678 q^{13} +111.580 q^{14} -3.54987 q^{15} +3.58258 q^{16} +17.0000 q^{17} +87.9806 q^{18} -80.3701 q^{19} +16.6347 q^{20} +68.0583 q^{21} +34.5851 q^{23} +66.3147 q^{24} -123.398 q^{25} -38.5171 q^{26} +129.388 q^{27} -318.921 q^{28} -131.037 q^{29} +16.3226 q^{30} +313.539 q^{31} +172.687 q^{32} -78.1674 q^{34} -30.7150 q^{35} -251.468 q^{36} -118.221 q^{37} +369.548 q^{38} -23.4935 q^{39} -29.9281 q^{40} -326.298 q^{41} -312.938 q^{42} -482.045 q^{43} -24.2187 q^{45} -159.025 q^{46} -575.911 q^{47} -10.0477 q^{48} +245.870 q^{49} +567.394 q^{50} -47.6783 q^{51} +110.091 q^{52} +387.949 q^{53} -594.937 q^{54} +573.783 q^{56} +225.406 q^{57} +602.517 q^{58} +481.128 q^{59} -46.6537 q^{60} -489.261 q^{61} -1441.68 q^{62} +464.323 q^{63} -822.688 q^{64} +10.6027 q^{65} -547.688 q^{67} +223.420 q^{68} -96.9975 q^{69} +141.230 q^{70} -227.013 q^{71} +452.427 q^{72} -794.129 q^{73} +543.589 q^{74} +346.082 q^{75} -1056.25 q^{76} +108.025 q^{78} -277.963 q^{79} +4.53459 q^{80} +153.741 q^{81} +1500.35 q^{82} +30.8937 q^{83} +894.446 q^{84} +21.5174 q^{85} +2216.48 q^{86} +367.506 q^{87} -195.375 q^{89} +111.360 q^{90} -203.276 q^{91} +454.530 q^{92} -879.352 q^{93} +2648.08 q^{94} -101.727 q^{95} -484.317 q^{96} +1634.86 q^{97} -1130.53 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{2} + 20 q^{3} + 235 q^{4} + 40 q^{5} + 24 q^{6} + 42 q^{7} - 45 q^{8} + 572 q^{9} - 33 q^{10} + 233 q^{12} - 12 q^{13} + 73 q^{14} + 400 q^{15} + 1223 q^{16} + 884 q^{17} - 201 q^{18} + 44 q^{19}+ \cdots + 4610 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.59808 −1.62567 −0.812834 0.582496i \(-0.802076\pi\)
−0.812834 + 0.582496i \(0.802076\pi\)
\(3\) −2.80460 −0.539746 −0.269873 0.962896i \(-0.586982\pi\)
−0.269873 + 0.962896i \(0.586982\pi\)
\(4\) 13.1424 1.64279
\(5\) 1.26573 0.113210 0.0566052 0.998397i \(-0.481972\pi\)
0.0566052 + 0.998397i \(0.481972\pi\)
\(6\) 12.8958 0.877448
\(7\) −24.2666 −1.31028 −0.655138 0.755510i \(-0.727389\pi\)
−0.655138 + 0.755510i \(0.727389\pi\)
\(8\) −23.6449 −1.04497
\(9\) −19.1342 −0.708674
\(10\) −5.81993 −0.184042
\(11\) 0 0
\(12\) −36.8591 −0.886692
\(13\) 8.37678 0.178715 0.0893577 0.996000i \(-0.471519\pi\)
0.0893577 + 0.996000i \(0.471519\pi\)
\(14\) 111.580 2.13007
\(15\) −3.54987 −0.0611049
\(16\) 3.58258 0.0559779
\(17\) 17.0000 0.242536
\(18\) 87.9806 1.15207
\(19\) −80.3701 −0.970429 −0.485215 0.874395i \(-0.661259\pi\)
−0.485215 + 0.874395i \(0.661259\pi\)
\(20\) 16.6347 0.185981
\(21\) 68.0583 0.707216
\(22\) 0 0
\(23\) 34.5851 0.313543 0.156772 0.987635i \(-0.449891\pi\)
0.156772 + 0.987635i \(0.449891\pi\)
\(24\) 66.3147 0.564018
\(25\) −123.398 −0.987183
\(26\) −38.5171 −0.290532
\(27\) 129.388 0.922250
\(28\) −318.921 −2.15251
\(29\) −131.037 −0.839066 −0.419533 0.907740i \(-0.637806\pi\)
−0.419533 + 0.907740i \(0.637806\pi\)
\(30\) 16.3226 0.0993362
\(31\) 313.539 1.81656 0.908278 0.418368i \(-0.137398\pi\)
0.908278 + 0.418368i \(0.137398\pi\)
\(32\) 172.687 0.953968
\(33\) 0 0
\(34\) −78.1674 −0.394282
\(35\) −30.7150 −0.148337
\(36\) −251.468 −1.16421
\(37\) −118.221 −0.525280 −0.262640 0.964894i \(-0.584593\pi\)
−0.262640 + 0.964894i \(0.584593\pi\)
\(38\) 369.548 1.57760
\(39\) −23.4935 −0.0964609
\(40\) −29.9281 −0.118301
\(41\) −326.298 −1.24291 −0.621454 0.783451i \(-0.713458\pi\)
−0.621454 + 0.783451i \(0.713458\pi\)
\(42\) −312.938 −1.14970
\(43\) −482.045 −1.70956 −0.854780 0.518990i \(-0.826308\pi\)
−0.854780 + 0.518990i \(0.826308\pi\)
\(44\) 0 0
\(45\) −24.2187 −0.0802293
\(46\) −159.025 −0.509717
\(47\) −575.911 −1.78735 −0.893673 0.448720i \(-0.851880\pi\)
−0.893673 + 0.448720i \(0.851880\pi\)
\(48\) −10.0477 −0.0302138
\(49\) 245.870 0.716821
\(50\) 567.394 1.60483
\(51\) −47.6783 −0.130908
\(52\) 110.091 0.293593
\(53\) 387.949 1.00545 0.502726 0.864446i \(-0.332331\pi\)
0.502726 + 0.864446i \(0.332331\pi\)
\(54\) −594.937 −1.49927
\(55\) 0 0
\(56\) 573.783 1.36920
\(57\) 225.406 0.523786
\(58\) 602.517 1.36404
\(59\) 481.128 1.06165 0.530827 0.847480i \(-0.321881\pi\)
0.530827 + 0.847480i \(0.321881\pi\)
\(60\) −46.6537 −0.100383
\(61\) −489.261 −1.02694 −0.513471 0.858107i \(-0.671641\pi\)
−0.513471 + 0.858107i \(0.671641\pi\)
\(62\) −1441.68 −2.95311
\(63\) 464.323 0.928558
\(64\) −822.688 −1.60681
\(65\) 10.6027 0.0202324
\(66\) 0 0
\(67\) −547.688 −0.998667 −0.499334 0.866410i \(-0.666422\pi\)
−0.499334 + 0.866410i \(0.666422\pi\)
\(68\) 223.420 0.398436
\(69\) −96.9975 −0.169234
\(70\) 141.230 0.241146
\(71\) −227.013 −0.379457 −0.189728 0.981837i \(-0.560761\pi\)
−0.189728 + 0.981837i \(0.560761\pi\)
\(72\) 452.427 0.740542
\(73\) −794.129 −1.27323 −0.636615 0.771182i \(-0.719666\pi\)
−0.636615 + 0.771182i \(0.719666\pi\)
\(74\) 543.589 0.853931
\(75\) 346.082 0.532828
\(76\) −1056.25 −1.59422
\(77\) 0 0
\(78\) 108.025 0.156813
\(79\) −277.963 −0.395864 −0.197932 0.980216i \(-0.563423\pi\)
−0.197932 + 0.980216i \(0.563423\pi\)
\(80\) 4.53459 0.00633728
\(81\) 153.741 0.210893
\(82\) 1500.35 2.02056
\(83\) 30.8937 0.0408558 0.0204279 0.999791i \(-0.493497\pi\)
0.0204279 + 0.999791i \(0.493497\pi\)
\(84\) 894.446 1.16181
\(85\) 21.5174 0.0274575
\(86\) 2216.48 2.77918
\(87\) 367.506 0.452882
\(88\) 0 0
\(89\) −195.375 −0.232694 −0.116347 0.993209i \(-0.537118\pi\)
−0.116347 + 0.993209i \(0.537118\pi\)
\(90\) 111.360 0.130426
\(91\) −203.276 −0.234166
\(92\) 454.530 0.515087
\(93\) −879.352 −0.980479
\(94\) 2648.08 2.90563
\(95\) −101.727 −0.109863
\(96\) −484.317 −0.514900
\(97\) 1634.86 1.71129 0.855644 0.517565i \(-0.173162\pi\)
0.855644 + 0.517565i \(0.173162\pi\)
\(98\) −1130.53 −1.16531
\(99\) 0 0
\(100\) −1621.74 −1.62174
\(101\) 895.835 0.882563 0.441282 0.897369i \(-0.354524\pi\)
0.441282 + 0.897369i \(0.354524\pi\)
\(102\) 219.228 0.212812
\(103\) −711.884 −0.681010 −0.340505 0.940243i \(-0.610598\pi\)
−0.340505 + 0.940243i \(0.610598\pi\)
\(104\) −198.068 −0.186752
\(105\) 86.1434 0.0800642
\(106\) −1783.82 −1.63453
\(107\) 197.173 0.178144 0.0890720 0.996025i \(-0.471610\pi\)
0.0890720 + 0.996025i \(0.471610\pi\)
\(108\) 1700.46 1.51507
\(109\) −145.629 −0.127970 −0.0639852 0.997951i \(-0.520381\pi\)
−0.0639852 + 0.997951i \(0.520381\pi\)
\(110\) 0 0
\(111\) 331.562 0.283518
\(112\) −86.9373 −0.0733464
\(113\) −2093.40 −1.74275 −0.871376 0.490617i \(-0.836772\pi\)
−0.871376 + 0.490617i \(0.836772\pi\)
\(114\) −1036.44 −0.851501
\(115\) 43.7754 0.0354963
\(116\) −1722.13 −1.37841
\(117\) −160.283 −0.126651
\(118\) −2212.27 −1.72590
\(119\) −412.533 −0.317788
\(120\) 83.9365 0.0638527
\(121\) 0 0
\(122\) 2249.66 1.66947
\(123\) 915.137 0.670855
\(124\) 4120.64 2.98423
\(125\) −314.405 −0.224970
\(126\) −2134.99 −1.50953
\(127\) −1560.20 −1.09012 −0.545060 0.838397i \(-0.683493\pi\)
−0.545060 + 0.838397i \(0.683493\pi\)
\(128\) 2401.29 1.65817
\(129\) 1351.94 0.922729
\(130\) −48.7523 −0.0328912
\(131\) −1233.27 −0.822528 −0.411264 0.911516i \(-0.634913\pi\)
−0.411264 + 0.911516i \(0.634913\pi\)
\(132\) 0 0
\(133\) 1950.31 1.27153
\(134\) 2518.31 1.62350
\(135\) 163.770 0.104408
\(136\) −401.964 −0.253442
\(137\) 1987.87 1.23967 0.619836 0.784732i \(-0.287199\pi\)
0.619836 + 0.784732i \(0.287199\pi\)
\(138\) 446.002 0.275118
\(139\) −623.314 −0.380351 −0.190175 0.981750i \(-0.560906\pi\)
−0.190175 + 0.981750i \(0.560906\pi\)
\(140\) −403.668 −0.243687
\(141\) 1615.20 0.964713
\(142\) 1043.82 0.616871
\(143\) 0 0
\(144\) −68.5499 −0.0396701
\(145\) −165.857 −0.0949909
\(146\) 3651.47 2.06985
\(147\) −689.567 −0.386901
\(148\) −1553.70 −0.862927
\(149\) −1898.79 −1.04399 −0.521996 0.852948i \(-0.674812\pi\)
−0.521996 + 0.852948i \(0.674812\pi\)
\(150\) −1591.31 −0.866202
\(151\) −1963.03 −1.05794 −0.528969 0.848641i \(-0.677421\pi\)
−0.528969 + 0.848641i \(0.677421\pi\)
\(152\) 1900.35 1.01407
\(153\) −325.281 −0.171879
\(154\) 0 0
\(155\) 396.855 0.205653
\(156\) −308.760 −0.158465
\(157\) 1546.62 0.786204 0.393102 0.919495i \(-0.371402\pi\)
0.393102 + 0.919495i \(0.371402\pi\)
\(158\) 1278.10 0.643543
\(159\) −1088.04 −0.542689
\(160\) 218.575 0.107999
\(161\) −839.264 −0.410828
\(162\) −706.914 −0.342842
\(163\) −2832.34 −1.36102 −0.680508 0.732740i \(-0.738241\pi\)
−0.680508 + 0.732740i \(0.738241\pi\)
\(164\) −4288.33 −2.04184
\(165\) 0 0
\(166\) −142.052 −0.0664179
\(167\) −1227.70 −0.568874 −0.284437 0.958695i \(-0.591807\pi\)
−0.284437 + 0.958695i \(0.591807\pi\)
\(168\) −1609.23 −0.739019
\(169\) −2126.83 −0.968061
\(170\) −98.9388 −0.0446368
\(171\) 1537.82 0.687718
\(172\) −6335.20 −2.80846
\(173\) −1445.39 −0.635208 −0.317604 0.948223i \(-0.602878\pi\)
−0.317604 + 0.948223i \(0.602878\pi\)
\(174\) −1689.82 −0.736236
\(175\) 2994.45 1.29348
\(176\) 0 0
\(177\) −1349.37 −0.573024
\(178\) 898.352 0.378283
\(179\) −4488.13 −1.87407 −0.937034 0.349237i \(-0.886441\pi\)
−0.937034 + 0.349237i \(0.886441\pi\)
\(180\) −318.291 −0.131800
\(181\) −2527.90 −1.03811 −0.519053 0.854742i \(-0.673715\pi\)
−0.519053 + 0.854742i \(0.673715\pi\)
\(182\) 934.681 0.380677
\(183\) 1372.18 0.554288
\(184\) −817.763 −0.327643
\(185\) −149.636 −0.0594672
\(186\) 4043.33 1.59393
\(187\) 0 0
\(188\) −7568.82 −2.93624
\(189\) −3139.81 −1.20840
\(190\) 467.748 0.178600
\(191\) −3435.79 −1.30160 −0.650799 0.759250i \(-0.725566\pi\)
−0.650799 + 0.759250i \(0.725566\pi\)
\(192\) 2307.31 0.867270
\(193\) −621.559 −0.231818 −0.115909 0.993260i \(-0.536978\pi\)
−0.115909 + 0.993260i \(0.536978\pi\)
\(194\) −7517.22 −2.78198
\(195\) −29.7365 −0.0109204
\(196\) 3231.31 1.17759
\(197\) −3911.12 −1.41450 −0.707248 0.706965i \(-0.750064\pi\)
−0.707248 + 0.706965i \(0.750064\pi\)
\(198\) 0 0
\(199\) 828.102 0.294988 0.147494 0.989063i \(-0.452879\pi\)
0.147494 + 0.989063i \(0.452879\pi\)
\(200\) 2917.74 1.03158
\(201\) 1536.05 0.539027
\(202\) −4119.12 −1.43475
\(203\) 3179.82 1.09941
\(204\) −626.604 −0.215054
\(205\) −413.006 −0.140710
\(206\) 3273.30 1.10710
\(207\) −661.758 −0.222200
\(208\) 30.0105 0.0100041
\(209\) 0 0
\(210\) −396.095 −0.130158
\(211\) −4967.39 −1.62071 −0.810353 0.585942i \(-0.800725\pi\)
−0.810353 + 0.585942i \(0.800725\pi\)
\(212\) 5098.57 1.65175
\(213\) 636.680 0.204810
\(214\) −906.616 −0.289603
\(215\) −610.138 −0.193540
\(216\) −3059.38 −0.963723
\(217\) −7608.53 −2.38019
\(218\) 669.616 0.208037
\(219\) 2227.22 0.687221
\(220\) 0 0
\(221\) 142.405 0.0433448
\(222\) −1524.55 −0.460906
\(223\) 3972.86 1.19302 0.596508 0.802607i \(-0.296554\pi\)
0.596508 + 0.802607i \(0.296554\pi\)
\(224\) −4190.52 −1.24996
\(225\) 2361.12 0.699591
\(226\) 9625.64 2.83313
\(227\) 798.165 0.233375 0.116687 0.993169i \(-0.462772\pi\)
0.116687 + 0.993169i \(0.462772\pi\)
\(228\) 2962.37 0.860472
\(229\) −1080.36 −0.311757 −0.155878 0.987776i \(-0.549821\pi\)
−0.155878 + 0.987776i \(0.549821\pi\)
\(230\) −201.283 −0.0577052
\(231\) 0 0
\(232\) 3098.36 0.876798
\(233\) −919.521 −0.258540 −0.129270 0.991609i \(-0.541263\pi\)
−0.129270 + 0.991609i \(0.541263\pi\)
\(234\) 736.994 0.205892
\(235\) −728.948 −0.202346
\(236\) 6323.16 1.74408
\(237\) 779.575 0.213666
\(238\) 1896.86 0.516618
\(239\) 319.095 0.0863621 0.0431810 0.999067i \(-0.486251\pi\)
0.0431810 + 0.999067i \(0.486251\pi\)
\(240\) −12.7177 −0.00342052
\(241\) 357.428 0.0955352 0.0477676 0.998858i \(-0.484789\pi\)
0.0477676 + 0.998858i \(0.484789\pi\)
\(242\) 0 0
\(243\) −3924.66 −1.03608
\(244\) −6430.04 −1.68705
\(245\) 311.205 0.0811516
\(246\) −4207.88 −1.09059
\(247\) −673.242 −0.173431
\(248\) −7413.61 −1.89824
\(249\) −86.6447 −0.0220517
\(250\) 1445.66 0.365726
\(251\) 2797.57 0.703510 0.351755 0.936092i \(-0.385585\pi\)
0.351755 + 0.936092i \(0.385585\pi\)
\(252\) 6102.29 1.52543
\(253\) 0 0
\(254\) 7173.92 1.77217
\(255\) −60.3478 −0.0148201
\(256\) −4459.83 −1.08883
\(257\) 2971.84 0.721316 0.360658 0.932698i \(-0.382552\pi\)
0.360658 + 0.932698i \(0.382552\pi\)
\(258\) −6216.35 −1.50005
\(259\) 2868.82 0.688262
\(260\) 139.345 0.0332377
\(261\) 2507.28 0.594624
\(262\) 5670.67 1.33716
\(263\) 3076.65 0.721348 0.360674 0.932692i \(-0.382547\pi\)
0.360674 + 0.932692i \(0.382547\pi\)
\(264\) 0 0
\(265\) 491.039 0.113828
\(266\) −8967.69 −2.06708
\(267\) 547.951 0.125596
\(268\) −7197.90 −1.64060
\(269\) 5486.97 1.24367 0.621834 0.783149i \(-0.286388\pi\)
0.621834 + 0.783149i \(0.286388\pi\)
\(270\) −753.030 −0.169733
\(271\) 4423.26 0.991491 0.495746 0.868468i \(-0.334895\pi\)
0.495746 + 0.868468i \(0.334895\pi\)
\(272\) 60.9039 0.0135766
\(273\) 570.109 0.126390
\(274\) −9140.38 −2.01529
\(275\) 0 0
\(276\) −1274.77 −0.278016
\(277\) 1125.05 0.244036 0.122018 0.992528i \(-0.461063\pi\)
0.122018 + 0.992528i \(0.461063\pi\)
\(278\) 2866.05 0.618324
\(279\) −5999.31 −1.28735
\(280\) 726.255 0.155007
\(281\) 3802.52 0.807258 0.403629 0.914923i \(-0.367749\pi\)
0.403629 + 0.914923i \(0.367749\pi\)
\(282\) −7426.83 −1.56830
\(283\) 5454.36 1.14568 0.572841 0.819667i \(-0.305841\pi\)
0.572841 + 0.819667i \(0.305841\pi\)
\(284\) −2983.48 −0.623369
\(285\) 285.303 0.0592980
\(286\) 0 0
\(287\) 7918.16 1.62855
\(288\) −3304.22 −0.676052
\(289\) 289.000 0.0588235
\(290\) 762.625 0.154424
\(291\) −4585.13 −0.923661
\(292\) −10436.7 −2.09165
\(293\) −9409.06 −1.87605 −0.938026 0.346564i \(-0.887348\pi\)
−0.938026 + 0.346564i \(0.887348\pi\)
\(294\) 3170.68 0.628973
\(295\) 608.979 0.120190
\(296\) 2795.32 0.548902
\(297\) 0 0
\(298\) 8730.78 1.69718
\(299\) 289.712 0.0560350
\(300\) 4548.33 0.875327
\(301\) 11697.6 2.23999
\(302\) 9026.15 1.71986
\(303\) −2512.46 −0.476360
\(304\) −287.933 −0.0543226
\(305\) −619.273 −0.116260
\(306\) 1495.67 0.279418
\(307\) 8256.58 1.53494 0.767472 0.641082i \(-0.221514\pi\)
0.767472 + 0.641082i \(0.221514\pi\)
\(308\) 0 0
\(309\) 1996.55 0.367572
\(310\) −1824.77 −0.334323
\(311\) −9790.65 −1.78513 −0.892567 0.450914i \(-0.851098\pi\)
−0.892567 + 0.450914i \(0.851098\pi\)
\(312\) 555.503 0.100799
\(313\) 3000.48 0.541844 0.270922 0.962601i \(-0.412671\pi\)
0.270922 + 0.962601i \(0.412671\pi\)
\(314\) −7111.50 −1.27811
\(315\) 587.707 0.105122
\(316\) −3653.08 −0.650323
\(317\) 1881.65 0.333387 0.166694 0.986009i \(-0.446691\pi\)
0.166694 + 0.986009i \(0.446691\pi\)
\(318\) 5002.91 0.882231
\(319\) 0 0
\(320\) −1041.30 −0.181908
\(321\) −552.991 −0.0961525
\(322\) 3859.00 0.667869
\(323\) −1366.29 −0.235364
\(324\) 2020.52 0.346454
\(325\) −1033.68 −0.176425
\(326\) 13023.3 2.21256
\(327\) 408.433 0.0690715
\(328\) 7715.31 1.29880
\(329\) 13975.4 2.34191
\(330\) 0 0
\(331\) 1730.96 0.287439 0.143720 0.989618i \(-0.454094\pi\)
0.143720 + 0.989618i \(0.454094\pi\)
\(332\) 406.016 0.0671176
\(333\) 2262.06 0.372253
\(334\) 5645.04 0.924800
\(335\) −693.225 −0.113059
\(336\) 243.825 0.0395884
\(337\) −2631.37 −0.425341 −0.212671 0.977124i \(-0.568216\pi\)
−0.212671 + 0.977124i \(0.568216\pi\)
\(338\) 9779.34 1.57374
\(339\) 5871.17 0.940643
\(340\) 282.789 0.0451071
\(341\) 0 0
\(342\) −7071.01 −1.11800
\(343\) 2357.03 0.371042
\(344\) 11397.9 1.78644
\(345\) −122.773 −0.0191590
\(346\) 6646.02 1.03264
\(347\) −301.909 −0.0467069 −0.0233535 0.999727i \(-0.507434\pi\)
−0.0233535 + 0.999727i \(0.507434\pi\)
\(348\) 4829.89 0.743992
\(349\) 2778.26 0.426122 0.213061 0.977039i \(-0.431657\pi\)
0.213061 + 0.977039i \(0.431657\pi\)
\(350\) −13768.7 −2.10277
\(351\) 1083.86 0.164820
\(352\) 0 0
\(353\) −6498.55 −0.979839 −0.489919 0.871768i \(-0.662974\pi\)
−0.489919 + 0.871768i \(0.662974\pi\)
\(354\) 6204.53 0.931546
\(355\) −287.337 −0.0429585
\(356\) −2567.69 −0.382268
\(357\) 1156.99 0.171525
\(358\) 20636.8 3.04661
\(359\) −101.524 −0.0149254 −0.00746270 0.999972i \(-0.502375\pi\)
−0.00746270 + 0.999972i \(0.502375\pi\)
\(360\) 572.651 0.0838371
\(361\) −399.651 −0.0582666
\(362\) 11623.5 1.68762
\(363\) 0 0
\(364\) −2671.53 −0.384687
\(365\) −1005.15 −0.144143
\(366\) −6309.41 −0.901087
\(367\) 5884.56 0.836979 0.418490 0.908222i \(-0.362560\pi\)
0.418490 + 0.908222i \(0.362560\pi\)
\(368\) 123.904 0.0175515
\(369\) 6243.46 0.880817
\(370\) 688.037 0.0966738
\(371\) −9414.22 −1.31742
\(372\) −11556.7 −1.61072
\(373\) 2403.84 0.333689 0.166845 0.985983i \(-0.446642\pi\)
0.166845 + 0.985983i \(0.446642\pi\)
\(374\) 0 0
\(375\) 881.781 0.121427
\(376\) 13617.4 1.86772
\(377\) −1097.67 −0.149954
\(378\) 14437.1 1.96446
\(379\) 2211.94 0.299788 0.149894 0.988702i \(-0.452107\pi\)
0.149894 + 0.988702i \(0.452107\pi\)
\(380\) −1336.93 −0.180482
\(381\) 4375.74 0.588388
\(382\) 15798.1 2.11597
\(383\) −4141.62 −0.552550 −0.276275 0.961079i \(-0.589100\pi\)
−0.276275 + 0.961079i \(0.589100\pi\)
\(384\) −6734.67 −0.894993
\(385\) 0 0
\(386\) 2857.98 0.376858
\(387\) 9223.54 1.21152
\(388\) 21485.9 2.81129
\(389\) 3884.11 0.506252 0.253126 0.967433i \(-0.418541\pi\)
0.253126 + 0.967433i \(0.418541\pi\)
\(390\) 136.731 0.0177529
\(391\) 587.947 0.0760454
\(392\) −5813.58 −0.749056
\(393\) 3458.83 0.443956
\(394\) 17983.7 2.29950
\(395\) −351.826 −0.0448159
\(396\) 0 0
\(397\) −12783.9 −1.61614 −0.808070 0.589087i \(-0.799488\pi\)
−0.808070 + 0.589087i \(0.799488\pi\)
\(398\) −3807.68 −0.479552
\(399\) −5469.85 −0.686303
\(400\) −442.083 −0.0552604
\(401\) −9299.04 −1.15803 −0.579017 0.815315i \(-0.696564\pi\)
−0.579017 + 0.815315i \(0.696564\pi\)
\(402\) −7062.87 −0.876278
\(403\) 2626.44 0.324646
\(404\) 11773.4 1.44987
\(405\) 194.595 0.0238753
\(406\) −14621.1 −1.78727
\(407\) 0 0
\(408\) 1127.35 0.136794
\(409\) −1300.05 −0.157172 −0.0785858 0.996907i \(-0.525040\pi\)
−0.0785858 + 0.996907i \(0.525040\pi\)
\(410\) 1899.03 0.228748
\(411\) −5575.18 −0.669108
\(412\) −9355.83 −1.11876
\(413\) −11675.4 −1.39106
\(414\) 3042.82 0.361223
\(415\) 39.1032 0.00462530
\(416\) 1446.56 0.170489
\(417\) 1748.15 0.205293
\(418\) 0 0
\(419\) −7209.60 −0.840601 −0.420301 0.907385i \(-0.638075\pi\)
−0.420301 + 0.907385i \(0.638075\pi\)
\(420\) 1132.13 0.131529
\(421\) 1214.75 0.140625 0.0703124 0.997525i \(-0.477600\pi\)
0.0703124 + 0.997525i \(0.477600\pi\)
\(422\) 22840.4 2.63473
\(423\) 11019.6 1.26665
\(424\) −9173.04 −1.05067
\(425\) −2097.76 −0.239427
\(426\) −2927.51 −0.332953
\(427\) 11872.7 1.34558
\(428\) 2591.31 0.292654
\(429\) 0 0
\(430\) 2805.47 0.314632
\(431\) −921.527 −0.102989 −0.0514947 0.998673i \(-0.516399\pi\)
−0.0514947 + 0.998673i \(0.516399\pi\)
\(432\) 463.544 0.0516256
\(433\) −1266.30 −0.140541 −0.0702706 0.997528i \(-0.522386\pi\)
−0.0702706 + 0.997528i \(0.522386\pi\)
\(434\) 34984.6 3.86939
\(435\) 465.163 0.0512710
\(436\) −1913.91 −0.210229
\(437\) −2779.61 −0.304271
\(438\) −10240.9 −1.11719
\(439\) −2452.90 −0.266675 −0.133338 0.991071i \(-0.542569\pi\)
−0.133338 + 0.991071i \(0.542569\pi\)
\(440\) 0 0
\(441\) −4704.52 −0.507993
\(442\) −654.791 −0.0704643
\(443\) 1653.48 0.177335 0.0886674 0.996061i \(-0.471739\pi\)
0.0886674 + 0.996061i \(0.471739\pi\)
\(444\) 4357.51 0.465762
\(445\) −247.293 −0.0263434
\(446\) −18267.5 −1.93945
\(447\) 5325.35 0.563491
\(448\) 19963.9 2.10537
\(449\) 16.2585 0.00170887 0.000854437 1.00000i \(-0.499728\pi\)
0.000854437 1.00000i \(0.499728\pi\)
\(450\) −10856.6 −1.13730
\(451\) 0 0
\(452\) −27512.2 −2.86298
\(453\) 5505.51 0.571018
\(454\) −3670.03 −0.379390
\(455\) −257.293 −0.0265101
\(456\) −5329.72 −0.547340
\(457\) 17074.0 1.74768 0.873838 0.486217i \(-0.161624\pi\)
0.873838 + 0.486217i \(0.161624\pi\)
\(458\) 4967.59 0.506813
\(459\) 2199.60 0.223679
\(460\) 575.312 0.0583132
\(461\) −7894.51 −0.797579 −0.398790 0.917042i \(-0.630570\pi\)
−0.398790 + 0.917042i \(0.630570\pi\)
\(462\) 0 0
\(463\) 16165.7 1.62264 0.811322 0.584600i \(-0.198749\pi\)
0.811322 + 0.584600i \(0.198749\pi\)
\(464\) −469.450 −0.0469691
\(465\) −1113.02 −0.111000
\(466\) 4228.03 0.420300
\(467\) 14249.5 1.41196 0.705981 0.708230i \(-0.250506\pi\)
0.705981 + 0.708230i \(0.250506\pi\)
\(468\) −2106.49 −0.208061
\(469\) 13290.5 1.30853
\(470\) 3351.76 0.328947
\(471\) −4337.67 −0.424350
\(472\) −11376.3 −1.10940
\(473\) 0 0
\(474\) −3584.55 −0.347350
\(475\) 9917.50 0.957992
\(476\) −5421.65 −0.522061
\(477\) −7423.10 −0.712537
\(478\) −1467.22 −0.140396
\(479\) 469.881 0.0448214 0.0224107 0.999749i \(-0.492866\pi\)
0.0224107 + 0.999749i \(0.492866\pi\)
\(480\) −613.015 −0.0582921
\(481\) −990.309 −0.0938757
\(482\) −1643.48 −0.155308
\(483\) 2353.80 0.221743
\(484\) 0 0
\(485\) 2069.29 0.193735
\(486\) 18045.9 1.68432
\(487\) 6295.49 0.585782 0.292891 0.956146i \(-0.405383\pi\)
0.292891 + 0.956146i \(0.405383\pi\)
\(488\) 11568.6 1.07312
\(489\) 7943.58 0.734603
\(490\) −1430.94 −0.131926
\(491\) 7874.64 0.723783 0.361891 0.932220i \(-0.382131\pi\)
0.361891 + 0.932220i \(0.382131\pi\)
\(492\) 12027.1 1.10208
\(493\) −2227.62 −0.203503
\(494\) 3095.62 0.281941
\(495\) 0 0
\(496\) 1123.28 0.101687
\(497\) 5508.83 0.497193
\(498\) 398.399 0.0358488
\(499\) 2861.27 0.256689 0.128345 0.991730i \(-0.459034\pi\)
0.128345 + 0.991730i \(0.459034\pi\)
\(500\) −4132.02 −0.369579
\(501\) 3443.20 0.307047
\(502\) −12863.4 −1.14367
\(503\) 18084.3 1.60306 0.801528 0.597957i \(-0.204021\pi\)
0.801528 + 0.597957i \(0.204021\pi\)
\(504\) −10978.9 −0.970315
\(505\) 1133.89 0.0999153
\(506\) 0 0
\(507\) 5964.91 0.522507
\(508\) −20504.7 −1.79084
\(509\) −12454.4 −1.08454 −0.542271 0.840204i \(-0.682435\pi\)
−0.542271 + 0.840204i \(0.682435\pi\)
\(510\) 277.484 0.0240926
\(511\) 19270.8 1.66828
\(512\) 1296.34 0.111896
\(513\) −10398.9 −0.894979
\(514\) −13664.8 −1.17262
\(515\) −901.053 −0.0770974
\(516\) 17767.7 1.51585
\(517\) 0 0
\(518\) −13191.1 −1.11888
\(519\) 4053.74 0.342851
\(520\) −250.701 −0.0211423
\(521\) −14191.1 −1.19333 −0.596664 0.802491i \(-0.703507\pi\)
−0.596664 + 0.802491i \(0.703507\pi\)
\(522\) −11528.7 −0.966661
\(523\) 7489.34 0.626168 0.313084 0.949725i \(-0.398638\pi\)
0.313084 + 0.949725i \(0.398638\pi\)
\(524\) −16208.0 −1.35124
\(525\) −8398.25 −0.698152
\(526\) −14146.7 −1.17267
\(527\) 5330.16 0.440579
\(528\) 0 0
\(529\) −10970.9 −0.901691
\(530\) −2257.84 −0.185046
\(531\) −9206.01 −0.752367
\(532\) 25631.7 2.08886
\(533\) −2733.33 −0.222127
\(534\) −2519.52 −0.204177
\(535\) 249.567 0.0201677
\(536\) 12950.0 1.04358
\(537\) 12587.4 1.01152
\(538\) −25229.6 −2.02179
\(539\) 0 0
\(540\) 2152.33 0.171521
\(541\) −12985.7 −1.03198 −0.515988 0.856596i \(-0.672575\pi\)
−0.515988 + 0.856596i \(0.672575\pi\)
\(542\) −20338.5 −1.61183
\(543\) 7089.76 0.560314
\(544\) 2935.67 0.231371
\(545\) −184.328 −0.0144876
\(546\) −2621.41 −0.205469
\(547\) 20019.1 1.56481 0.782407 0.622767i \(-0.213992\pi\)
0.782407 + 0.622767i \(0.213992\pi\)
\(548\) 26125.3 2.03652
\(549\) 9361.62 0.727767
\(550\) 0 0
\(551\) 10531.4 0.814254
\(552\) 2293.50 0.176844
\(553\) 6745.22 0.518691
\(554\) −5173.09 −0.396721
\(555\) 419.668 0.0320972
\(556\) −8191.81 −0.624838
\(557\) 9043.18 0.687921 0.343960 0.938984i \(-0.388231\pi\)
0.343960 + 0.938984i \(0.388231\pi\)
\(558\) 27585.3 2.09280
\(559\) −4037.98 −0.305525
\(560\) −110.039 −0.00830358
\(561\) 0 0
\(562\) −17484.3 −1.31233
\(563\) −7596.86 −0.568685 −0.284343 0.958723i \(-0.591775\pi\)
−0.284343 + 0.958723i \(0.591775\pi\)
\(564\) 21227.5 1.58482
\(565\) −2649.69 −0.197298
\(566\) −25079.6 −1.86250
\(567\) −3730.78 −0.276328
\(568\) 5367.70 0.396521
\(569\) 7260.64 0.534942 0.267471 0.963566i \(-0.413812\pi\)
0.267471 + 0.963566i \(0.413812\pi\)
\(570\) −1311.85 −0.0963987
\(571\) 14813.9 1.08571 0.542856 0.839826i \(-0.317343\pi\)
0.542856 + 0.839826i \(0.317343\pi\)
\(572\) 0 0
\(573\) 9636.03 0.702532
\(574\) −36408.4 −2.64748
\(575\) −4267.73 −0.309525
\(576\) 15741.5 1.13871
\(577\) 23782.6 1.71591 0.857956 0.513722i \(-0.171734\pi\)
0.857956 + 0.513722i \(0.171734\pi\)
\(578\) −1328.85 −0.0956275
\(579\) 1743.23 0.125123
\(580\) −2179.75 −0.156051
\(581\) −749.687 −0.0535323
\(582\) 21082.8 1.50156
\(583\) 0 0
\(584\) 18777.1 1.33049
\(585\) −202.875 −0.0143382
\(586\) 43263.6 3.04984
\(587\) 1428.67 0.100456 0.0502280 0.998738i \(-0.484005\pi\)
0.0502280 + 0.998738i \(0.484005\pi\)
\(588\) −9062.53 −0.635599
\(589\) −25199.1 −1.76284
\(590\) −2800.13 −0.195389
\(591\) 10969.1 0.763469
\(592\) −423.536 −0.0294041
\(593\) 7166.64 0.496288 0.248144 0.968723i \(-0.420179\pi\)
0.248144 + 0.968723i \(0.420179\pi\)
\(594\) 0 0
\(595\) −522.155 −0.0359769
\(596\) −24954.5 −1.71506
\(597\) −2322.50 −0.159219
\(598\) −1332.12 −0.0910942
\(599\) −21168.7 −1.44396 −0.721979 0.691915i \(-0.756767\pi\)
−0.721979 + 0.691915i \(0.756767\pi\)
\(600\) −8183.10 −0.556789
\(601\) 23433.7 1.59048 0.795242 0.606292i \(-0.207344\pi\)
0.795242 + 0.606292i \(0.207344\pi\)
\(602\) −53786.5 −3.64149
\(603\) 10479.6 0.707730
\(604\) −25798.8 −1.73798
\(605\) 0 0
\(606\) 11552.5 0.774403
\(607\) 23906.4 1.59857 0.799286 0.600951i \(-0.205211\pi\)
0.799286 + 0.600951i \(0.205211\pi\)
\(608\) −13878.8 −0.925758
\(609\) −8918.13 −0.593401
\(610\) 2847.47 0.189001
\(611\) −4824.28 −0.319426
\(612\) −4274.96 −0.282361
\(613\) −17833.2 −1.17500 −0.587499 0.809225i \(-0.699888\pi\)
−0.587499 + 0.809225i \(0.699888\pi\)
\(614\) −37964.4 −2.49531
\(615\) 1158.32 0.0759477
\(616\) 0 0
\(617\) −17112.6 −1.11658 −0.558289 0.829646i \(-0.688542\pi\)
−0.558289 + 0.829646i \(0.688542\pi\)
\(618\) −9180.31 −0.597550
\(619\) 11497.8 0.746584 0.373292 0.927714i \(-0.378229\pi\)
0.373292 + 0.927714i \(0.378229\pi\)
\(620\) 5215.61 0.337845
\(621\) 4474.90 0.289165
\(622\) 45018.2 2.90204
\(623\) 4741.11 0.304893
\(624\) −84.1676 −0.00539968
\(625\) 15026.8 0.961714
\(626\) −13796.4 −0.880858
\(627\) 0 0
\(628\) 20326.3 1.29157
\(629\) −2009.75 −0.127399
\(630\) −2702.33 −0.170894
\(631\) −8291.05 −0.523077 −0.261538 0.965193i \(-0.584230\pi\)
−0.261538 + 0.965193i \(0.584230\pi\)
\(632\) 6572.42 0.413666
\(633\) 13931.5 0.874770
\(634\) −8651.96 −0.541977
\(635\) −1974.79 −0.123413
\(636\) −14299.5 −0.891525
\(637\) 2059.60 0.128107
\(638\) 0 0
\(639\) 4343.70 0.268911
\(640\) 3039.39 0.187722
\(641\) −25537.9 −1.57361 −0.786806 0.617201i \(-0.788267\pi\)
−0.786806 + 0.617201i \(0.788267\pi\)
\(642\) 2542.70 0.156312
\(643\) 13151.4 0.806595 0.403298 0.915069i \(-0.367864\pi\)
0.403298 + 0.915069i \(0.367864\pi\)
\(644\) −11029.9 −0.674905
\(645\) 1711.20 0.104462
\(646\) 6282.32 0.382623
\(647\) −12210.5 −0.741952 −0.370976 0.928642i \(-0.620977\pi\)
−0.370976 + 0.928642i \(0.620977\pi\)
\(648\) −3635.20 −0.220377
\(649\) 0 0
\(650\) 4752.93 0.286808
\(651\) 21338.9 1.28470
\(652\) −37223.6 −2.23587
\(653\) −15932.3 −0.954792 −0.477396 0.878688i \(-0.658419\pi\)
−0.477396 + 0.878688i \(0.658419\pi\)
\(654\) −1878.01 −0.112287
\(655\) −1560.99 −0.0931187
\(656\) −1168.99 −0.0695754
\(657\) 15195.0 0.902305
\(658\) −64260.1 −3.80717
\(659\) −3405.11 −0.201281 −0.100641 0.994923i \(-0.532089\pi\)
−0.100641 + 0.994923i \(0.532089\pi\)
\(660\) 0 0
\(661\) −19433.1 −1.14351 −0.571754 0.820425i \(-0.693737\pi\)
−0.571754 + 0.820425i \(0.693737\pi\)
\(662\) −7959.11 −0.467281
\(663\) −399.390 −0.0233952
\(664\) −730.481 −0.0426930
\(665\) 2468.57 0.143950
\(666\) −10401.1 −0.605159
\(667\) −4531.92 −0.263083
\(668\) −16134.8 −0.934543
\(669\) −11142.3 −0.643926
\(670\) 3187.50 0.183797
\(671\) 0 0
\(672\) 11752.8 0.674661
\(673\) −28929.2 −1.65696 −0.828482 0.560015i \(-0.810795\pi\)
−0.828482 + 0.560015i \(0.810795\pi\)
\(674\) 12099.3 0.691463
\(675\) −15966.2 −0.910430
\(676\) −27951.5 −1.59032
\(677\) 19371.9 1.09974 0.549868 0.835252i \(-0.314678\pi\)
0.549868 + 0.835252i \(0.314678\pi\)
\(678\) −26996.1 −1.52917
\(679\) −39672.5 −2.24226
\(680\) −508.778 −0.0286923
\(681\) −2238.53 −0.125963
\(682\) 0 0
\(683\) 26909.6 1.50757 0.753783 0.657124i \(-0.228227\pi\)
0.753783 + 0.657124i \(0.228227\pi\)
\(684\) 20210.5 1.12978
\(685\) 2516.10 0.140344
\(686\) −10837.8 −0.603191
\(687\) 3029.99 0.168270
\(688\) −1726.96 −0.0956976
\(689\) 3249.76 0.179690
\(690\) 564.519 0.0311462
\(691\) 11678.2 0.642922 0.321461 0.946923i \(-0.395826\pi\)
0.321461 + 0.946923i \(0.395826\pi\)
\(692\) −18995.8 −1.04352
\(693\) 0 0
\(694\) 1388.20 0.0759299
\(695\) −788.947 −0.0430597
\(696\) −8689.66 −0.473248
\(697\) −5547.07 −0.301450
\(698\) −12774.6 −0.692733
\(699\) 2578.89 0.139546
\(700\) 39354.1 2.12492
\(701\) 14386.8 0.775155 0.387577 0.921837i \(-0.373312\pi\)
0.387577 + 0.921837i \(0.373312\pi\)
\(702\) −4983.66 −0.267943
\(703\) 9501.41 0.509747
\(704\) 0 0
\(705\) 2044.41 0.109215
\(706\) 29880.9 1.59289
\(707\) −21738.9 −1.15640
\(708\) −17734.0 −0.941360
\(709\) −20825.4 −1.10312 −0.551561 0.834134i \(-0.685968\pi\)
−0.551561 + 0.834134i \(0.685968\pi\)
\(710\) 1321.20 0.0698361
\(711\) 5318.60 0.280539
\(712\) 4619.64 0.243158
\(713\) 10843.8 0.569568
\(714\) −5319.94 −0.278843
\(715\) 0 0
\(716\) −58984.5 −3.07871
\(717\) −894.935 −0.0466136
\(718\) 466.814 0.0242637
\(719\) 8891.30 0.461182 0.230591 0.973051i \(-0.425934\pi\)
0.230591 + 0.973051i \(0.425934\pi\)
\(720\) −86.7657 −0.00449106
\(721\) 17275.0 0.892310
\(722\) 1837.63 0.0947222
\(723\) −1002.44 −0.0515647
\(724\) −33222.5 −1.70540
\(725\) 16169.7 0.828312
\(726\) 0 0
\(727\) 13923.8 0.710322 0.355161 0.934805i \(-0.384426\pi\)
0.355161 + 0.934805i \(0.384426\pi\)
\(728\) 4806.46 0.244697
\(729\) 6856.11 0.348326
\(730\) 4621.78 0.234328
\(731\) −8194.76 −0.414629
\(732\) 18033.7 0.910581
\(733\) 11035.8 0.556095 0.278047 0.960567i \(-0.410313\pi\)
0.278047 + 0.960567i \(0.410313\pi\)
\(734\) −27057.7 −1.36065
\(735\) −872.806 −0.0438013
\(736\) 5972.38 0.299110
\(737\) 0 0
\(738\) −28707.9 −1.43192
\(739\) 668.067 0.0332547 0.0166274 0.999862i \(-0.494707\pi\)
0.0166274 + 0.999862i \(0.494707\pi\)
\(740\) −1966.56 −0.0976923
\(741\) 1888.18 0.0936085
\(742\) 43287.4 2.14168
\(743\) 32628.3 1.61106 0.805530 0.592555i \(-0.201881\pi\)
0.805530 + 0.592555i \(0.201881\pi\)
\(744\) 20792.2 1.02457
\(745\) −2403.35 −0.118191
\(746\) −11053.1 −0.542468
\(747\) −591.127 −0.0289534
\(748\) 0 0
\(749\) −4784.72 −0.233418
\(750\) −4054.50 −0.197399
\(751\) −8925.21 −0.433669 −0.216835 0.976208i \(-0.569573\pi\)
−0.216835 + 0.976208i \(0.569573\pi\)
\(752\) −2063.25 −0.100052
\(753\) −7846.07 −0.379717
\(754\) 5047.15 0.243775
\(755\) −2484.66 −0.119770
\(756\) −41264.5 −1.98515
\(757\) 18711.4 0.898386 0.449193 0.893435i \(-0.351712\pi\)
0.449193 + 0.893435i \(0.351712\pi\)
\(758\) −10170.7 −0.487355
\(759\) 0 0
\(760\) 2405.33 0.114803
\(761\) −13360.9 −0.636441 −0.318221 0.948017i \(-0.603085\pi\)
−0.318221 + 0.948017i \(0.603085\pi\)
\(762\) −20120.0 −0.956523
\(763\) 3533.94 0.167676
\(764\) −45154.4 −2.13826
\(765\) −411.719 −0.0194585
\(766\) 19043.5 0.898263
\(767\) 4030.31 0.189734
\(768\) 12508.1 0.587690
\(769\) 24912.0 1.16821 0.584103 0.811680i \(-0.301446\pi\)
0.584103 + 0.811680i \(0.301446\pi\)
\(770\) 0 0
\(771\) −8334.83 −0.389328
\(772\) −8168.75 −0.380829
\(773\) −4859.00 −0.226088 −0.113044 0.993590i \(-0.536060\pi\)
−0.113044 + 0.993590i \(0.536060\pi\)
\(774\) −42410.6 −1.96953
\(775\) −38690.0 −1.79327
\(776\) −38656.2 −1.78824
\(777\) −8045.90 −0.371487
\(778\) −17859.4 −0.822997
\(779\) 26224.6 1.20615
\(780\) −390.807 −0.0179399
\(781\) 0 0
\(782\) −2703.43 −0.123624
\(783\) −16954.6 −0.773828
\(784\) 880.849 0.0401261
\(785\) 1957.61 0.0890064
\(786\) −15904.0 −0.721725
\(787\) 15402.0 0.697614 0.348807 0.937195i \(-0.386587\pi\)
0.348807 + 0.937195i \(0.386587\pi\)
\(788\) −51401.3 −2.32373
\(789\) −8628.79 −0.389345
\(790\) 1617.72 0.0728558
\(791\) 50799.9 2.28348
\(792\) 0 0
\(793\) −4098.43 −0.183530
\(794\) 58781.6 2.62731
\(795\) −1377.17 −0.0614380
\(796\) 10883.2 0.484604
\(797\) 16061.6 0.713842 0.356921 0.934135i \(-0.383826\pi\)
0.356921 + 0.934135i \(0.383826\pi\)
\(798\) 25150.8 1.11570
\(799\) −9790.48 −0.433495
\(800\) −21309.2 −0.941741
\(801\) 3738.35 0.164904
\(802\) 42757.7 1.88258
\(803\) 0 0
\(804\) 20187.3 0.885510
\(805\) −1062.28 −0.0465100
\(806\) −12076.6 −0.527767
\(807\) −15388.8 −0.671265
\(808\) −21182.0 −0.922251
\(809\) −16822.2 −0.731072 −0.365536 0.930797i \(-0.619114\pi\)
−0.365536 + 0.930797i \(0.619114\pi\)
\(810\) −894.763 −0.0388133
\(811\) 6976.69 0.302077 0.151039 0.988528i \(-0.451738\pi\)
0.151039 + 0.988528i \(0.451738\pi\)
\(812\) 41790.3 1.80610
\(813\) −12405.5 −0.535153
\(814\) 0 0
\(815\) −3584.97 −0.154081
\(816\) −170.811 −0.00732793
\(817\) 38742.0 1.65901
\(818\) 5977.73 0.255509
\(819\) 3889.53 0.165948
\(820\) −5427.87 −0.231158
\(821\) 25465.2 1.08251 0.541256 0.840858i \(-0.317949\pi\)
0.541256 + 0.840858i \(0.317949\pi\)
\(822\) 25635.1 1.08775
\(823\) −29665.3 −1.25646 −0.628231 0.778027i \(-0.716221\pi\)
−0.628231 + 0.778027i \(0.716221\pi\)
\(824\) 16832.5 0.711634
\(825\) 0 0
\(826\) 53684.3 2.26140
\(827\) −39608.8 −1.66546 −0.832728 0.553682i \(-0.813222\pi\)
−0.832728 + 0.553682i \(0.813222\pi\)
\(828\) −8697.06 −0.365029
\(829\) −25188.5 −1.05529 −0.527643 0.849466i \(-0.676924\pi\)
−0.527643 + 0.849466i \(0.676924\pi\)
\(830\) −179.799 −0.00751919
\(831\) −3155.33 −0.131717
\(832\) −6891.47 −0.287162
\(833\) 4179.78 0.173855
\(834\) −8038.13 −0.333738
\(835\) −1553.93 −0.0644024
\(836\) 0 0
\(837\) 40568.2 1.67532
\(838\) 33150.3 1.36654
\(839\) 29492.4 1.21358 0.606789 0.794863i \(-0.292457\pi\)
0.606789 + 0.794863i \(0.292457\pi\)
\(840\) −2036.86 −0.0836646
\(841\) −7218.38 −0.295969
\(842\) −5585.50 −0.228609
\(843\) −10664.6 −0.435714
\(844\) −65283.1 −2.66249
\(845\) −2691.99 −0.109595
\(846\) −50669.0 −2.05914
\(847\) 0 0
\(848\) 1389.86 0.0562830
\(849\) −15297.3 −0.618377
\(850\) 9645.69 0.389229
\(851\) −4088.68 −0.164698
\(852\) 8367.47 0.336461
\(853\) −10281.9 −0.412714 −0.206357 0.978477i \(-0.566161\pi\)
−0.206357 + 0.978477i \(0.566161\pi\)
\(854\) −54591.7 −2.18746
\(855\) 1946.46 0.0778568
\(856\) −4662.14 −0.186155
\(857\) −5568.43 −0.221953 −0.110977 0.993823i \(-0.535398\pi\)
−0.110977 + 0.993823i \(0.535398\pi\)
\(858\) 0 0
\(859\) 44572.2 1.77041 0.885205 0.465201i \(-0.154018\pi\)
0.885205 + 0.465201i \(0.154018\pi\)
\(860\) −8018.65 −0.317946
\(861\) −22207.3 −0.879005
\(862\) 4237.26 0.167426
\(863\) −37406.1 −1.47545 −0.737727 0.675099i \(-0.764101\pi\)
−0.737727 + 0.675099i \(0.764101\pi\)
\(864\) 22343.6 0.879797
\(865\) −1829.47 −0.0719121
\(866\) 5822.53 0.228473
\(867\) −810.530 −0.0317498
\(868\) −99994.0 −3.91016
\(869\) 0 0
\(870\) −2138.86 −0.0833496
\(871\) −4587.86 −0.178477
\(872\) 3443.40 0.133725
\(873\) −31281.7 −1.21275
\(874\) 12780.9 0.494644
\(875\) 7629.55 0.294772
\(876\) 29270.9 1.12896
\(877\) −23478.3 −0.903996 −0.451998 0.892019i \(-0.649289\pi\)
−0.451998 + 0.892019i \(0.649289\pi\)
\(878\) 11278.6 0.433525
\(879\) 26388.7 1.01259
\(880\) 0 0
\(881\) −27217.9 −1.04086 −0.520428 0.853905i \(-0.674228\pi\)
−0.520428 + 0.853905i \(0.674228\pi\)
\(882\) 21631.8 0.825827
\(883\) 47283.9 1.80207 0.901036 0.433744i \(-0.142808\pi\)
0.901036 + 0.433744i \(0.142808\pi\)
\(884\) 1871.54 0.0712066
\(885\) −1707.94 −0.0648722
\(886\) −7602.85 −0.288287
\(887\) 46665.8 1.76650 0.883249 0.468904i \(-0.155351\pi\)
0.883249 + 0.468904i \(0.155351\pi\)
\(888\) −7839.77 −0.296267
\(889\) 37860.8 1.42836
\(890\) 1137.07 0.0428255
\(891\) 0 0
\(892\) 52212.8 1.95988
\(893\) 46286.0 1.73449
\(894\) −24486.4 −0.916048
\(895\) −5680.76 −0.212164
\(896\) −58271.3 −2.17266
\(897\) −812.526 −0.0302447
\(898\) −74.7577 −0.00277806
\(899\) −41085.1 −1.52421
\(900\) 31030.7 1.14928
\(901\) 6595.14 0.243858
\(902\) 0 0
\(903\) −32807.1 −1.20903
\(904\) 49498.4 1.82112
\(905\) −3199.64 −0.117524
\(906\) −25314.8 −0.928286
\(907\) −14387.2 −0.526703 −0.263351 0.964700i \(-0.584828\pi\)
−0.263351 + 0.964700i \(0.584828\pi\)
\(908\) 10489.8 0.383386
\(909\) −17141.1 −0.625450
\(910\) 1183.05 0.0430965
\(911\) 41117.5 1.49537 0.747686 0.664053i \(-0.231165\pi\)
0.747686 + 0.664053i \(0.231165\pi\)
\(912\) 807.536 0.0293204
\(913\) 0 0
\(914\) −78507.6 −2.84114
\(915\) 1736.81 0.0627511
\(916\) −14198.5 −0.512152
\(917\) 29927.3 1.07774
\(918\) −10113.9 −0.363627
\(919\) −34403.6 −1.23490 −0.617448 0.786612i \(-0.711833\pi\)
−0.617448 + 0.786612i \(0.711833\pi\)
\(920\) −1035.07 −0.0370926
\(921\) −23156.4 −0.828480
\(922\) 36299.6 1.29660
\(923\) −1901.63 −0.0678148
\(924\) 0 0
\(925\) 14588.2 0.518548
\(926\) −74331.2 −2.63788
\(927\) 13621.3 0.482614
\(928\) −22628.3 −0.800441
\(929\) 2144.59 0.0757390 0.0378695 0.999283i \(-0.487943\pi\)
0.0378695 + 0.999283i \(0.487943\pi\)
\(930\) 5117.77 0.180450
\(931\) −19760.6 −0.695624
\(932\) −12084.7 −0.424728
\(933\) 27458.9 0.963520
\(934\) −65520.2 −2.29538
\(935\) 0 0
\(936\) 3789.88 0.132346
\(937\) −5196.06 −0.181161 −0.0905804 0.995889i \(-0.528872\pi\)
−0.0905804 + 0.995889i \(0.528872\pi\)
\(938\) −61111.0 −2.12723
\(939\) −8415.15 −0.292458
\(940\) −9580.09 −0.332413
\(941\) −28748.0 −0.995916 −0.497958 0.867201i \(-0.665917\pi\)
−0.497958 + 0.867201i \(0.665917\pi\)
\(942\) 19944.9 0.689853
\(943\) −11285.1 −0.389705
\(944\) 1723.68 0.0594291
\(945\) −3974.16 −0.136804
\(946\) 0 0
\(947\) 41745.1 1.43245 0.716226 0.697868i \(-0.245868\pi\)
0.716226 + 0.697868i \(0.245868\pi\)
\(948\) 10245.5 0.351009
\(949\) −6652.24 −0.227546
\(950\) −45601.5 −1.55738
\(951\) −5277.27 −0.179944
\(952\) 9754.32 0.332079
\(953\) −26758.5 −0.909540 −0.454770 0.890609i \(-0.650278\pi\)
−0.454770 + 0.890609i \(0.650278\pi\)
\(954\) 34132.0 1.15835
\(955\) −4348.79 −0.147354
\(956\) 4193.66 0.141875
\(957\) 0 0
\(958\) −2160.55 −0.0728646
\(959\) −48238.9 −1.62431
\(960\) 2920.44 0.0981840
\(961\) 68515.5 2.29987
\(962\) 4553.52 0.152611
\(963\) −3772.74 −0.126246
\(964\) 4697.45 0.156945
\(965\) −786.726 −0.0262442
\(966\) −10823.0 −0.360480
\(967\) −40523.8 −1.34763 −0.673814 0.738901i \(-0.735345\pi\)
−0.673814 + 0.738901i \(0.735345\pi\)
\(968\) 0 0
\(969\) 3831.90 0.127037
\(970\) −9514.77 −0.314949
\(971\) −49992.1 −1.65224 −0.826118 0.563497i \(-0.809456\pi\)
−0.826118 + 0.563497i \(0.809456\pi\)
\(972\) −51579.3 −1.70206
\(973\) 15125.7 0.498364
\(974\) −28947.2 −0.952287
\(975\) 2899.05 0.0952246
\(976\) −1752.82 −0.0574860
\(977\) 32141.2 1.05249 0.526247 0.850331i \(-0.323599\pi\)
0.526247 + 0.850331i \(0.323599\pi\)
\(978\) −36525.2 −1.19422
\(979\) 0 0
\(980\) 4089.96 0.133315
\(981\) 2786.50 0.0906893
\(982\) −36208.2 −1.17663
\(983\) 14468.9 0.469468 0.234734 0.972060i \(-0.424578\pi\)
0.234734 + 0.972060i \(0.424578\pi\)
\(984\) −21638.4 −0.701023
\(985\) −4950.42 −0.160136
\(986\) 10242.8 0.330829
\(987\) −39195.5 −1.26404
\(988\) −8847.99 −0.284911
\(989\) −16671.6 −0.536021
\(990\) 0 0
\(991\) 538.242 0.0172531 0.00862655 0.999963i \(-0.497254\pi\)
0.00862655 + 0.999963i \(0.497254\pi\)
\(992\) 54143.9 1.73293
\(993\) −4854.67 −0.155144
\(994\) −25330.1 −0.808270
\(995\) 1048.15 0.0333957
\(996\) −1138.71 −0.0362265
\(997\) 58718.6 1.86523 0.932615 0.360872i \(-0.117521\pi\)
0.932615 + 0.360872i \(0.117521\pi\)
\(998\) −13156.3 −0.417291
\(999\) −15296.4 −0.484440
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2057.4.a.u.1.7 52
11.7 odd 10 187.4.g.b.137.23 yes 104
11.8 odd 10 187.4.g.b.86.23 104
11.10 odd 2 2057.4.a.v.1.46 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.g.b.86.23 104 11.8 odd 10
187.4.g.b.137.23 yes 104 11.7 odd 10
2057.4.a.u.1.7 52 1.1 even 1 trivial
2057.4.a.v.1.46 52 11.10 odd 2